Gain Fluctuations Summary Studies for the Muon g-2 Experiment.

Nandita Raha, Graziano Venanzoni

Gain Fluctuations Outline

- Experiment Basics concepts.
- The ideal wiggle plot (no gain fluctuations).
- Effect of a hypothetical/theoretical gain fluctuations on the uncertainties in ω_a .
- Correction to theoretical gain fluctuations using laser simulated gain fluctuations of the SiPMs.

Experiment Basics: Muons in a storage ring 1. Start with polarized muon beam (from pion decay)

g = 2

- 2. Cyclotron frequency : $\omega_{c} = \frac{e}{m\gamma}B$
- 3. Spin precession frequency :

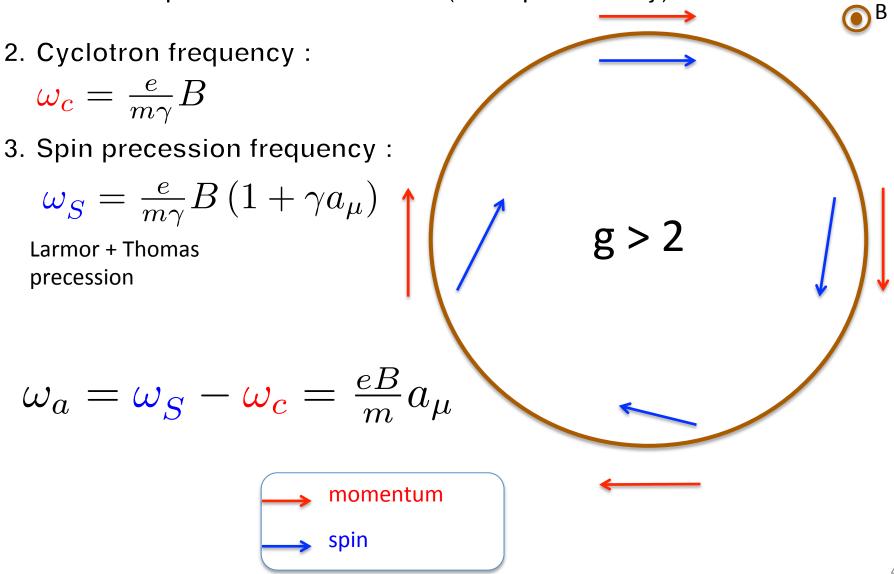
$$\omega_{S} = \frac{e}{m\gamma} B \left(1 + \gamma a_{\mu} \right)$$

Larmor + Thomas precession

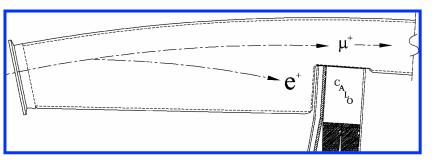
$$\omega_a = \omega_S - \omega_c = \frac{eB}{m}a_\mu$$

Experiment Basics: Muons in a storage ring

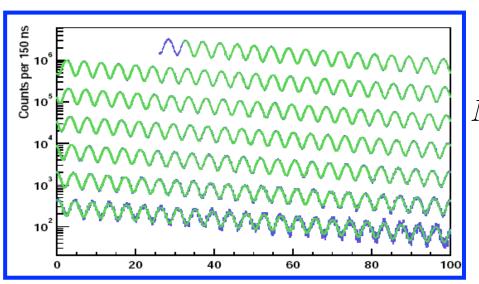
1. Start with polarized muon beam (from pion decay)



