A Rare Opportunity, the Mu2e Experiment

Doug Glenzinski Fermilab September-2016

MUSE is off to a great start

MUSE is off to a great start

Introduction

• What is Mu2e?

A search for Charged-Lepton Flavor Violation via

 $\mu^{-}N \rightarrow e^{-}N$

 Will use *current* Fermilab accelerator complex to reach a sensitivity 10 000 better than current world's best

 Will have *discovery* sensitivity over broad swath of New Physics parameter space

Flavor Violation

 We've known for a long time that quarks mix → (Quark) Flavor Violation

Mixing strengths parameterized by CKM matrix.

- In last 15 years we've come to know that neutrinos mix → Lepton Flavor Violation (LFV)
 - Mixing strengths parameterized by PMNS matrix
- Why not charged leptons?
 Charged Lepton Flavor Violation (CLFV)

- Strictly speaking, forbidden in the SM
- Even in v-SM, extremely suppressed (rate ~ Δm_v^4 / M_w^4 < 10⁻⁵⁰)
- However, most all NP models predict rates observable at next generation CLFV experiments

Some CLFV Processes

Process	Current Limit	Next Generation exp
τ → μη	BR < 6.5 E-8	
$\tau ightarrow \mu\gamma$	BR < 6.8 E-8	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II)
$\tau \rightarrow \mu \mu \mu$	BR < 3.2 E-8	
$\tau \rightarrow eee$	BR < 3.6 E-8	
$K_L \rightarrow e\mu$	BR < 4.7 E-12	
$K^+ \rightarrow \pi^+ e^- \mu^+$	BR < 1.3 E-11	
Bº → eµ	BR < 7.8 E-8	
B⁺ → K⁺eµ	BR < 9.1 E-8	
$\mu^+ \rightarrow e^+ \gamma$	BR < 4.2 E-13	10 ⁻¹⁴ (MEG)
$\mu^+ \rightarrow e^+ e^+ e^-$	BR < 1.0 E-12	10 ⁻¹⁶ (PSI)
μN → eN	R _{μe} < 7.0 E-13	10 ⁻¹⁷ (Mu2e, COMET)

(current limits from the PDG)

• Most promising CLFV measurements use μ

CLFV Predictions

ratio	LHT	MSSM (dipole)	MSSM (Higgs)
$\boxed{ \frac{Br(\mu^- \rightarrow e^- e^+ e^-)}{Br(\mu \rightarrow e\gamma)} }$	0.021	$\sim 6\cdot 10^{-3}$	$\sim 6\cdot 10^{-3}$
$\frac{Br(\tau^- \rightarrow e^- e^+ e^-)}{Br(\tau \rightarrow e \gamma)}$	0.04 0.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^- \rightarrow \mu^- \mu^+ \mu^-)}{Br(\tau \rightarrow \mu \gamma)}$	0.040.4	$\sim 2\cdot 10^{-3}$	0.060.1
$\frac{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}{Br(\tau{\rightarrow}e\gamma)}$	0.04 0.3	$\sim 2\cdot 10^{-3}$	0.020.04
$\frac{Br(\tau^-\!\!\rightarrow\!\!\mu^-e^+e^-)}{Br(\tau\!\rightarrow\!\!\mu\gamma)}$	0.04 0.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^-{\rightarrow}e^-e^+e^-)}{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}$	0.82.0	~ 5	0.3 0.5
$\frac{Br(\tau^-\!\!\rightarrow\!\!\mu^-\mu^+\mu^-)}{Br(\tau^-\!\!\rightarrow\!\!\mu^-e^+e^-)}$	0.71.6	~ 0.2	510
$\frac{R(\mu \mathrm{Ti} \rightarrow e \mathrm{Ti})}{Br(\mu \rightarrow e \gamma)}$	$10^{-3}\dots10^2$	$\sim 5\cdot 10^{-3}$	0.080.15

M.Blanke, A.J.Buras, B.Duling, S.Recksiegel, C.Tarantino

Table 3: Comparison of various ratios of branching ratios in the LHT model (f = 1 TeV) and in the MSSM without [92, 93] and with [96, 97] significant Higgs contributions.

Relative rates model dependent

Measure several to pin-down theory details

arXiv:0909.5454v2[hep-ph]

CLFV Predictions

M Blanke A I Buras B Duling S Becksiegel C Tarantino

ratio	LHT	MSSM (dipole)	MSSM (Higgs)
$\frac{Br(\mu^- \rightarrow e^- e^+ e^-)}{Br(\mu \rightarrow e\gamma)}$	0.021	$\sim 6\cdot 10^{-3}$	$\sim 6\cdot 10^{-3}$
$\frac{Br(\tau^- \rightarrow e^- e^+ e^-)}{Br(\tau \rightarrow e \gamma)}$	0.040.4	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^-\!\!\rightarrow\!\!\mu^-\mu^+\mu^-)}{Br(\tau\!\rightarrow\!\!\mu\gamma)}$	0.04 0.4	$\sim 2\cdot 10^{-3}$	0.060.1
$\frac{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}{Br(\tau{\rightarrow}e\gamma)}$	0.040.3	$\sim 2\cdot 10^{-3}$	0.020.04
$\frac{Br(\tau^-\!\!\rightarrow\!\!\mu^-e^+e^-)}{Br(\tau\!\rightarrow\!\!\mu\gamma)}$	0.040.3	$\sim 1\cdot 10^{-2}$	$\sim 1\cdot 10^{-2}$
$\frac{Br(\tau^-{\rightarrow}e^-e^+e^-)}{Br(\tau^-{\rightarrow}e^-\mu^+\mu^-)}$	0.82.0	~ 5	0.30.5
$\frac{Br(\tau^- \rightarrow \mu^- \mu^+ \mu^-)}{Br(\tau^- \rightarrow \mu^- e^+ e^-)}$	07 16	~ 0.2	510
$\frac{R(\mu \mathrm{Ti} \rightarrow e \mathrm{Ti})}{Br(\mu \rightarrow e \gamma)}$	$10^{-3}\dots10^2$	$\sim 5\cdot 10^{-3}$	0.080.15

Table 3: Comparison of various ratios of branching ratios in the LHT model (f = 1 TeV) and in the MSSM without [92, 93] and with [96, 97] significant Higgs contributions.

