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Abstract

Summarized are the formulae of luminosity for proton-proton,electron-
positron and electron-proton colliding beam machines. Both coasting and
bunched proton beams are considered. The expressions are derived from
the first principle. These formulae will be useful for the design of an

intersecting storage accelerator such as TRISTAN.
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8§1. Introduction

Luminesity is an important parameter characterizing the performance
of a colliding beam machine. A general relation between the event rate
and the cross section in an arbitrary frame of feference was discussed
by Méller}) The formulae of luminosity appropriate for specific collision
types and geometries have ever since been derived by many authors. In
designing a complex intersecting storage accelerator such as TRISTAN?)
which aims at various types of colliding beam experiments, it seems ap-
propriate to compile the formulae scattered in various articles. The
fornulae are derived from the first principle. A similar work was done

3)

by Ruggiero whose starting equation, however, is an approximation as

pointed out in this note.

§2. General Expression for Luminosity

2
N observed

The number of events per unit time and per unit volume dgdv

in an aribitrary frame of reference is expressedl’a) in the form
' - - 2
X
a2n R (v X v,)
deav T or1m2 OV - vt - (L)
c
where
0 : total cross section
n],ny : densities of particles 1 and 2
31,32 ¢ velocity vectors of particles 1 and 2
¢ 3 velocity of light
dV : volume element of the interaction region

(the region where the two beams overlap).

The derivation of eq.(l) is shown in the appendix. Since we are interested
- -

in a relativistic case, we put [vl| ~ |v21 = ¢ and define the angle between

> ->

vy and vy to be a crossing angle 2¢. Then

d2N

dtdv

= Onyngy *+ 2c cosz¢ . (2)

The luminosity /£ is defined as

dN
d_g - O)C, (3)




and is obtained by the volume integral of eq. (2).

We use the coordinate system as shown in Fig.1l. The rectangular
coordinate systems (xi, yi,‘zi) (1=1,2) are used for the two beams. z;
denotes the direction of motion, x; denotes the horizontal axis and y;
denotes the vertical axis. The origin O denotes the interaction point.
We assume horizontal crossing in this note, but the formulae for vertical
crossing can be obtained by interchanging the variables x and y. We
define a common coordinate system (x,y,z) which is connected to (xj, ¥i,

z4) through the relation

X1 = x cos$ - z sind
Y1 =%
z]1 = x sind + z cosd
(4)
and ¥y = -X cos¢p - z sing
Yo =¥
zg = X sing -~ z cos¢ .

For unbunched coasting beams, the density n; is expressed as
ng = A3fy (x4, ¥4» 25) (5)

where Ay is the line density of the beam and f; denotes a distribution

function normalized such that
ffi (Xi, Yi- Zi) dxidyi =1
For bunched beams, n; is expressed as
ny = Nyfy (x4, ¥4 2i» t) , (6)

where Ny is the number of particles in a bunch and f; is a distribution

function normalized such that

5fi (Xi, yi’ zi, t) dXi dyi dzi = 1.




With these distribution functions, the luminosity is expressed in

the following way according to the types of collisions. .
1) coasting beam + coasting beam

L = AAg c 2c cos2¢ SEq(x1,y1,21)f9(x2,¥9,25)dxdydz, (7
2) bunched beam + bunched beam

L = NyNp-2¢BE cos?¢ SEq(x1,yq,21,t)E9(xp,y0,2,t)dxdydzdt, (8)
3) bunched beam + coasting beam

7]
<l; = N1A2'2ch c032¢ ffl(xl,yl,zl,t)f2(x2,y2,22)dxdydzdt, (9)

where Bf demotes the number of collisions per unit time (actually, B is
the number of bunches and f is the revolution frequency). The limits of
integral depend on the geometry and are usually taken from - to 4w. The
overlap integrals will be evaluated in the followings for various types

of collisions.

§3. Collision between Coasting Beams

A collision between coasting proton beams is a typical example of
this case. We first consider a case where there is no low-f insertion and
the variation of beam sizes along the zi axis is negligible. Then, the
distribution functions £fi's in eq.(7) is independent of z; and the lumi~-

nosity is expressed as

wﬁf= 2chihy COSZQJEI(Xl,yl) fy(x29, y9) dxdydz.