Muon spin precession frequency



E821 data: e^+ with E > 1.8 GeV



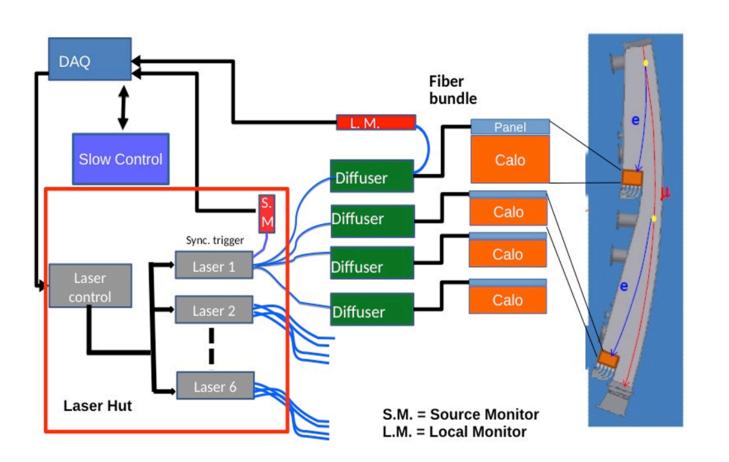
$$\omega_a = \omega_S - \omega_c = \frac{eB}{m}a_\mu$$

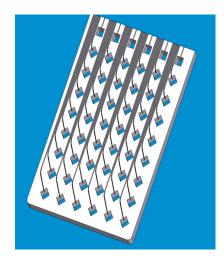
- Decay self-analyzing:
 - Higher energy positrons emitted preferentially in direction of muon spin

$$\mathbf{N}(t) = N_0 e^{-t/\tau} \left(1 + A\cos(\omega_a t + \phi)\right)$$

- Spectrum distortions from
 - Pileup, gain stability
 - Beam Effects, Losses

Laser Calibration System





Front Panel 9x6 crystals

The big picture – Extent for 24 calorimeters

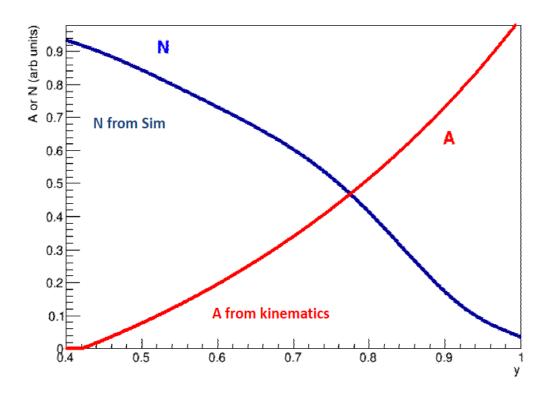
Gain Fluctuations – Why study?

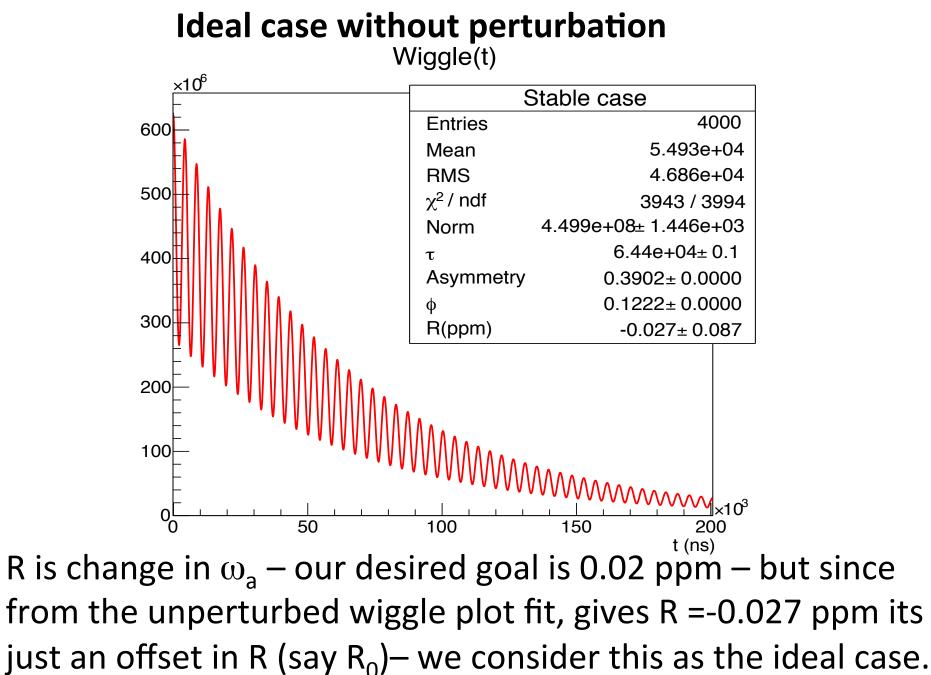
- The goal of the experiment is to measure $\omega_{\rm a}$ precisely.
- The goal of the laser calibration system is to measure the gain of the calorimeters and if there are inconsistencies in measuring the gain how would ω_a be effected.
- Thus we apply a fluctuation / perturbation in the gain function G(t) and see how that effects ω_a .
- We begin by simulating an ideal wiggle plot (shown in slide 5) which is a distribution of the events collected by the calorimeter, study the effect of a perturbed gain function on this plot and finally apply a correction simulating the laser calibration.