Relative rates model dependent

Measure several to pin-down theory details

D.Glenzinski, Fermilab

arXiv:0909.5454v2[hep-ph]

New Physics Contributions to $\mu N \rightarrow eN$

$\mu N \rightarrow eN$ sensitive to wide array of New Physics models

Mu2e Sensitivity best in all scenarios

W. Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub							
	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{ m CP}\left(B ightarrow X_s\gamma ight)$	*	*	*	***	***	*	?
$A_{7,8}(B ightarrow K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B ightarrow K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(\star)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s ightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L ightarrow \pi^0 u \bar{ u}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

arXiv:0909.1333[hep-ph]

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

Mu2e sensitive across the board

	10	DUUO	ATZM	ST T	EDMOON	TIT	DC	
	AC	RVV2	AKM	0LL	FBMSSM	LHT	RS	Š
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?	
ϵ_K	*	***	***	*	*	**	***	
$S_{\psi\phi}$	***	***	***	*	*	***	***	
$S_{\phi K_S}$	***	**	*	***	***	*	?	H
$A_{\rm CP}\left(B \to X_s \gamma\right)$	*	*	*	***	***	*	?	Ŭ Ŭ
$A_{7,8}(B o K^*\mu^+\mu^-)$	*	*	*	***	***	**	?	
$A_9(B o K^*\mu^+\mu^-)$	*	*	*	*	*	*	?	ה
$B \to K^{(\star)} \nu \bar{\nu}$	*	*	*	*	*	*	*	
$B_s ightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*	
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***	
$K_L \rightarrow \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***	
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***	
$\tau \rightarrow \mu \gamma$	+++	<u></u>	<u>+</u>	***		***	***	
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***	
d_n	***	***	~~~	~~	***	×	***	
d_e	***	***	**	*	***	*	***	
(a-2)	+++	***	**	***	***	+	?	

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\star \star \star$ signals large effects, $\star \star$ visible but small effects and \star implies that the given model does not predict sizable effects in that observable.

Mu2e sensitive across the board

How does Mu2e work?

Mu2e Concept

- Generate a beam of low momentum muons (μ^-)
- Stop the muons in a target

 Mu2e plans to use aluminum
 Sensitivity goal requires ~10¹⁸ stopped muons
- The stopped muons are trapped in orbit around the nucleus
 - In orbit around aluminum: τ_{μ}^{AI} = 864 ns
 - Large $\tau_{\mu}{}^{\text{N}}$ important for discriminating background
- Look for events consistent with $\mu N \rightarrow eN$

Mu2e Proton Beam

 Mu2e will use a pulsed proton beam and a delayed live gate to suppress prompt backgrounds

Mu2e Concept

- Generate a beam of low momentum muons (μ^-)
- Stop the muons in a target

 Mu2e plans to use aluminum
 Sensitivity goal requires ~10¹⁸ stopped muons
- The stopped muons are trapped in orbit around the nucleus
 - In orbit around aluminum: τ_{μ}^{AI} = 864 ns
 - Large $\tau_{\mu}{}^{\text{N}}$ important for discriminating background
- Look for events consistent with $\mu N \rightarrow eN$

Mu2e Signal

- The process is a coherent one
 The nucleus is kept intact
- Experimental signature is an electron and nothing else
 - Energy of electron: $E_e = m_{\mu} E_{recoil} E_{1S-B.E.}$
 - For aluminum: $E_e = 104.96$ MeV
 - Important for discriminating background

- Design goal: single-event-sensitivity of 2.4 x 10⁻¹⁷
 - Requires about 10¹⁸ stopped muons
 - Requires about 10²⁰ protons on target
 - Requires extreme suppression of backgrounds
- Expected limit: $R_{\mu e} < 6 \times 10^{-17}$ @ 90% CL - Factor 10⁴ improvement
- Discovery sensitivity: all $R_{\mu e} > \text{few x } 10^{-16}$ - Covers broad range of new physics theories

Backgrounds

Mu2e Backgrounds

- Intrinsic scale with no. stopped muons
 - $-\mu$ Decay-in-Orbit (DIO)
 - Radiative muon capture (RMC)
- Late arriving scale with no. late protons
 - Radiative pion capture (RPC)
 - $-\mu$ and π decay-in-flight (DIF)
- Miscellaneous
 - Anti-proton induced
 - Cosmic-ray induced

Mu2e Backgrounds

Category	Source	Events
	μ Decay in Orbit	0.20
Intrinsic	Radiative μ Capture	<0.01
	Radiative π Capture	0.02
	Beam electrons	<0.01
	μ Decay in Flight	<0.01
Late Arriving	π Decay in Flight	<0.01
	Anti-proton induced	0.05
Miscellaneous	Cosmic Ray induced	0.08
Total Background		0.36

