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a b s t r a c t

We analyze the characteristics of the g radiation produced by Compton back-scattering of a high

brightness electron beam produced by a photoinjector and accelerated in a linac up to energies of

360–720 MeV and a laser operated at about 500 nm, by comparing classical and quantum models and

codes. The interaction produces g rays in the range 4.9–18.8 MeV. In view of the application to nuclear

resonance fluorescence a relative bandwidth of few 10�3 is needed. The bandwidth is reduced by taking

advantage of the frequency–angular correlation typical of the phenomenon and selecting the radiation

in an angle of tens of mrads. The foreseen spectral density is 20–6 photons per eV in a single shot, a

number that can be increased by developing multi-bunch techniques and laser recirculation. In this

way a final value of 104 photon per eV per second can be achieved.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Many applications in physics require the availability of quasi-
monochromatic X and g radiation with large spectral intensity.
Regarding X rays, one of their most important applications is the
advanced imaging. New research techniques in the investigation
of matter, which need a coherent illumination of the samples
with a large flux of photons of high energy, permit in fact to reach
spatial resolution of the order of the molecular and atomic scales
and have been already used to probe nano-structured [1,2],
inorganic [3,4] and organic [5,6] objects. Radiation at shorter
wavelength, g rays, is instead used to excite the nuclear resonant
fluorescence (NRF), so that different nuclei can be identified by
the distinct pattern of NRF emission peaks. Besides synchrotron
radiation [7], free-electron lasers [8–11] and high-order harmonic
generation in gases [12] Thomson and Compton sources are
among the most performing devices producing radiation with
short wavelength, high power, ultra-short time duration, large
transverse coherence and tunability. Existing Thomson sources
[13–17,35] have been already demonstrated to be an important
tool for producing tunable quasi-monochromatic X/g rays suita-
ble for applications in advanced biomedical imaging and in many
other fields such as crystallography, plasma, high energy, matter
ll rights reserved.

ia, 16 20133 Milano, Italy.
and nuclear physics. The Thomson source PlasmonX [18–20] is in
the commissioning phase at the National Laboratory of Frascati
(INFN-LNF). It is based on the back scattering of the light pulse
of the high intensity Ti:sapphire laser FLAME [21] with the
high brightness electron beam produced by the photoinjector
SPARC [22]. SPARC actually delivers electron bunches of charge
up to 1 nC, energy up to 170 MeV, and brightness larger than
1014 A=mrad2. In its first application to Thomson sources, the
photoinjector is foreseento operate currently at a final beam
energy E of about 30 MeV, with the production of Doppler blue
shifted hard X rays with a wavelength lT � l0=ð4g2Þ of fraction of
1 Å (l0 ¼ 800 nm is the wavelength of FLAME and g� 60),
corresponding to photon energies Ep ¼ hc=lT (h is the Planck
constant) of about 20 keV. The main application foreseen for
this X beam at SPARC is mammography’s imaging made with
the phase contrast technique, while more energetic X pulses of
40–80 keV will permit to explore the fields of angiography
and chest or skull radiography. Furthermore, the operations of
PlasmonX will be extended, already at the present stage, to
shorter wavelengths down to l� 10�12 m, by exploiting the
electron beam, already transported in the linac and studied [10],
at 150 MeV. Photons in this range of energy ðEp � 500 keVÞ can be
used to test nuclear transitions of atoms. In the future, with the
linac upgrade, electron beams up to 250 MeV will be accelerated,
allowing the production of X rays with energies exceeding 1 MeV.