By use of eq.(4), we change the variables of integration from (x,z) to

(xl,xz). Then

A A.C

12
'é - tan(b ffl (xl’Y) fz (Xzsy) dxldX2dy,




We introduce a new (vertical) distribution function o; according to
05 (y) =uffi(xi,y)dxi.

Then, we cobtain

cA A
_ 172
oé_h

ergtand
(10)

where

- 1 =\f01(y)°2(y)dy-
eff

This formula can be applied to CERN-ISR. The luminosity is influenced
only by the vertical particle distribution and the effective height h.¢¢
is equal to the actual beam height if a uniform rectangular distribution
is assumed for the two beams. For Gaussian beams, hgff =2¢Edy, where Oy
is the root-mean-square beam height.

We now consider a case where the variation of beam sizes along the
zi~axis is not negligible and the crossing angle is small (¢<<1). We

assume that the particle distribution is Gaussian both in betatron oscil-

lations and momentum spread. Then, the rms beam size o (zi) is expressed

as
9 2
* Z4 2
01 (25) = o5, (1 + B—i—f) +x2 B (11)
i

where * denotes the value at the interaction point and Bj and Xpi are
the betatron amplitude function and the off-energy dispersion function.
Uge denotes the beam size due only to betatron oscillation. Since, we
assume a small crossing angle, O; is a function of z,i.e. we can put
z3=z. The derivatives of B8 and x_ with respect to z are assumed to be

p
zero at the interaction peint. The distribution function is expressed as

2 2
1 *i i
£1(x1,Y4521) = 555 5 exP [~ —% - —] (12)
xiyi 20, 20, ’
xi vi




Inserting eq.(12) into eq.(7), we obtain

2 2
de Allz.c cosz¢-f 1 [ X )
= exp |- -
2 o .G 2 2
2m x1 %2 yl y2 20X1 ZGXZ
YZ Y2
- - g 1 dxdydz. (13)
ZGyl 2g 2

Integration over x and ¥y yields for a small crossing angle

9
cALA = 2.2
Lo 12 g2 L exp [- 224 1dz. (14)
Ty (o o) (oh +o2.) o2 o2
2 8 VTrl 0 Tx27 Tyl Ty2 xl  Tx2

=

Here, we assumed that the two beams are separated at z = * % by bending

[\~

magnets. Otherwise, % is taken to be infinity.
5 . R . . .
Montague ) considered a case where the distribution in momentum is

rectangular and that in betatron oscillations is Gaussian. This assumption

may be more realistic for RF atacked beams. His result is as follows.

2
= 2 2
A A a o]
a[i=f,_1_2_f2 <1t %2 1 y

2 yl g2

[G(ax] + Bl) - G(Axy - By) - G(Axq + By) + G(Axy - Bo}1ldz ,

A 2.?% =
/Z(Oxl * OXZ)
X - X + x AP
B, = ?l 02 p2 "2 , (15)
2
+
JZ(UX1 o} 2)




xOl - XOZ - XPZAP2

[y v 2

B2=

Xl = AP]- -

Here, APi is a half width of the momentum spread %? of the i-th beam,

X051 and Xy, are the displacements of the central orbits and equal to

¢z and ~¢z in the straight interaction region in Fig.l. The function
G is given by

—2

G(u) = u erf (u) + L o8

> (16)
v

where the error function erf(u) is defined as

erf(u) =

2 u _-tldc
S0

Another parameter characterizing the interaction region is a length
Rint of the region where the two beams overlap. We assume three standard

deviations for the beam sizes and the length is determined by solving the

equation
z2
* L 1.5 &
= g . —* 4
x; =3 xl.jl + %2 Xpl ( > ),
Y Bxl
2
% “3 A
= o] —< 4 £p
X9 3 «2 1+ > XP2 { > )
\ BXZ

For beams of identical characteristics,

e T __.AW"_. ——
2{30x %Lin2¢ + E§§~9 {X:Z(E?QZ - 90;2} + g‘%? sind

g2 P
sin" ¢ - 9 —%5 cosz¢
Bx



§4. Collision between Bunched Beams
The collision between bunched beams was discussed by Smith.) The
two bunches are assumed to have Caussian distributions in three dimensions.