(assuming 6.8E17 stopped muons in 6E7 s of beam time)

• Designed to be nearly background free

Mu2e Intrinsic Backgrounds

Once trapped in orbit, muons will:

- Decay in orbit (DIO): $\mu^- N \rightarrow e^- v_{\mu} v_e N$ 1)
 - For Al. DIO fraction is 39%
 - Electron spectrum has tail out to 104.96 MeV
 - Accounts for ~55% of total background

Mu2e Intrinsic Backgrounds Once trapped in orbit, muons will:

- 2) Capture on the nucleus:
 - For Al. capture fraction is 61%
 - Ordinary μ Capture
 - $\mu^{-}N_{Z} \rightarrow \nu N^{*}_{Z-1}$
 - Used for normalization
 - Radiative μ capture
 - $\mu^{-}N_{Z} \rightarrow \nu N_{Z-1}^{*} + \gamma$
 - (# Radiative / # Ordinary) ~ 1 / 100,000
 - E_{γ} kinematic end-point ~102 MeV
 - Asymmetric γ -->e⁺e⁻ pair production can yield a background electron

Mu2e Late Arriving Backgrounds

- Backgrounds arising from all the other interactions which occur at the production target
 - Overwhelmingly produce a prompt background when compared to τ_{μ}^{AI} = 864 ns
 - Eliminated by defining a signal timing window starting 700 ns after the initial proton pulse
 - Must eliminate out-of-time ("late") protons, which would otherwise generate these backgrounds in time with the signal window

out-of-time protons / in-time protons < 10⁻¹⁰

Mu2e Proton Beam

 Protons that arrive late can give rise to prompt backgrounds in the delayed live window.

September 2016

Mu2e Late Arriving Backgrounds

• Contributions from

- Radiative π Capture
 - $\pi^{-}N_{Z} N_{Z-1}^{*} + \gamma$
 - For Al. $R\pi C$ fraction: 2%
 - E_{γ} extends out to $\sim m_{\pi}$
 - Asymmetric $\gamma - > e^+e^-$ pair production can yield background electron

Beam electrons

- Originating from upstream π^- and π^0 decays
- Electrons scatter in stopping target to get into detector acceptance
- Muon and pion Decay-in-Flight
- Taken together these backgrounds account for ~10% of the total background and scale *linearly* with the number of out-oftime protons

Mu2e Miscellaneous Backgrounds

- Several additional miscellaneous sources can contribute background - most importantly:
 - Anti-protons
 - Proton beam is just above pbar production threshold
 - These low momentum pbars wander until they annihilate
 - A thin mylar window in beamline absorbs most if them
 - Annihilations produce high multiplicity final states e.g. π^- can undergo R π C to yield a background electron

Cosmic rays

- Suppressed by passive and active shielding
- μ DIF or interactions in the detector material can give an e⁻ or γ that yield a background electron
- Background listed assumes veto efficiency of 99.99%

Keys to Mu2e Success

- Pulsed proton beam
 - Narrow proton pulses (< +/- 125 ns)</p>
 - Very few out-of-time protons (< 10⁻¹⁰)
- Avoid trapping particles... B-field requirements
 Further mitigates beam-related backgrounds
- High CR veto efficiency (>99.99%)
- Excellent momentum resolution (<200 keV core)
- Thin anti-proton annihilation window(s)

The Mu2e Beamlines

The Mu2e Proton Beam

- Mu2e begins by using protons to produce pions
- Mu2e will repurpose much of the Tevatron anti-proton complex to instead produce muons.
- Mu2e can (and will) run simultaneously with NOvA and BNB.

The Mu2e Proton Beam

Quantity	Value	Units
MI-RR Cycle Time	1400.0	msec
Number of Spills per MI-RR Cycle	8	
Spill Duration	43.12	msec
Reset (Beam Off) Time Between Spills	5	msec
Number of Pulses per Spill	25.4k	
Pulse Spacing	1695	ns
Protons on Target (POT) Per Pulse	39×10 ⁶	РОТ
Instantaneous Rate	24×10^{12}	POT/s
Average Rate	6 × 10 ¹²	POT/s
Duty Factor	25%	
Proton Beam Energy	8	GeV

• Mu2e will use 8kW of 8 GeV proton beam

Mitigating out-of-time protons

- The RF structure of the Recycler provides some "intrinsic" extinction:
 - Extinction (Intrinsic) = few 10^{-5}
- A custom-made AC dipole placed just upstream of the production target provides additional "external" extinction:

- Extinction (AC dipole) = $10^{-6} - 10^{-7}$

Together they provide a total extinction:
 - Extinction (Total) = few 10⁻¹¹ - 10⁻¹²

Mu2e Experimental Apparatus

about 25 meters end-to-end

• Consists of 3 solenoid systems

Mu2e Experimental Apparatus

Production Solenoid:

8 GeV protons interact with a tungsten target to produce μ - (from π - decay)

• Consists of 3 solenoid systems

Mu2e Experimental Apparatus

Transport Solenoid:

Captures π - and subsequent μ -; momentum- and sign-selects beam

• Consists of 3 solenoid systems
Mu2e Experimental Apparatus

Detector Solenoid:

Upstream – Al. stopping target, Downstream – tracker, calorimeter (not shown – cosmic ray veto system, extinction monitor, target monitor)

• Consists of 3 solenoid systems

Mu2e Experimental Apparatus

Graded fields important to suppress backgrounds, to increase muon yield, and to improve geometric acceptance for signal electrons

• Consists of 3 solenoid systems

Mu2e Experimental Apparatus

Graded fields important to suppress backgrounds, to increase muon yield, and to improve geometric acceptance for signal electrons

Derived from MELC concept originated by Lobashev and Djilkibaev in 1989

Mu2e Conductor R&D

Cross-section of Extruded PS Conductor

Conductor production is well along

 TS and DS conductor done, PS expected end 2016
 Need ~75 km total (incl. spares); about 85% done.