More about the wiggle plot in the next slides.....

Simulating the Ideal Wiggle Plot

- Effect on the beam/events due to drifts in gain. The frequency of events follow the wiggle plot as, N(y)[1+A(y)cos(ω_a(1+R)t+φ(y))]exp(-t/τ) => R is change in ω_a, and y is E/E_{max}
- N(y), A(y) and $\phi(y)$ obtained from simulations / kinematics.





Effect of Theoretical Gain Fluctuations on Uncertainties in ω_a

Effect of Gain Changes on Uncertainties of ω_a

- Reduce error due to gain changes to 20 ppb
- Study / simulate systematic hardware gain drifts by introducing a perturbation in gain function G(t)
- Note: G(t) is the correction in gain from the above i.e. G(t) = (G'-G₀)/G₀ where G₀ is the ideal gain and G' is true gain vs. time due to detectors, readouts etc.
- A very stable laser calibration system used which monitors the source for stability/fluctuation before calibration which gives G₀.

Perturbation

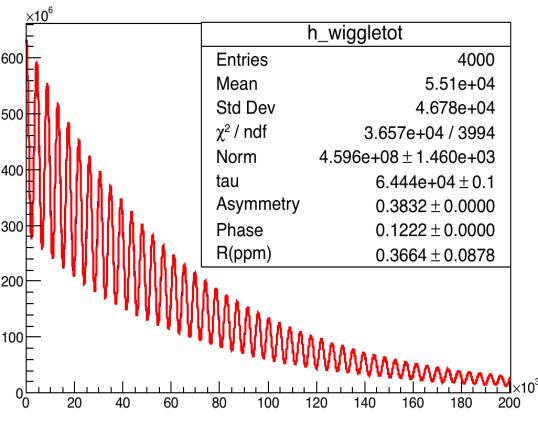
There can be various functional forms of perturbations. We use $\varepsilon = 0.001$ (unless mentioned) for all types which are:

- Linear: $1 + \epsilon$ (endtime -t)/endtime (endtime = 700 μ s)
- Exponential: 1 + ε e^{-t/ τ}
- Phase: $1 + \epsilon \cos(\omega_a t + \phi)$
- Mixed exponential and phase:

1 + ε e^{-t/τ} * cos($ω_a t + φ$)

We assume an exponential perturbation for this study (in principle it could of any form – even different from the ones mentioned above)

Exponential perturbation $1 + \varepsilon \exp(-t/\tau)$



The perturbation in this case is a theoretical perturbation in gain i.e. a mathematical exponential function for gain of the form $G_T(t)=1$ + $\epsilon e^{-t/\tau}$ was assumed.

With an exponential perturbation $\Delta \omega_a$ is R – R₀ ~ 0.393 ppm, which exceeds our error budget. Thus we need to apply a correction to get back the nominal value (back to R₀)

Correction to Theoretical Gain Fluctuations using Simulated Gain Fluctuations of SiPMs only

Goal

- to simulate an exponential perturbation plot
- fit this simulated plot and extract the corrected values of τ and ϵ of the fit results and apply it to the wiggle plot with an exponential perturbation (i.e. the plot of slide 8) in gain.
- Check if get back the nominal ω_{a}

