Searching for a muon EDM with the g-2 experiment

Saskia Charity

University of Liverpool MUSE General Meeting 29/09/16

Outline

• EDM Physics overview

- EDM Physics background
- Motivations for EDM searches
- Current limits on EDMs of fundamental particles
- μ EDM and the g-2 experiment
 - Experimental technique
 - Reducing the upper limit improvements from E821

Magnetic dipole moment

$$\vec{\mu} = g \frac{Qe}{2m_{\mu}} \vec{s}$$

Electric dipole moment

$$\vec{d_{\mu}} = \eta \frac{Qe}{2m_{\mu}c} \vec{s}$$

Hamiltonian for a fermion in B and E field $\hat{H} = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$

Transformation Properties

Hamiltonian for a fermion in B and E field $\hat{H} = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$

If CPT valid \rightarrow EDM would violate CP

Transformation Properties

Current upper limits on EDMs

- Upper limits for e⁻ and μ are much higher than their SM predictions
- Some SUSY models predict μEDM ~ 10⁻²⁴ e.cm

Particle	EDM Upper Limit (e.cm)	SM value (e.cm)
Ρ	7.9 ×10 ⁻²⁵ [1]	
n	2.9 ×10 ⁻²⁶ [2]	~I0 ⁻³²
¹⁹⁹ Hg	3.1 ×10 ⁻²⁹ [1]	
e	I.6 ×10 ⁻²⁷ [3]	< 10-41
μ	1.8 ×10 ⁻¹⁹ [4]	<10-38

[1] PRL 102, 101601 (2009)
[2] PRL 97, 131801 (2006)
[3] PRL 88, 071805 (2002)
[4] PRD 80, 052008 (2009)

Current upper limits on EDMs

- Upper limits for e⁻ and μ are much higher than their SM predictions
- Some SUSY models predict μEDM ~ 10⁻²⁴ e.cm
- Current best limit for μEDM placed by Brookhaven g-2 experiment (E821)

Particle	EDM Upper Limit (e.cm)	SM value (e.cm)
Р	7.9 ×10 ⁻²⁵ [1]	
n	2.9 ×10 ⁻²⁶ [2]	~I0 ⁻³²
¹⁹⁹ Hg	3.1 ×10 ⁻²⁹ [1]	
e	1.6 ×10 ⁻²⁷ [3]	< 10-41
μ (1.8 ×10 ⁻¹⁹ [4]	<10-38

[1] PRL 102, 101601 (2009)
[2] PRL 97, 131801 (2006)
[3] PRL 88, 071805 (2002)
[4] PRD 80, 052008 (2009)

Current upper limits on EDMs

- Upper limits for e⁻ and μ are much higher than their SM predictions
- Some SUSY models predict μEDM ~ 10⁻²⁴ e.cm
- Current best limit for µEDM placed by Brookhaven g-2 experiment (E821)

Particle	EDM Upper Limit (e.cm)	SM value (e.cm)
Ρ	7.9 ×10 ⁻²⁵ [1]	
n	2.9 ×10 ⁻²⁶ [2]	~I0 ⁻³²
¹⁹⁹ Hg	3.1 ×10 ⁻²⁹ [1]	
e	1.6 ×10 ⁻²⁷ [3]	< 10-41
μ (1.8 ×10 ⁻¹⁹ [4]	<10-38

Expected sensitivity of new g-2 experiment: ~10⁻²¹e.cm

[1] PRL 102, 101601 (2009)
[2] PRL 97, 131801 (2006)
[3] PRL 88, 071805 (2002)
[4] PRD 80, 052008 (2009)

g-2 frequency is given by:

$$\vec{\omega}_a = -\frac{Qe}{m_\mu} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

$$ec{\mu}=grac{Qe}{2m_{\mu}}ec{s}$$

g-2 frequency is given by:

Dependence on E field cancelled out by choosing $\gamma = 29.3$

$$ec{\mu}=grac{Qe}{2m_{\mu}}ec{s}$$

given by:
$$\vec{\omega}_a = -\frac{Qe}{m_{\mu}} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