Mu2e Solenoid Summary

	PS	TS	DS
Length (m)	4	13	11
Diameter (m)	1.7	0.4	1.9
Field @ start (T)	4.6	2.5	2.0
Field @ end (T)	2.5	2.0	1.0
Number of coils	3	52	11
Conductor (km)	14	44	17
Operating current (kA)	10	3	6
Stored energy (MJ)	80	20	30
Cold mass (tons)	11	26	8

PS, DS will be built by General Atomics
TS will be built by ASG + Fermilab

Mu2e Solenoid Summary

- Designs are finalized.
- TS fabrication has begun.
- PS, DS fabrication will begin this winter.

Figure 7.25. TSu Cryostat Interfaces. Top: TSu-PS interface; Bottom; TSu-TSd interface.

Mu2e Solenoid Summary

• Designs meet field specs (including fabrication and design tolerances).

Figure 7.39. Comparison of the magnetic field with the field requirements in the DS gradient section (DS1 Gradient). Field requirements from Table 7.2 are shown in green. ΔB is relative to uniform gradient of -0.25 T/m and a field value of 1. 5 T at the stopping target on axis (blue); on a radial cone from 0.3m to 0.7 m starting at the upstream end of DS1 section (red).

Some Mu2e numbers

- Every 1 second Mu2e will
 - Send 7,000,000,000 protons to the Production Solenoid
 - Send 26,000,000,000 μs through the Transport Solenoid
 - Stop 13,000,000,000, μs in the Detector Solenoid
- By the time Mu2e is done...

Total number of stopped muons

1,000,000,000,000,000,000

Some Perspective

1,000,000,000,000,000 = number of stopped Mu2e muons = number of grains of sand on earth's beaches

September 2016

The Mu2e Detectors

The Mu2e Detector

Transport Solenoid

Detector Solenoid

I am going to focus on the principle elements:
 – Tracker, Calorimeter, Cosmic-Ray Veto

The Mu2e Tracker

- Will employ straw technology
 - Low mass
 - Can reliably operate in vacuum
 - Robust against single-wire failures

- 5 mm diameter straw
- Spiral wound
- Walls: 12 μm Mylar + 3 μm epoxy + 200 Å Au + 500 Å Al
- 25 μ m Au-plated W sense wire
- 33 117 cm in length
- 80/20 Ar/CO2 with HV < 1500 V

The Mu2e Tracker

- Self-supporting "panel" consists of 100 straws
- 6 panels assembled to make a "plane"
- 2 planes assembled to make a "station"
- Rotation of panels and planes improves stereo information
- >20k straws total

First Prototype Panel

Starting pre-production prototype now

September 2016

The Mu2e Tracker

- 18 "stations" with straws transverse to the beam
- Naturally moves readout and support to large radii, out of the active volume

The Mu2e Tracker

Inner 38 cm is purposefully un-instrumented

 Blind to beam flash
 Blind to >99% of DIO spectrum

Mu2e Track Reconstruction

- Straw-hit rates
 - From beam flash (0-300 ns): ~1000 kHz/cm²
 - Need to survive this, but won't collect data
 - Later, near live window (>500 ns)
 - Peak ~ 10 kHz/cm² (inner straws)
 - Average ~ 3 kHz/cm² (over all straws)

8 Channel Prototype

tic	120 A 8-Straw Prototype B Straw Prototype Fit	Parameter	Value	Reference
E 2.5 F FWHM = 0.268 ± 0.002 F FWHM = 0.268 ± 0.004 2 = 0.012 ± 0.002 G = 0.113 ± 0.002 G = 0.013 ± 0.002 G = 0.002 ± 0.001 G = 0.013 ± 0.002 G = 0.002 ± 0.002 ± 0.002 G = 0.002 ± 0.002 ± 0.002 G = 0.002 ±	G4 + Straw Simulation	N electrons per ionization	< <i>N</i> >= 2	NIMA 301, 202(1991)
1.5 Shift due to t _s calibration differences	60 mean = 0.653 ± 1.277 o = 43.371 ± 1.422 mean = 2.222 ± 1.308 o = 41.733 ± 1.245	Energy per	39 eV	NIST (27-100 eV) and G4
0.5		Avg. Straw Gain	70k	Prototype (PAM, ⁵⁵ Fe)
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.8 0.8 Drift Radius Residual [mm]	200 -200 -100 0 100 200 300 Longitudinal Positon Resolution [mm]	Threshold Value	12 mV	Prototype (DVM, ⁵⁵ Fe)
(Data vs MC)	(Data vs MC)	Threshold Noise	3 mV	Spice Sim.
$\sigma_{\textit{data}} = 0.113 \pm 0.002$ mm $\sigma_{\textit{MC}} = 0.102 \pm 0.001$ mm	$\sigma_{\it data} =$ 42 \pm 1 mm $\sigma_{\it MC} =$ 43 \pm 1 mm	Shaping Time	22 ns	Prototype (⁵⁵ Fe)

• Measured gain, crosstalk, resolution, ...