Procedure / Problems

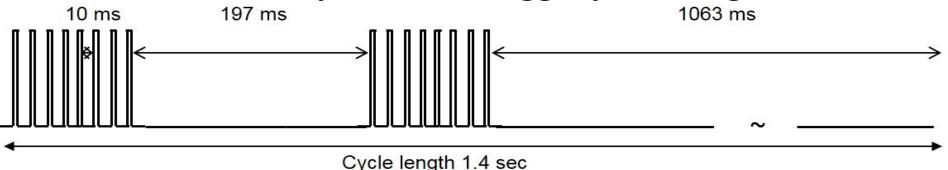
- How many simulation points or cycles to use? Depends on our error budget (next slide explains this)
- How many fills we need to sample data to achieve our desired goal? Depends on the laser frequency, number of cycles etc. (ref. slide 17)

Number of simulation points/cycles:

- Depends on the number of laser cycles required to achieve our goal. Our error budget for $\Delta \omega_a / \omega_a$ due to a gain changes is 0.02 ppm.
- **Rule**: $\Delta G / G \sim 0.2\%$ gives $\Delta \omega_a / \omega_a \sim 0.1$ ppm (F. Gray's thesis). Thus for a $\Delta \omega_a / \omega_a 0.02$ ppm we should have $\Delta G / G \sim 0.04\%$.
- This can be obtained by statistical fluctuations arising from the phtostats of SiPM given by $\frac{\sigma}{\sqrt{N}}$ with $\sigma \sim 2\%$ having about

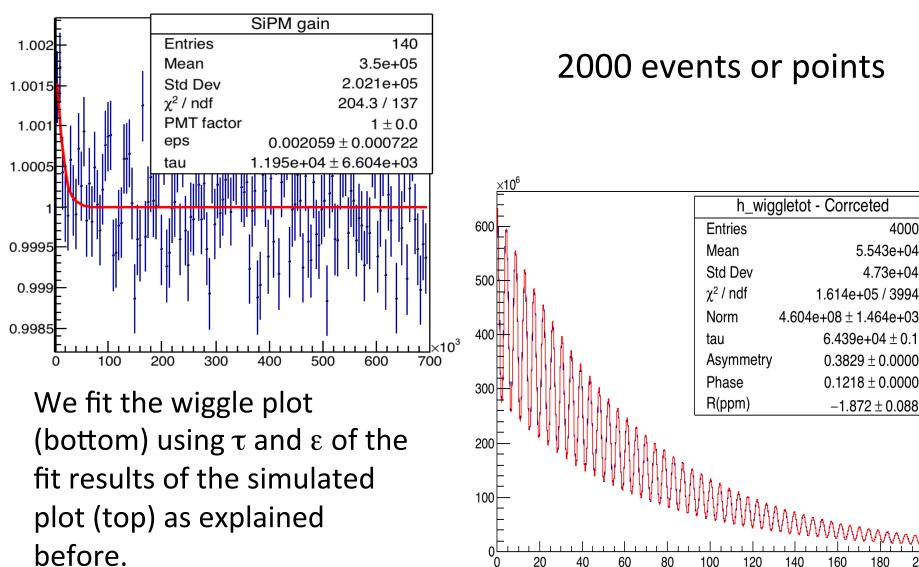
2000 points (or N) gives our required 0.04%

• Thus N ~ 2000 cycles or laser calibration point per time bin



Number of fills required:

- In case of 12.5 kHz laser (80 μ s) we get ~ 8 points in a fill (700 μ s)
- After each subsequent fill, move offset by 5 μ s => 16 fills for a calibration cycle/event = one beam cycle i.e. 1.4 s.
- Accuracy for the 140 points separated by 5 μs (time bin) our goal with 2000 cycles / points. This defines a calibration run (~1h or 46 min).