Dependence on E field cancelled out by choosing $\gamma = 29.3$

EDM adds a term to this expression:

$$ec{\omega} = ec{\omega}_a + ec{\omega}_{EDM}$$

given by:

$$\vec{\omega}_{EDM} = -\frac{e\eta}{2m_{\mu}c} \left(\vec{\beta}\times\vec{B}\right)$$

$$ec{\mu}=grac{Qe}{2m_{\mu}}ec{s}$$

 $ec{d}_{\mu}=\etarac{Qe}{2m_{\mu}c}ec{s}$

g-2 frequency is given by:
$$\vec{\omega}_a = -\frac{Qe}{m_{\mu}} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

Dependence on E field cancelled out by choosing $\gamma = 29.3$

EDM adds a term to this expression:

$$ec{\omega} = ec{\omega}_a + ec{\omega}_{EDM}$$

given

$$\vec{\omega}_{EDM} = -\frac{e\eta}{2m_{\mu}c} \left(\vec{\beta}\times\vec{B}\right)$$

A non-0 EDM would increase the measured precession frequency Introduces systematic error on g-2

measurement

$$ec{\mu}=grac{Qe}{2m_{\mu}}ec{s}$$

 $ec{d}_{\mu}=\etarac{Qe}{2m_{\mu}c}ec{s}$

μ^w <u>g-2</u>

μEDM tilts the precession plane of the muons by an angle δ

EDM tilts the muon precession plane towards the centre of the g-2 storage ring by

$$\delta = \tan^{-1} \left(\frac{\eta \beta}{2a_{\mu}} \right)$$

Measured angle is reduced due to Lorentz contraction:

$$\delta' = \tan^{-1}\left(\frac{\tan\delta}{\gamma}\right)$$

 $\vec{\omega} = \vec{\omega}_a + \vec{\omega}_{EDM}$

$$\vec{\omega}_{EDM} = -\frac{e\eta}{2m_{\mu}c} \left(\vec{\beta}\times\vec{B}\right)$$

Phase Difference

80

100

Precession plane tilt causes an oscillation in the angle at which the decay e+ are emitted

e+ preferentially emitted in direction of muon spin

Phase Difference

Precession plane tilt causes an oscillation in the angle at which the decay e+ are emitted e+ preferentially emitted in direction of Decay angle oscillation is at the muon spin same frequency as ω_{total} , but 90° ω_a out of phase \vec{B} s has downward vertical component $\overrightarrow{\omega_n}$ *Ĝ* รี Max of g-2 oscillation Min of g-2 oscillation 20 80 100 40 60 Time (µs) modulo 100 µs g-2 oscillation is at a maximum when spin is aligned with momentum

Vertical Position Oscillations

- Oscillation in the e+ vertical decay angle leads to an oscillation in the average vertical position on the calorimeters
- This analysis method was dominated by systematics in E821 – very sensitive to detector misalignment effects

Vertical Position Oscillations

- Oscillation in the e+ vertical decay angle leads to an oscillation in the average vertical position on the calorimeters
- This analysis method was dominated by systematics in E821 – very sensitive to detector misalignment effects

N(t) vs t in bottom half of calos, EDM = 1.0E-16 e.cm

MEAN VERTICAL POSITION VERSUS (g-2) PHASE

- See a difference in the amplitude of oscillation in N(t) in the hits arriving in the top and bottom halves of the calorimeters
 - Inward decays are more concentrated/less spread out

Vertical Angle Oscillations

- Alternative analysis method: measure the vertical angle oscillations directly using tracking detectors
- Reconstruct the vertical angle of the positron at decay point

Vertical Angle Oscillation

- Can track e+ through magnetic field, so effect of radial field on path of e+ has no effect
- Detector misalignment has much less effect on this measurement – statistics dominated
 - E989 has more sophisticated tracking and much higher statistics – best chance of reducing µEDM limit using this analysis method

Conclusions

- Primary μEDM signal is a vertical oscillation in positron decay angle caused by a tilt in the muon precession plane
- Vertical oscillation in e+ decay angle leads to measurable oscillation in vertical position of arrival at calorimeters

 \rightarrow Detector misalignment has significant effect on this method

 Direct measurement of e+ decay angle using much improved tracking detector system

→Much less dependent on detector misalignment – statistics dominated

• Muon g-2 experiment aims to place new upper limit on μEDM of ~10⁻²¹ e.cm