Mu2e Pattern Recognition

 A signal electron, together with all the other "stuff" occurring simultaneously, integrated over 500-1695 ns window

Mu2e Pattern Recognition

(particles with hits within +/-40 ns of signal electron t_{mean})

 We use timing information to look in +/- 40 ns windows – significant reduction in occupancy and significant simplification for Patt. Rec.

Mu2e Spectrometer Performance

Performance well within physics requirements

September 2016

After all analysis requirements

- Single-event-sensitivity = 2.9 x 10⁻¹⁷ (SES goal 2.4 x 10⁻¹⁷)
 Total background < 0.5 events
- September 2016

Track Reconstruction and Selection

Mu2e Performance

Variations in accidental hit rate

Robust against increases in rate

- Crystal calorimeter
 - Compact
 - Radiation hard

Good timing and energy resolution

- Baseline design : Cesium Iodine (CsI)
 - Radiation hard, fast, non-hygroscopic

	Csl
Density (g/cm3)	4.51
Radiation length (cm)	1.86
Moliere Radius (cm)	3.57
Interaction length (cm)	39.3
dE/dX (MeV/cm)	5.56
Refractive index	1.95
Peak luminescence (nm)	310
Decay time (ns)	26
Light yield (rel. to Nal)	3.6%
Variation with temperature	-1.4% / deg-C

- Will employ 2 disks (radius = 37-66 cm)
- ~1400 crystals with square cross-section
 ~3 cm diameter, ~20 cm long (10 X₀)
- Two photo-sensors/crystal on back (MPPCs)

3x3 Prototype

- Data well described by the Monte Carlo
- Energy Resolution vs E
- $\sigma_{\rm E} \simeq 6-7\%$ at 100 MeV
- For this small matrix, there is a significant contribution from leakage
- Time Resolution vs E
- $\sigma_t \simeq 110 \text{ ps at } 100 \text{ MeV}$

• Test beam with e⁻ at E = 80-120 MeV

 With 60 ns integration, expect to achieve an energy resolution ~5% for 105 MeV electrons
 Performance a weak function of rate in relevant range

Calorimeter Particle ID

Muon Rejection Vs Electron Efficiency

- Combine TOF and E/P information in LLR
 - 96% electron efficiency for muon rejection x200

Mu2e Cosmic-Ray Veto

 Cosmic μ can generate background events via decay, scattering, or material interactions

Mu2e Cosmic-Ray Veto

Veto system covers entire DS and half TS

Mu2e Cosmic-Ray Veto

- Will use 4 overlapping layers of scintillator
 Each bar is 5 x 2 x ~450 cm³
 - 2 WLS fibers / bar
 - Read-out both ends of each fiber with SiPM
 - Have achieved ε > 99.4% (per layer) in test beam

Cosmic Ray Veto

Test beam data to vet design/performance

Mu2e Neutron Shielding

- Several copious sources of neutrons

 Production target, stopping target, collimators
- Lots of neutrons and subsequent photons (from n- capture and activation processes)
 - Generate false vetoes in CRV... if rate high enough becomes a source of significant deadtime
 - Cause radiation damage to the read-out electronics (esp. SiPMs)
Mu2e Neutron Shielding

- Have identified a cost effective shielding solution
- Non-trivial optimization required
- Reduces rates of neutrons and photons at CRV to acceptable level

Mu2e Detector Hall

• Structurally complete. Outfitting well along.

Mu2e Detector Hall

Beneficial Occupancy expected Nov/Dec 2016

DS Solenoid Bay, April 2016

Details, details, details

• Working to identify and resolve interface issues

September 2016

Mu2e Schedule

What next?

- A next-generation Mu2e experiment makes sense in all scenarios
 - Push sensitivity or
 - Study underlying new physics
 - Will need more protons → upgrade accelerator
 - Snowmass white paper, arXiv:1307.1168

$\mu N \rightarrow e N vs stopping-target Z$

 By measuring the ratio of rates using different stopping targets Mu2e can unveil underlying new-physics mechanism

Concluding remarks

Summary

The Mu2e experiment:

- Improves sensitivity by a factor of 10⁴
- Provides discovery capability over wide range of New Physics models
- Is complementary to LHC, heavy-flavor, dark matter, and neutrino experiments
- Is progressing on schedule... will begin commissioning in 2020

Interested in learning more?

Technical Design Report

 http://arXiv.org/abs/1501.05241

Experiment web site

 http://mu2e.fnal.gov

The Mu2e Collaboration

~200 Scientists from 35 Institutions

 Argonne National Laboratory, Boston University, Brookhaven National Laboratory, University of California Berkeley, University of California Irvine, California Institute of Technology, City University of New York, Joint Institute of Nuclear Research Dubna, Duke University, Fermi National Accelerator Laboratory, Laboratori Nazionale di Frascati, University of Houston, Helmholtz-Zentrum Dresden-Rossendorf, University of Illinois, INFN Genova, Lawrence Berkeley National Laboratory, INFN Lecce, University Marconi Rome, Kansas State University, Lewis University, University of Louisville, University of Minnesota, Muons Inc., Northwestern University, Institute for Nuclear Research Moscow, Northern Illinois University, INFN Pisa, Purdue University, Novosibirsk State University/Budker Institute of Nuclear Physics, Rice University, University of South Alabama, Sun Yat-Sen University, University of Virginia, University of Washington, Yale University

Thank You – and stay tuned!