Within the framework of the ELI-NP (Extreme Light Infra-
structure-Nuclear Physics) project, a g-rays source, whose main
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applications are in the nuclear physics, is foreseen. Possible work-
ing points for the electrons could be at 360 and 720 MeV [23].
Operating, for instance, with the second harmonics of a laser, i.e.
with l0 ¼ 523:5 nm, photons of wavelengths shorter than 10�13 m,
with energies up to 20 MeV, could be produced. The relative
bandwidth required for many applications in nuclear physics is
of order 10�3 with a maximized spectral photon density, as also
stated in similar projects [24]. The characterization of such g
source is the first step of the development of a g2e collider, where
the same electron beam undergoes scattering with the g rays
produced in the first interaction with the laser. The most important
quality factors that characterize Thomson/Compton sources, in
addition to frequency, are total energy, spectral width and diver-
gence of the X/g radiation yield. All these quantities can be
evaluated knowing coordinates and momenta of the electrons of
the interacting beam together with the most important parameters
of the laser pulse by means of a standard classical electrodynamic
calculation [25], which gives the emitted power in the far field
zone in both linear and nonlinear regime. Quantum effects coming
from the recoil of the electron in the scattering with the laser
photon have, however, to be evaluated and eventually taken into
account [15,17,26,27] when the electron energy is large. These
effects lead to a red shift of the source wavelength and their
importance for a head to head impact can be estimated by
weighting the magnitude of the factor D¼ 2ðlp�lT Þ=ðlpþlT Þ,
where lT ¼ l0ð1�bÞ=ð1þbÞ � l0=ð4g2Þ is the Doppler red shifted
wavelength of the photon scattered as given in the Thomson model
for head on scattering, while lp ¼ lTþh=gm0c is the photon
wavelength in the Compton model, b being the modulus of the
normalized speed of the electron, m0 its rest mass and h the Plank
constant. For the 150 MeV beam, D¼ 10�3, while in the case of the
source at 360 MeV, D turns out to be slightly larger than 10�2, a
value at which recoil effects begin to become important and have
to be embedded into the model. At larger energies the quantum
effects cannot be disregarded. The first attempt to give a quantum-
dynamical treatment of Compton interactions dates back to Klein
and Nishina [28], who calculate the cross-section of the scattering
in the electron reference frame by solving the Dirac equation in the
presence of a semi-classical e.m. potential. In our case, the output
X=g rays has to be evaluated in the laboratory frame, and is the
effect of the interaction of all electrons of the beam and photons of
the laser pulse. In this paper, we will briefly recall the Thomson
model, describing the numerical code TSST used when the quan-
tum recoil is negligible. Then, we will go through the Compton
cross-section evaluation for the electron–photon interaction, using
a generic geometry in the laboratory frame, and following the field
theory [29,30]. We will extend the calculation to an ensemble of
electrons and photons, using realistic particle and laser beams. We
will compare the spectra produced in this way with purely classical
nonlinear calculations, based on the electrodynamic assumptions,
and with the results of the Monte-Carlo code CAIN [31,32]. We will
apply the codes to the case of ELI, providing the X=g rays spectrum
and spectral density, concluding with an optimized setup. Useful
scaling laws for the total photon number, for the bandwidth
and for the spectral density are presented and validated. Finally,
we will give comments and conclusions.
2. Classical Thomson model

2.1. Thomson cross-section and TSST code

The classical model describing the interaction between elec-
tron and radiation, based on the fundamental laws of electro-
magnetism [25], has been widely analyzed in the framework of
the development of Thomson sources [33,34,19,20] and already
cross checked vs experiments [13,35].

When the interaction takes place between laser pulses few
picosecond long in the linear or moderately nonlinear regime and
ultrarelativistic electron bunches, the total scattered radiation
intensity can be evaluated as sum of the distributions produced
by the single particles.

The i-th electron, while entering the laser pulse, experiences
longitudinal and transverse ponderomotive forces that respec-
tively lower its longitudinal momentum and induce quivering and
secular transverse motion. In the far zone the spectral–angular
distribution of the emitted photons is obtained by using the well-
known relation involving the Fourier transform of the retarded
current [25]:

dNi

dn dO
¼ an

Z
dtn � ðn � b

i
ðtÞÞeioðt�n�r

i
ðtÞ=cÞ

����
����
2

ð1Þ

where n is the unit vector in the scattered direction (i.e. the
direction of the observer), b

i
ðtÞ is the normalized velocity of the

i-th electron, r
i
ðtÞ its position, a¼ 1=137 is the fine structure

constant and cgs units are used throughout. An analytic descrip-
tion of the electron trajectory is possible only in the case of
flat-top laser pulses when transverse ponderomotive forces are
negligible. For long pulses and small angles, the paraxial approx-
imation is valid when szbl0 and 9!i9o2w0ðbi