200

180

4000

5.543e+04

4.73e+04

1.614e+05 / 3994

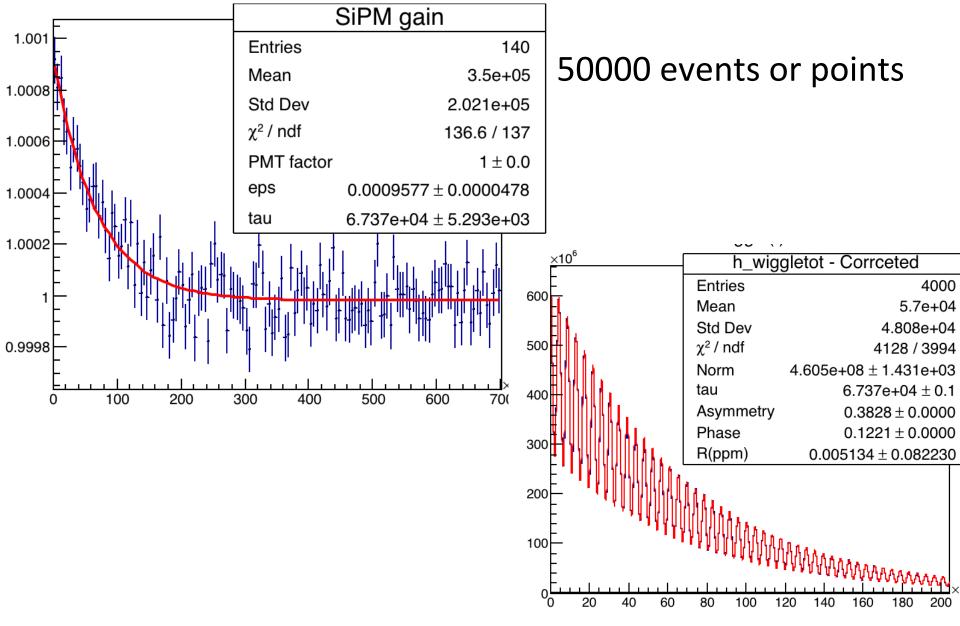
6.439e+04 ± 0.1

 0.3829 ± 0.0000

 0.1218 ± 0.0000

 -1.872 ± 0.088

160



Conclusions:

- Evident from slide 18 that 2000 cycles are not enough to simulate a desirable exponential gain function.
- Thus we tested with more cycles (shown in subsequent slides) and found 50000 cycles (add 25 runs) pretty good as seen in slide 19. Thus a day is good for a dataset.

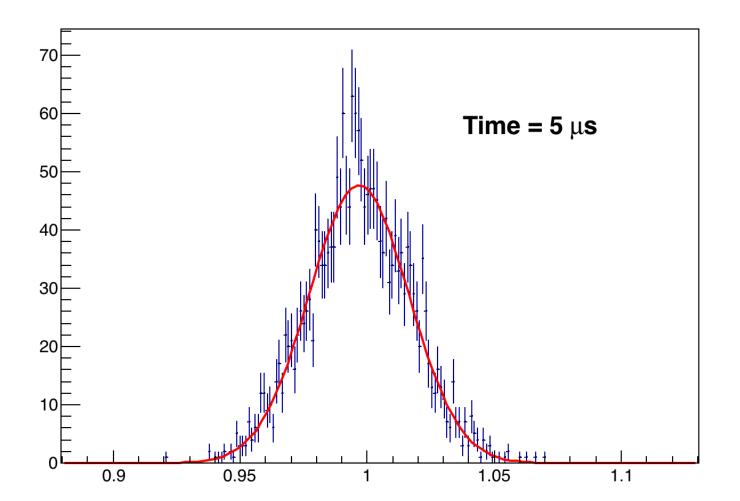
Note: We checked the results of the wiggle plot with $\tau \pm \Delta \tau$ for each case. We also checked the code by reproducing the stable case with correct value of τ and ε .

Thank you for listenting !!!