Then, the distribution function fj is expressed as

x2 y2 (z, - ct)2
_ 1 1 1, M 1 i
£; = 30 .6 0. exp [ 2 {62 + 02 + O2 Pl 18
(amy2 yiozt xi yi zi

Then, the integration over y and t in eq.{(8) yields

2
L = ey, s g dde——— ~
2 |2 2 2 2
2n JOZ T 92 OxlOXZYGyl Oyz
1 2 c052¢ 31n2¢ 1 1
exp ["E {4z2%( > 7t =)+ ( — +— ) x
Ozl * 922 Ix1 * Ox2 %x1 O%2
02 - 02
{xcosd + ~§l————%g z sin¢)2}] . (19)
o] + C
x1 x2

Here, Ozi is assumed to be constant.

We first consider a case where B:i > ozi' This corresponds to an
electron-positron (0T electron-electron) collision where the amplitude
function at the interaction point is not too small. In this case, the
beam widths are considered to be constant, and the integration of eq.(19)

can be performed to yield

fBN1N2c05¢ 1
27 .

2 + 02 )sin2¢
z2

2 2.
+ Oxz)cos o + (Gzl

(20)
When 0 = 09 and ¢ is small, eq.(20) reduces to
- £BN. N
L-—*rz 1 (21)
4T ?

9 2
onx + (oz¢)

o]

—7-




P , . - 7
This is a well~known expression for electron-positron COlllSlOnS.)
*
The case where, @x »> 05, but g; is small, was considered for zero

crossing angle by Fischers) and the result is

*
* 1.EZ 2 *2
Lo By 26D EPROK % 29 (22)
2 28 C‘ﬁ
where Ho(l) is the Hankel function.

For electron-proton and proton-proton collisions, in which both
beams are bunched, the bunch length of the proton beam may not be small
and the general expression (19) should be used. For a small crossing

angle, integration over x can be done to yield

} ZBleNz H{ dz
3
= 2 2 2 2 2 2
(2m)2 jozl + 05 J&le + oxz)(cyl + OyZ)
2 1 o2
exp [-2z% ( 3 7 + 5 5 y] . (23)
o° + 0 0“4+ o

§5. Collision between a Bunched Beam and a Coasting Beam

A typical example of this case is a collision between a bunched
electron beam and a coasting proton beam. The distribution of a bunched
beam is expressed by eq.(18) and that of a coasting beam by eq. (12). Then,
the luminosity is expressed as

2¢ cosz¢N A
L = Bt 12 . dxdydzde

5 g .0 .0 O
(2m) 2 Oy1 x17yl %2 y2
2 2 2 2 2
X -
ex [-1 1 + yl (Zl <o + 2 + 72 ]
P73 o2 2 2 52 2 |
x1 vl zl x2 O(y2




Integration over t yields

24N, A x2 y2 x2 y2
cos™H1 %2 dxdydz 1 %1 1, "2 2y
d£,= Bf 7 J 5 o o o exp [-§ { 5 + 3 + > + 7 ]
2T x1 x2 yl y2 le Oyl Ox2 O&Z
(24)
It is to be noted that putting
o Ble
1™ ¢ s
eq. (24) is identical to eq.(13).
Purther, intergration over y yields
g 2C0$2¢ N1A2 dxdz
aé = Bf S
(2w)% 9%1%2 [o2. + o
vl v2
2 - 2
exp [_; (_..]:._. + L) (xCOSCb + _X.l__iz. z Sintb)z
2 2 2 OZ + 2
%1  Ix2 x1 | %2
2 .2
+ 4z sin” 9 Y. 25)
2 + 2
Ox1 OXZ
Putting
N
2
)\2 =

3
2m [ 2 2
J 0,1 + Oz2

and going to the limit Oy, T,9 7 %, eqs.{25) and (19) are identical.