Technical Design Report

 http://arXiv.org/abs/1501.05241

Experiment web site

 http://mu2e.fnal.gov

Additional Slides

Constraints from $\mu \rightarrow e$ Experiments

Constraints on LFV Z couplings $\mu \rightarrow eee: B(Z \rightarrow \mu e) < 5 \times 10^{-13*}$ (now)

CMS : $B(Z \rightarrow \mu e) < 7.3 \times 10^{-7}$ ATLAS: $B(Z \rightarrow \mu e) < 7.5 \times 10^{-7}$ (now)

* S. Nussinov, R.D. Peccei, and X.M. Zhang, Phys. Rev. D63 (2001) 016003 (arXiv:0004153 [hep-ph]).

Constraints from $\mu \rightarrow e$ Experiments

Constraints on LFV Yukawa couplings $\mu \rightarrow e\gamma$: B(h $\rightarrow \mu e$) < 10^{-8*} (now) $\mu N \rightarrow eN$: B(h $\rightarrow \mu e$) < 10⁻¹⁰ (future)

Collider reach LHC : $B(h \rightarrow \mu e) < 10^{-2} - 10^{-3}$

* R. Harnik, J. Kopp, and J. Zupan, JHEP 03 (2013) 026 (arXiv:1209.1397 [hep-ph]).

May 2016

Constraints from $\tau \rightarrow e, \mu$ Experiments

- cLFV using τ correspond to B(h \rightarrow τe , $\tau \mu$) ~ 10%
- CMS and ATLAS already exploring $B(h \rightarrow \tau \mu) \sim 1\%$

$h \rightarrow \tau$ constraints from $\mu \rightarrow e$ cLFV

 $\tau\mu$ - τe couplings can contribute to $\mu \rightarrow e$ transitions. As an example:

- $\mu \rightarrow e\gamma$ constrains dipole contributions
- μ -N \rightarrow e-N constrains vector contributions
- Future improvements in μ -N \rightarrow e-N will probe B(h $\rightarrow \tau\mu$)B(h $\rightarrow \tau e$) < 10⁻⁷

cf. I.Dorsner, S. Fajfer, A. Greljo, J. Kamenik, N, Kosnik, I. Nisandzic (1502.07784) R. Harnik, J. Kopp, J. Supan (1209.1397)

Direct Searches for cLFV h decays

<u>CMS</u> B($h \rightarrow \tau \mu$) < 1.51 x 10⁻² Best fit : (0.84 +/- 0.40)%

<u>ATLAS</u> B(h $\rightarrow \tau\mu$) < 1.43 x 10⁻² Best fit : (0.53 +/- 0.51)%

Looking forward to more data...

• Mu2e will cover the entire space

• Mu2e, MEG will each cover entire space

 $M_{1/2}$ (GeV/c²)

• $\mu \rightarrow e\gamma$, $\tau \rightarrow \mu\gamma$ will begin to probe this space

• Mu2e will cover (almost) entire space

• Mu2e will explore a significant fraction of the parameter space

TABLE XII: LFV rates for points SPS 1a and SPS 1b in the CKM case and in the $U_{e3} = 0$ PMNS case. The processes that are within reach of the future experiments (MEG, SuperKEKB) have been highlighted in boldface. Those within reach of post-LHC era planned/discussed experiments (PRISM/PRIME, Super Flavour factory) highlighted in italics.

	SPS	5 1a	SPS	в 1ь	SP	S 2	SP	S 3	Future
Process	CKM	$U_{e3} = 0$	CKM	$U_{e3} = 0$	CKM	$U_{e3}=0$	CKM	$U_{e3} = 0$	Sensitivity
$BR(\mu \rightarrow e \gamma)$	$3.2 \cdot 10^{-14}$	$3.8 \cdot 10^{-13}$	$4.0 \cdot 10^{-13}$	$1.2 \cdot 10^{-12}$	$1.3 \cdot 10^{-15}$	$8.6 \cdot 10^{-15}$	$1.4 \cdot 10^{-15}$	$1.2\cdot10^{-14}$	$O(10^{-14})$
$BR(\mu \rightarrow e e e)$	$2.3 \cdot 10^{-16}$	$2.7 \cdot 10^{-15}$	$2.9 \cdot 10^{-16}$	$8.6 \cdot 10^{-15}$	$9.4 \cdot 10^{-18}$	$6.2 \cdot 10^{-17}$	$1.0 \cdot 10^{-17}$	$8.9 \cdot 10^{-17}$	$O(10^{-14})$
$CR(\mu \rightarrow e \text{ in Ti})$	$2.0 \cdot 10^{-15}$	$2.4 \cdot 10^{-14}$	$2.6 \cdot 10^{-15}$	$7.6 \cdot 10^{-14}$	$1.0 \cdot 10^{-16}$	$6.7 \cdot 10^{-16}$	$1.0 \cdot 10^{-16}$	$8.4 \cdot 10^{-16}$	$O(10^{-18})$
$BR(\tau \rightarrow e \gamma)$	$2.3 \cdot 10^{-12}$	$6.0 \cdot 10^{-13}$	$3.5 \cdot 10^{-12}$	$1.7 \cdot 10^{-12}$	$1.4 \cdot 10^{-13}$	$4.8 \cdot 10^{-15}$	$1.2 \cdot 10^{-13}$	$4.1 \cdot 10^{-14}$	$O(10^{-8})$
$BR(\tau \rightarrow e e e)$	$2.7 \cdot 10^{-14}$	$7.1 \cdot 10^{-15}$	$4.2 \cdot 10^{-14}$	$2.0 \cdot 10^{-14}$	$1.7 \cdot 10^{-15}$	$5.7 \cdot 10^{-17}$	$1.5 \cdot 10^{-15}$	$4.9 \cdot 10^{-16}$	$O(10^{-8})$
$BR(\tau \rightarrow \mu \gamma)$	$5.0 \cdot 10^{-11}$	$1.1 \cdot 10^{-8}$	$7.3 \cdot 10^{-11}$	$1.3 \cdot 10^{-8}$	$2.9 \cdot 10^{-12}$	$7.8 \cdot 10^{-10}$	$2.7 \cdot 10^{-12}$	$6.0 \cdot 10^{-10}$	$O(10^{-9})$
${\rm BR}(\tau \to \mu \mu \mu)$	$1.6\cdot 10^{-13}$	$3.4\cdot10^{-11}$	$2.2\cdot 10^{-13}$	$3.9\cdot 10^{-11}$	$8.9\cdot 10^{-15}$	$2.4\cdot 10^{-12}$	$8.7\cdot 10^{-15}$	$1.9\cdot 10^{-12}$	$O(10^{-8})$