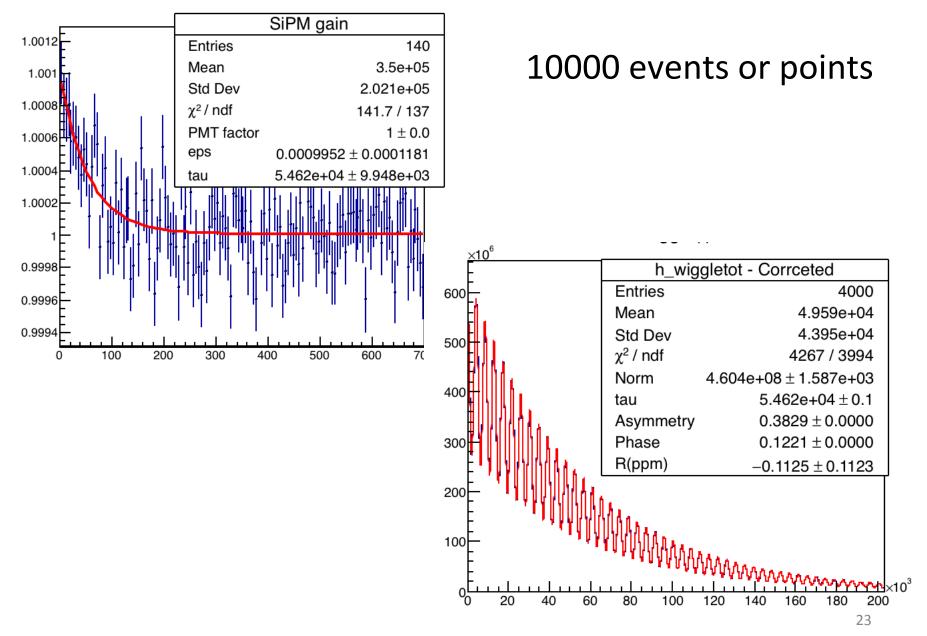
Back Up Slides

Algorithm: For each time bin (5 μs) simulated a Gaussian of 2000 event obeying our exponential perturbation function with a sigma of 2%. Fitted the Gaussian and extracted the fitted mean and plotted it in a histogram. This histogram gives the stat distribution of perturbation

Correction to the perturbed wiggle plot using simulations Simulation: SiPM gain - Simulated a Gaussian for 2000 events, $\varepsilon = 0.01$ with mean $G_T(t)=1 + \varepsilon \exp(-t/\tau)$ and sigma 2% of the mean for a point.



22

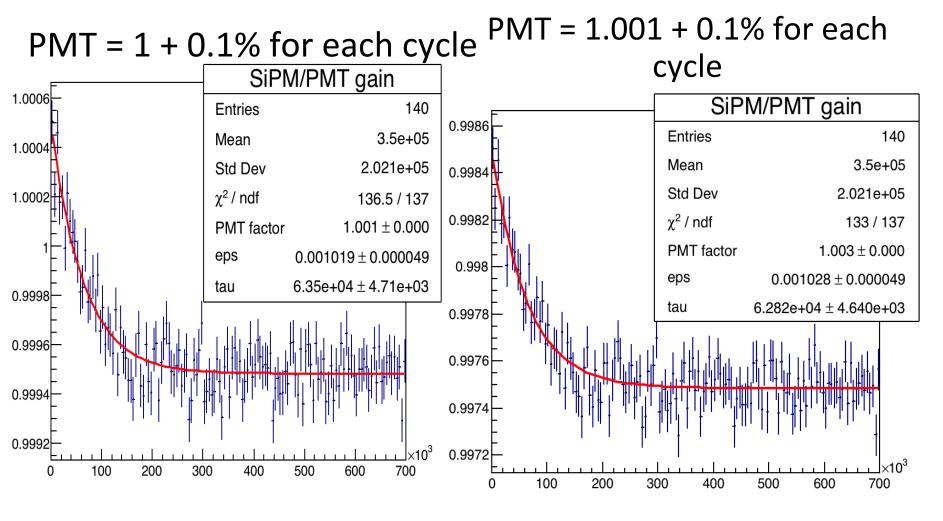


Simulating Short Term Folded with Long Term PMT Gains

We perform a few tests and checks. A brief outline of these and their motivation is listed below:

- Assume PMT drift of 0.1% in an hour for 2000, 10000 and 50000 events i.e. 1, 5 and 25 runs.
- Fit the wiggle plot with τ and ϵ obtained from the fit results of the simulated plots call this uncorrected.
- Fit the wiggle plot after applying a correction with these values relative to the theoretical values.
- Perform more checks like check with offsets in step function of PMT gains, check effect of PMT only with no SiPM gains.

Compare PMT gains 0.1% skipping 1 cycle – 50000 events



Not much difference in both cases