For a small crossing angle, integration over x yields

N A 242
L = Bt 1ﬂzf d exp [~ *—522—(1)—2—] . (26)
2 ) 2 2 g, +toC




With a rectangular momentum spread in beam 2, we obtain the expression

N A '
L =B L2 o IAP dz [erf(By) - erf(s,] , (27)
' am S T2 [
Ox1 = Ox2

where the appropriate parameters are defined in §3.
The interaction length is given, by assuming that the width of a

bunched beam is negligible, in the form

X;%F(¢COS¢ + sing) + 30:%5

Ling = 2 *2 ?
2 90% . 2
(dcosd + sind)“ - ox2 (¢sing - cos¢)
® (28)
{X:2 (%502 - 9022} (¢sing - coqu)2
D = ($cosp + sinqb)2 + 2 .

Bx

§6. Conclusion
The formulae summarized in this note will be used to estimate the

luminosity of TRISTAN. Combined with the formulae of beam-beam tune shifts,
9)

the optimum luminosity may also be obtained in a way shown by Keil and

Nishikawa}o)
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Appendix Derivation of eq. (1)

Méllerl) derived eq.(l) from the requirement of Lorentz invariance.
Middelkoop and Schocha) derived it in a more intuitive way. We reproduce
the derivation of ref.4).

We start from the well-known expression for the number of events per

unit time %% observed in the laboratory frame of reference,

>
—_ = nllvll *x g X nde, (Al)

where
ni: density of projectile particles

np: density of target particles
v1: speed of projectile particles
G: total cross section

dv: volume of target.

We transform eq. (Al) into

aZy

>
m" =G=V1lnln2 . (A2)

Since the four-dimensional volume dtdV is Lorentz invariant, the both
sides of eq. (A2) are Lorentz invariant.

First, eq.(A2) is transformed to a system (¥) moving parallel to
T with a velocity Bgc (the center—of-mass system is a special system of
this kind). The Lorentz transformations of relevant quantities are

expressed as

pe = Yo(p¥e + BoE*)
E = yo(Bgp#c + E¥) (43)
%
n = YO(BOn*%; + n*).

5
Note that n transforms as the fourth component of a four-vector (nv, icn).

Taking into account the relation

=12~



eq. (A2) is expressed as

e *
2 v v
d°N _ d°N  _ x 1 % * V2 o %
v - w OCYO(BOnl z +-n1)YO(BOn2 . + ny) X
dt 4av
% %
p,c + B.E
19 (84)
BoPyc * By
Since originally
*
ppc = Yo(pzc + BOE;) =0,
it follows that
*C
P2 2 1
BO=-‘Tand YO_ " (A5)
E, Prc 2
1 - (—5
E,
Then,
2
d“N % s E
o|v; - V5| a] o) - (46)

Next, we consider a new laboratory system in which the (%) system

. > s I . .
is moving perpendicular to v* and vy with a velocity Bc. Starting from

1
> >

given P] and P9 in the new laboratory system, the (*) system is obtained
by moving perpendicularly to the relative velocity vector 31 - 32 with

a velocity v, = gc such that

> - > > > -
Vil + v, =v; and vop + v, = vy
Then P* . P* o
1 » o 24
%  Tg * B
ny = — ,my =2 (A7)
Y Y
1 - > T2 -
Y Y

_13_




Inserting eq. (A7) into eq. (A6), we obtain ‘

diy _ a4 ) | Pue  Pye -
T Ty %7 I B Y !
dtdv dt*dv Yz El E2 ‘
n,n
1 2 — -
= g = ,VlL - sz]
n.n
l 2 - -
= J = Ivl — Vzl . (AB)
Y

> - > >
Since v, lvl - vzf ,vl x v2] (which is equal to twice the area of the

> > -
triangle formed by s Vo and vy - Vo ),

t-a-Yl. .1 25 ‘
= 22 7 > 2 . |
Y c lvl - Vzl c
Then, eq.(A8) is expressed as
> -+ 2

2 (v, x v,) |
d N _ 5 - > 2 1 2 |
qtav = Onjiny (vl Vo)< - 3 , (A9)

c

which is the desired expression eq.(1). Some authors3’6) start from

eq. (A6) instead of eq.(A9) and their formulae are valid only for small

crossing angles.

~14m~
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