Þz=sz (l0 ¼ c=n0 is
the wavelength, sz the longitudinal r.m.s. dimensions, w0 the
waist diameter of the laser and !i is the polar angle of the i-th
electron velocity), yields useful relations for the scattered radia-
tion distribution [18] which are strictly valid for a flat-top laser
profile and when transverse ponderomotive forces can be
neglected. A generalization to non-flat top pulses (as in the case
of ELI’s settings) can be made by slicing the laser pulse in a
sequence of sub-pulses of time duration 1=n05Ts5sz=c, in
which the amplitude variation is negligible, and by solving the
motion of the particles in each slice. The distribution of the
scattered photons distribution of the s-th flat-top sub-pulse:

dNi

dn dO

� �
s

¼ að9Vy,s9
2
þ9Vf,s9

2
Þ ð2Þ

can be then generalized to the whole pulse by combining all
contributions:

dNi

dn dO
¼ að9Vy9

2
þ9Vf9

2
Þ

where Vy ¼
P

sVy,s,Vf ¼
P

sVf,s, and, in each slice, the terms Vy,s

and Vf,s are computed according to Eq. (27) in Ref. [18]:

Vy,s ¼ Tssinc
DonTs

2

� �
eifs

X
Cy,s ð3Þ

Vf,s ¼ Tssinc
DonTs

2

� �
ei fs

X
n

Cf,s: ð4Þ

In Eqs. (3) and (4) sincðxÞ ¼ sinðxÞ=x, Don ¼ ðo�no0Þ, fs is the
phase of the central oscillation in the slice and Cy,s, Cf,s are
complex terms involving Bessel J functions (see Eqs. (31) and (32)
in Ref. [18]) in the paraxial limit. A sum over the harmonic
number n accounts for the nonlinear effects. In the absence of
correlation between the electrons, and in the moderate nonlinear
regime, the generalization to an electron beam can be made by
summing over the whole beam the contribution by the single
electrons. Eqs. (3) and (4) generalize the computation of the
scattered radiation in the linear and nonlinear regime reported in
Ref. [18] to non-flat-top laser pulses that eventually diffract while
interacting with the electron bunch. The use of the principle of
the slicing for estimating analytically the contributions of the
single particles is at the basis of the semi-analytic TSST (Thomson



Fig. 1. Geometry of the laser–electron interaction. e
k

is the unit vector of the laser

wave vector, b
i

is the electron normalized velocity, n is the scattered radiation

direction, a¼ p�d is the angle between e
k

and the axis of the electron beam

/b
i
S¼ e

z
, y the angle between the electron beam axis and n , and yi the angle

between the i-th electron velocity b
i

and the beam axis.

V. Petrillo et al. / Nuclear Instruments and Methods in Physics Research A 693 (2012) 109–116 111
scattering simulation tools) code and turns out to be an accurate
and fast procedure for radiation computation.
2.2. Beam interaction

As regards the laser system adopted, a Gaussian pulse has been
supposed, with the normalized electric field AL given by the
expression:

AL ¼
ELe�ðx

2
þZ2Þ=2s2

t ð1þB
2=Z2

RÞ�ðB�ct cos aÞ2=2s2
z þ if

hn0ð2pÞ3=2s2
t sz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2

Z2
R

� 	r

f¼
x2
þZ2

2s2
t

ZR

B þ
B

ZR

� 	�artg
B

ZR

� �

where x, Z, B are proper coordinates of the laser beam, connected
with the laboratory frame by

x¼ x

Z¼ y cos a�z sin a

B¼ y sin aþz cos a

with the geometry represented in Fig. 1.
Moreover, EL is the maximum energy delivered by the laser, ZR

is the Rayleigh length, and st the transverse r.m.s. dimensions of
the laser field profiles.

The geometry of the interaction is described in Fig. 1. The axis
of the electron beam /b

i
S coincides with the e

z
, and the laser

beam wave vector forms an angle a with e
z
.

3. The quantum model

3.1. Compton cross-section

The Compton model permits to evaluate the final condition of
the electron–photon system after the scattering in all those
conditions where the recoil of the electron cannot be disregarded.
From the momentum and energy conservation laws it follows
that the electrons present, after the interaction, a diminished
Lorentz factor given by

g¼ g0�
h

mc2
ðnp�n0Þ ð5Þ

or

g¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1�e
k
� b

0
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0
þ
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mc2g0
ð1�n � e

k
Þ

ð6Þ

is the Compton frequency of the scattered photon. In these formulas,
the index 0 refers to the coordinates before the scattering, n is the
direction of the scattered photon and e

k
is the unit vector of the

direction of the incident photon of the laser.
A very useful expression is given by the wavelength:

lp ¼ l0

1�n � b
0

1�e
k
� b

0

þ
h

mcg0

1�n � e
k

1�e
k
� b

0
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where the classic and quantum contributions appear clearly
separated.