 These are SuSy benchmark points for which LHC has discovery sensitivity

- Some of these will be observable by MEG/SuprB
- All of these will be observable by Mu2e

Trigger and DAQ System

• Stream data in time slices to cpu farm. Employ software trigger filters to identify good events.

Mu2e at Fermilab

• Mu2e is located together with Muon (g-2) just south of Wilson Hall.

Selection Requirements

Parameter	Requirement				
Track quality and background rejection criteria					
Kalman Fit Status	Successful Fit				
Number of active hits	$N_{active} \ge 25$				
Fit consistency	χ^2 consistency > 2×10^{-3}				
Estimated reconstructed momentum uncertainty	$\sigma_p < 250 \text{ keV/c}$				
Estimated track to uncertainty	$\sigma_t < 0.9$ nsec				
Track t ₀ (livegate)	700 ns < t ₀ < 1695 ns				
Polar angle range (pitch)	45° < θ < 60°				
Minimum track transverse radius	-80 mm < d ₀ < 105 mm				
Maximum track transverse radius	$450 \text{ mm} < d_0 + 2/\omega < 680 \text{ mm}$				
Track momentum	103.75 < p < 105.0 MeV/c				
Calorimeter matching and particle identification criteria					
Track match to a calorimeter cluster	$E_{cluster} > 10 \text{ MeV}$				
	χ^2 (track-calo match) < 100				
Ratio of cluster energy to track momentum	E/P < 1.15				
Difference in track t_0 to calorimeter t_0	$\Delta t = t_{track} - t_{calo} \le 3 \text{ ns from peak}$				
Particle identification	$\log(L(e)/L(\mu)) < 1.5$				

 Full set of selection criteria employed to estimate backgrounds and sensitivity reported in TDR (Summer 2014)

Estimated background yields

Table 3.4 A summary of the estimated background yields using the selection criteria of Section 3.5.3. The total run time and corresponding number of protons on target are provided in Table 3.5. An extinction of 10^{-10} , a cosmic ray veto inefficiency of 10^{-4} , and particle-identification with a muon-rejection of 200 are used. 'Intrinsic' backgrounds are those that scale with the number of stopped muons, 'Late Arriving' backgrounds are those with a strong dependence on the achieved extinction, and 'Miscellaneous' backgrounds are those that don't fall into the previous two categories.

Category	Background process		Estimated yield	
			(events)	
Intrinsic	Muon decay-in-orbit (DIO)		0.199 ± 0.092	
	Muon capture (RMC)		0.000 +0.004 -0.000	
Late Arriving	Pion capture (RPC)		0.023 ± 0.006	
	Muon decay-in-flight (µ-DIF)		<0.003	
	Pion decay-in-flight (π -DIF)		$0.001 \pm < 0.001$	
	Beam electrons		0.003 ± 0.001	
Miscellaneous	Antiproton induced		0.047 ± 0.024	
	Cosmic ray induced		0.082 ± 0.018	
		Total	0.36 ± 0.10	

Single event sensitivity = $(2.87+0.35-0.29) \times 10^{-17}$ (goal = 2.4 x 10⁻¹⁷)

Systematic Uncertainties

Effect	Uncertainty in DIO background yield	Uncertainty in CE single- event-sensitivity (×10 ⁻¹⁷)
MC Statistics	±0.02	±0.07
Theoretical Uncertainty	±0.04	-
Tracker Acceptance	±0.002	±0.03
Reconstruction Efficiency	±0.01	±0.15
Momentum Scale	+0.09, -0.06	±0.07
µ-bunch Intensity Variation	±0.007	±0.1
Beam Flash Uncertainty	±0.011	±0.17
µ-capture Proton Uncertainty	±0.01	±0.016
µ-capture Neutron Uncertainty	±0.006	±0.093
µ-capture Photon Uncertainty	±0.002	±0.028
Out-Of-Target µ Stops	±0.004	±0.055
Degraded Tracker	-0.013	+0.191
Total (in quadrature)	+0.10, -0.08	+0.35, -0.29

• Evaluated for all background sources

Mu2e Proton Timing

• Mu2e will run simultaneously with NOvA, BNB, etc.

Tracker Occupancy

 Accidental occupancy from beam flash, μ capture products, out-of-target μ stops, etc.