The electron velocity changes consequently as

b ¼ b
0
�

hn0

mc2g0

1�np

n0

� 	
b

0
þe

z
þ

np

n0
n

1þ hn0

mc2g0
1�np

n0

� 	 : ð8Þ

From Eq. (8), the final velocity distribution of the electron
beam can be reconstructed from the initial one and from the
frequency and angular distribution of the photons. The photon–
electron scattering is described by a cross-section deduced in the
rest electron frame by Klein and Nishina [28,36], and revisited in
Refs. [37,29,30,26].

The starting point is the Dirac equation:

i_
@c
@t
¼ Ĥc

with

Ĥ ¼ Ĥ0þĤint

where c is the wave function, and Ĥ the Hamiltonian formed by
the unperturbed Ĥ0 and the interaction part Ĥint .

Denoting with primes the quantities in the electron rest frame,
the operator Ĥint contains the quantum radiation field:

Â ¼ ce
0

ffiffiffiffiffi
_

n00

s
ðeiðk 0

0
�r 0�2pn0

0
t0 Þâ0þe�iðk 0

0
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0
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y

0Þ
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p
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_

n0P

s
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y
Þ

where â0 (
^

ay0 Þ and â(ây Þ are creation (annihilation) operators and
e

0
, e

p
the polarization vectors relevant respectively to the inci-

dent and scattered photons. The linear transition probability is
given by

wn,m ¼
2p
_
r
X

n0

Hm,n0Hn0 ,n

Em�En

�����
�����
2

with r the density of the states with energy Em, and Hn,m0 and Hn0 ,n

the interaction matrix elements projected on the common states
given by the product of the spin states, the momentum and the
radiation eigenfunctions. In the electron reference frame the
differential transition probability dwn,m=dO turns out to be

dwn,m

dO
¼ c

r2
0

4

n02p
n020

4ðe0p � e
0
0Þ

2
þ

hDn0

mc2
ð1�n 0 � e0kÞ
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and the cross-section

ds
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with e 00 and e0p the photon polarizations before and after the
scattering. In the laboratory reference frame, the differential
Compton cross-section ds=dO can be deduced by Lorentz trans-
forming frequencies, polarizations and integration element over
the solid angle according to the expressions:

n0p ¼ npg0ð1�b0
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Finally, for the double differential cross-section we obtain

d2s
dndO
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where the factor X, after averaging over the polarizations of the
photons, becomes

X ¼
n0
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0
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Another delta function dðmcðb
0
g0�bgÞ=h�ðn0e

k
�npnÞ=cÞmulti-

plies the cross-section and guarantees the conservation of the
total momentum between the initial and the final configuration.

3.2. Beam interaction

We carry out the calculations with the same electron beam
density as used in the classical scheme.

As regards the laser system, the same Gaussian pulse as the
classical case has been supposed, with the photon density
represented by modulus squared of the laser electric field:

dNL

dx
0
dk

0

¼
ELFðk

0
Þ

hn0p3=2s2
t sz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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2
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t ð1þ z2=Z2
RÞ�ðB�ct cos aÞ2=sz

where x
0

and k
0

are laser photon coordinates and momenta, ZR is
the Rayleigh length, EL is the maximum energy delivered by the
laser, Fðk

0
Þ the dependence on the photon momenta, st and sz the
transverse and longitudinal r.m.s. dimensions of the laser field
profiles and n0 the central frequency value of the laser spectrum.

The number of emitted photons for frequency n and solid angle
O units can be evaluated in the laboratory frame as

dN

dn dO
¼ h

Z
ds

dndO
dNe

dx dp
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dx dp dk
0
ð1�b

0
� e

k
Þc dt: ð12Þ

The distribution of the electrons can be represented, in turn, by
a sum of delta functions:

dNe

dxdp
¼
X
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dðx�x
i
ðtÞÞdðp�p

i
ðtÞÞ ð13Þ

with x
i
ðtÞ and p

i
ðtÞ coordinates of the i-th electron and the index i

runs over all electrons. Once that Eq. (13) is inserted in Eq. (12),
the number of emitted photons is
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and the delta functions permit to solve the integrals in dx and dp.
Since the cross-section depends only on the electron momenta
which are constant in time while the photon distribution depends
on coordinates, one has
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The distribution of the laser photons can be evaluated from the
shape of the potential vector of the laser. We assume a simplified
photon distribution depending only on the frequency f:

Fðk
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Þdk

0
¼ ALnðf Þ df ¼

1ffiffiffiffi
p
p

sn
e�ðf�n0Þ
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n

where diffraction and curvature of the phase surfaces of the laser
are disregarded with the assumption of an infinite Rayleigh length.

The df integral can be solved by using the delta function
dððmc2=hÞðg�g0Þþðnp�f ÞÞ ¼ dðgðnp,f ÞÞ:
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According to the linear hypothesis, the unperturbed electron
orbits can be assumed as
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and the time integral evaluated analytically, giving
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Table 1
Main parameters of electron, laser and radiation beams for the ELI project.

Quantity Beam A Beam B

Charge Q (C) 0.25�10�9 0.25�10�9

Energy E (MeV) 360 720

Energy spread dE (MeV) 0.234 0.36

Horizontal emittance (mm mrad) 0.65 0.5

Vertical emittance (mm mrad) 0.6 0.5

Laser wavelength ðmmÞ 0.523 0.523

Laser energy EL (J) 1 1

Laser rms time duration (ps) 4 4

Laser waist ðmmÞ 35 35

Photon energy (MeV) 4.9 18.8

Quantum red shift (keV) 67 533

Fig. 2. Comparison of the total number of photons N (a) and relative bandwidth

bw (b) vs the rms acceptance angle yrms ðmradÞ of the data obtained by the CAIN

code (blue), the Compton model (red) and the classical nonlinear theory TSST

(black). The electron beam used is the working point A (Table 1). The total number

of photons is almost exactly the same. As regards the bandwidth, differences

within 20% were found. (For interpretation of the references to color in this figure

caption, the reader is referred to the web version of this article.)
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and
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4. Scaling laws and numerical data

Quantum effects can be weighted from the Compton formula,
Eq. (7). A first regime, almost completely classical, occurs when

l0ð1�b0cosðyþyiÞÞb
h

mcg0

ð1þcosðaþyiÞÞ

that, for y,yi and a much less than 1 can be written as
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b0ðyþyiÞ

2

2

 !
b

h
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2þ
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2

2
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:

This is the usual Thomson classical regime, valid if gomc2=8hn0

and where the shift of the frequency is due only to Doppler effect.
Acceptance and emittance effects extend the validity range of this
regime.

If the incident radiation is a laser pulse with energy hn0

ranging between 0.1 eV (CO2 laser) and 10 eV (harmonics of
the Ti:sapphire laser), the Thomson regime can protract up to
electron beam energy of the order of several GeV. But if the
relative bandwidth of the emitted radiation Dnp=np is required to
be very thin by the particular foreseen application, the red shift of
wavelength due to quantum effects must be taken into account
already when 8ghn0=mc2 �Dnp=np. If for instance Dnp=np � 10�3

the quantum shift on frequency begins to manifest at g� 100.
If, however, the incident radiation has a very high frequency

(in the range of UV, X or g rays), the quantum recoil is always
important, and, if hn04mc2g, the energy of the emitted photon
equals the energy of the electron hnp �mc2g0.

The quantum model has been applied to the electron beams
whose parameters are summarized in Table 1 for typical cases of
ELI, obtained by accelerating the electron beam in a high-bright-
ness C-band linac driven by a S-band photoinjector [23].

As laser system we have hypothesized the second harmonics of a
Nd:YLF laser ðl0 ¼ 523,5 nmÞ, with an energy of 1 J, a temporal rms
duration of 4 ps and a waist diameter of 35 mm. The interaction is
supposed head-to-head, with the angle d, defined in Fig. 1, null. In
Fig. 2 we have compared the total number of photons (a) and
relative bandwidth (b) vs the rms acceptance angle yrms ðmradÞ
obtained by three numerical codes based on different models: CAIN
(blue squares), which is a well-known quantum Monte Carlo code
[31,32] bench-marked for Compton sources in Ref. [17], a semi-
analytical quantum code based on the linear Compton model
described previously (red squares) and the upgraded version of
the classical nonlinear code TSST (black squares) [18] in the case of
the electron beam parameters of beam (A).

While for the total number of photons the agreement pre-
sented by the three different models appears striking, differences
within 20%, are shown by the values of the bandwidth.

A photon number of order 105 for a bandwidth of few 10�3 is
obtained in a cone of acceptance yrms of order 10 mrad.