September 2016

Signal Momentum Spectrum

• Smearing dominated by interactions in stopping target and in (neutron/proton) absorbers upstream of tracker

Calorimeter Particle ID

• Electrons and muons well separated

False vetoes in CRV

"correlated"

- We need to understand contributions from accidentals and correlated-accidentals
 - For neutrons and photons as a function of time, energy, timing resolution, and read-out threshold

Estimated dead time from CRV vetos – dominated by n/ γ background

semi-correlated

correlated

- accidental
- Total dead time from neutron/photon "noise" = 5%
 - For 500 keV readout threshold
 - Increasing to 1 MeV reduces to 2%
 - Cross-check with a separate physics generator (MARS) yields dead time within 50%
PS Heat and Radiation Shield

 Must protect production solenoid from heat and radiation deposits from proton beam

Understanding muon capture

- AlCap measurement of products of muon captures on aluminum
 - Joint Mu2e/COMET effort
 - Took data in 2013 & 2015

Test Beam – December 2013

• Preliminary AlCap results

- Analysis ongoing, but proton, deuteron lines clear

Muon momentum distribution

The muons that stop are low momentum

September 2016

D.Glenzinski, Fermilab

Mu2e Sensitivity

CERN-PH-TH-2014-229 LAPTH-227/14

Lepton Flavor Violation in *B* Decays?

Sheldon L. Glashow^{1*}, Diego Guadagnoli^{2†} and Kenneth Lane^{1‡} ¹Department of Physics, Boston University 590 Commonwealth Avenue, Boston, Massachusetts 02215 ²Laboratoire d'Annecy-le-Vieux de Physique Théorique UMR5108, Université de Savoie, CNRS B.P. 110, F-74941, Annecy-le-Vieux Cedex, France

November 17, 2014

Abstract

The LHCb Collaboration's measurement of $R_K = \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$ $K^+e^+e^-$) lies 2.6 σ below the Standard Model prediction. Several groups su deficit to result from new lepton non-universal interactions of muons. But nor Supersymmetry leptonic interactions imply lepton flavor violation in B-decays at rates much le are expected in the Standard Model. A simple model shows that these ra lie just below current limits. An interesting consequence of our model, that $\mu^+\mu^-)_{exp}/\mathcal{B}(B_s \to \mu^+\mu^-)_{SM} \cong R_K \cong 0.75$, is compatible with recent measures these rates. We stress the importance of searches for lepton flavor violations, for $B \to K\mu e$, $K\mu \tau$ and $B_s \to \mu e$, $\mu \tau$.

arXiv:1411.0565

Rare Flavor Processes in Maximally Natural

Isabel García García.^a John March-Russell^{a,1}

^aRudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP, UK ^bStanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305, USA

E-mail: isabel.garciagarcia@physics.ox.ac.uk, jmr@thphys.ox.ac.uk

ABSTRACT: We study CP-conserving rare flavor violating processes in the recently proposed theory of Maximally Natural Supersymmetry (MNSUSY). MNSUSY is an unusual supersymmetric (SUSY) extension of the Standard Model (SM) which, remarkably, is un-tuned at present LHC limits. It employs Scherk-Schwarz breaking of SUSY by boundary conditions upon compactifying an underlying 5-dimensional (5D) theory down to 4D, and is not welldescribed by softly-broken $\mathcal{N} = 1$ SUSY, with much different phenomenology than the Minimal Supersymmetric Standard Model (MSSM) and its variants. The usual CP-conserving SUSY-flavor problem is automatically solved in MNSUSY due to a residual almost exact $U(1)_R$ symmetry, naturally heavy and highly degenerate 1st- and 2nd-generation sfermions, and heavy gauginos and Higgsinos. Depending on the exact implementation of MNSUSY there exist important new sources of flavor violation involving gauge boson Kaluza-Klein

MS-TP-14-37

Probing the scotogenic model with lepton flavor violating processes

Avelino Vicente IFPA, Dep. AGO, Université Liège, Bat B5, Sart-Tilman B-4000, Liège 1, Belgium

Carlos E. Yaguna Institut für Theoretische Physik, Universität Münster, Wilhelm-Klemm-Straße 9, D-48149 Münster, Germany

Abstract

We study the impact that future lepton flavor violating experiments will have on the viable parameter space of the scotogenic model. Within this model, the dark matter particle is est singlet fermion and two cases are consider relic density is obtained: via self-annihilatio with the scalars. For each case, a scan over

arXiv:1412.2545

Seesaw Models with Minimal Flavor Violation

Xiao-Gang He,^{1,2,3} Chao-Jung Lee³, Jusak Tandean³, Ya-Juan Zheng³

¹INPAC, SKLPPC, and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China ²Physics Division, National Center for Theoretical Sciences, Department of Physics, National Tsing Hua University, Hsinchu 300, Taiwan ³CTS, CASTS, and Department of Physics, National Taiwan University, Taipei 106, Taiwan

Abstract

We explore realizations of minimal flavor violation (MFV) for leptons in the simplest seesaw models where the neutrino mass generation mechanism is driven by new fermion singlets (type I) or triplets (type III) and by a scalar triplet (type II). We also discuss similarities and differences of the MFV implementation among the three scenarios. To study the phenomenological implications, we consider a number of effective dimension-six operators that are purely leptonic or couple leptons to the standard model gauge and Higgs bosons and evaluate constraints on the scale of MFV associated with these operators from the latest experimental information. Specifically, we employ the most recent measure ments of neutrino mixing parameters as well as the currently available data on flavor-violating radiative and three-body decays of charged leptons, $\mu \rightarrow e$ conversion in nuclei, the anomalous magnetic moments of charged leptons, and their electric dipole moments. The most stringent lower-limit on the

Persistent interest in Lepton Flavor Violation and in • muon-to-electron conversion (ie. Mu2e)

September 2016

D.Glenzinski, Fermilab

As a function of target Z

September 2016

D.Glenzinski, Fermilab