In particular, for a bandwidth at the nominal value 3� 10�3,
1:5� 105 photon are collected in about 25 mrad.

The spectra produced by the three codes are presented in Fig. 3
for the same beam of Fig. 2 and yrms ¼ 25 mrad. We can see here
that the differences on the bandwidth values, shown in Fig. 2(b),
have to be attributed to the discrepancies in the tails, the rms
evaluation being very sensible to them.

As can be seen, the quantum effects introduce a redshift in
energy, that, in the present regime, can be quantified in the value
hDn� 3:1� 10�5g3ðhn0Þ

2
¼ 67 keV. The classical calculations give

therefore a larger value of the mean frequency, while the shape,
the peak and the width of the spectra are very similar for all cases.



Fig. 3. Spectra of the g rays. (a) CAIN. (b) Quantum model. (c) Classical treatment

in the case of beam (A) and for the laser parameter of Table 1 and interaction angle

a¼ p, rms acceptance angle yrms ¼ 25 mrad.

Fig. 4. Spectral density Sr (e V�1
Þ vs rms electron beam transverse dimension sx

(mm, triangles, left axis) and corresponding acceptance angle (stars, right axis) in

the case of beam A. The solid line is the plot of Eq. (22) for the same value.
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A simple model based on the luminosity concept permits to
deduce a very useful scaling law for the total number of photons
emitted in a cone of rms emi-angle yrms. Assuming, in fact, an
electron beam with circular transverse section of radius sx, the
photon number for a single shot scales as

N¼
sTh

ps2
x

NeNLC2
¼

0:83� 109ELQC2

hnLs2
x

ð19Þ

where sTh ¼ 0:67 barn is the Thomson cross-section, C¼ g0yrms is
the acceptance of the system, Ne the total number of electrons in
the beam and NL the total number of photons in the laser pulse,
and in the right hand term the energy of the laser is in Joule, the
charge Q in pC, the factors hn in eV and the lengths in mm.
Inserting the data of Table 1, and sx ¼ 13:5 mm, Eq. (19) fits very
accurately the results of Fig. 3. The bandwidth, deduced from the
Compton relation (7), scales with the quadratic sum of contri-
butes due respectively to the acceptance C, to the normalized
emittance En, to the laser natural bandwidth, diffraction and
temporal profile, similar to the corresponding classical terms:
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The term due to the energy spread of the beam Dg has, however, a
different expression, due to the presence of the quantum frequency
shift. In fact
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� 	2
and

Y2
¼ ðgyiþgyÞ2

shows that quantum effects contribute to frozen the beam and to
decrease the bandwidth broadening from 2Dg=g to Dg=g, provided
that acceptance gy and emittance gyi terms are sub-dominant.

The relative bandwidth has the expression:
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where in the last term all contributions of the laser are taken into
account. Once the bandwidth has been fixed at the required value
½Dnp=np�r the corresponding acceptance is
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and the spectral density in the bandwidth in a single shot defined as

S¼
N

Dnp=np

turns out to be

SrðeV�1
Þ ¼

0:83� 109ELQC2

hnLs2
x

1
Dnp

np

h i
r

: ð22Þ

Figs. 4 and 5 show the numerical optimization of the spectral
density with respect the transverse dimension sx of the electron
beam (triangles, left axis), obtained by changing the final focusing
system, for the low and the high energy cases, together with the
acceptance angle on the right. In the optimization the normalized
emittance of the electron beam remains constant and both transverse
size and transverse momenta of the electrons changes accordingly. As
can be seen in the figures, the spectral density, once fixed the
required bandwidth at the value ½Dnp=np�r ¼ 3� 10�3, shows a
maximum for a value of sx. For beams characterized by high focusing,
the term ½Dnp=nP�E dominates in the bandwidth, thus limiting the
collection of the photons to a small acceptance angle. Lower focusing
decreases the transverse momenta of the electrons in the interaction
region and permits to increase the acceptance. A further relaxation in
the focusing leads to a low density beam with radius larger than the
laser waist and to a diminishing spectral density. In our case the
maximum value of photons Sr,max ¼ 1:2� 108 occurs for sxðSr,maxÞ ¼

17 mm for the lower energy beam, while Sr,max ¼ 1:15� 109 for
sxðSr,maxÞ ¼ 16 mm in the higher energy case. In Figs. 4 and 5, the
validation of Eq. (22) (solid lines) is also shown. All these numbers



Fig. 6. Normalized frequency shift as function of g. (a) Quantum model, (b) a0 ¼ 0:03

and (c) a0 ¼ 0:3.

Fig. 5. Spectral density Sr ðeV�1
Þ vs rms electron beam transverse dimension sx

(mm, triangles, left axis) and corresponding acceptance angle (stars, right axis) in

the case of beam B. The solid line is the plot of Eq. (22) for the same value.
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represent the values obtained in a single shot. Another important
parameter for the characterization of the g-source is the spectral
density per eV, that in previous the cases turns out to be 18 electrons
per eV in the first case and 6 electron per eV in the second.

An upgrade of the photoinjector, now under study, permits the
operation at 100 Hz, enhancing by an extra factor Fpj ¼ 102 the
photon number per eV and per second.

A system of recirculation of the laser pulse producing a train
of 20–30 packets provides moreover a multiplication factor
Fr ¼ 20230, that finally permits to increase the photon number
per second in a bandwidth of 3� 10�3 by an overall factor FpjFr ¼

2�3� 103. The spectral density of photons per r.s.m. bandwidth
become respectively 2:423:6� 1011

ð3:625:4� 104 per eV) for
the low energy case, and 2:323:45� 1012

ð1:221:8� 104 per eV)
for the high energy case. Since this last device can introduce
losses and limits therefore the laser energy, the previous values
have to be intended as number of photons per eV per second and
per Joule of laser energy and scaled accordingly with the effective
laser energy.

As regards the nonlinear effects due to strong laser energy, we
are carrying out an analysis based on the numerical solution of
the trajectories of the electrons under a realistic laser profile and
on their insertion in Eq. (1). The nonlinearity, in general, induces a
series of distortions in the spectrum appearing in sequence with
increasing laser energy: a shift in the spectrum towards lower
energies, a broadening in the bandwidth, the rising of side bands,
the growth of harmonics, the enhancement of the background,
the superposition, shift and merging of all harmonics. In the case
of the parameters of ELI, the only effect that appears is a weak
shift of the frequency peak, which is however much lower than
quantum shift. In Fig. 6 the nonlinear shift for the case a0 ¼ 0:03
(curve (b)) and a0 ¼ 0:3 (curve (c)) are compared with the
quantum one (curve (a)). For the typical values of the ELI working
points we have considered ð600ogo1500, a0 � 0:03Þ, the quan-
tum shift exceeds by more than one order of magnitude the
nonlinear one, and even an a0 10 times larger do not change
this order.
5. Conclusions

A study of the radiation generated by a g source with
parameters similar to those of ELI-NP is presented. The scheme
adopted is based on the back-scattering between electrons
produced by a linac and photons coming from an optical laser
at the present status of art. The indicative values of the para-
meters of the electron beam have been deduced by start-to-end
simulations that are presented in Ref. [23]. By the comparison of
the results of three independent models (the classical nonlinear
deterministic TSST code, a semi-analytical quantum linear one,
and CAIN), we are able to conclude that (i) the quantum model in
the range analyzed (electron energy about 300–700 MeV, laser
wavelength � 500 nm) is important to determine the radiation
frequency, whose shift with respect to the classical value scales as
g3. (ii) The other characteristics of the radiation, as, for instance,
the shape of the spectrum, the total number of photons, the
bandwidth, are not substantially affected by quantum effects.
(iii) Also classical nonlinear effects do not seem to play a
significant role, due to the limited value of the laser energy
ðo1 JÞ, corresponding to values of the laser parameter a0 � 0:03.
(iv) Collective and microbunching effects on the electron beam,
that could, in principle, lead the system to exponential gain and
decrease the divergence of the radiation, would require prohibi-
tive values of laser energy and must be completely excluded.
(v) Finally, ambiguous mathematical procedures in the Klein–
Nishina cross-section derivation (such as, for instance, the use of
improper eigenfunctions and the occurrence of squared Dirac
delta functions), should be eliminated by a rigorous revision.

Simple scaling laws, based on the concept of luminosity and
validated by numerical simulations, provide an useful tool for the
immediate dimensioning of the experiments.

At the nominal value of relative bandwidth 310�3 (a number
suitable for beginning nuclear resonance fluorescence measure-
ments), about 10 photons per eV can be collected per single
interaction and per Joule of laser energy. Multi-bunch and laser
recirculation techniques can increase this value up to \104,
thus rendering this g source interesting for future applications in
nuclear fields.
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