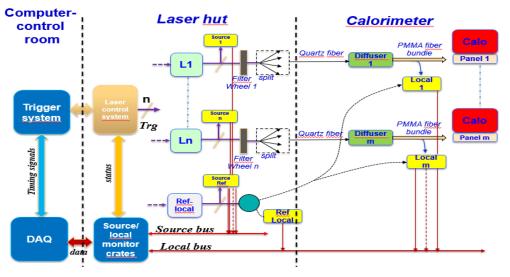


Simulating the g-2 experiment by the laser control board

<u>S. Mastroianni¹</u>, R. Di Stefano^{1,3}, O. Escalante^{1,2}, M. Iacovacci^{1,2}, F. Marignetti^{1,3}

¹Sez. Napoli, INFN, Napoli, Italy; ²Università di Napoli, Napoli, Italy; ³Università di Cassino, Cassino, Italy;


MUSE General Meeting 28-30, September 2016

Outline

- The calibration system
- The functionalities of the laser control board
- The operation modes
 - During the real data
 - Simulating the g-2 experiment
- The architecture
- The implementation
- Tests and measurements
- Conclusions

The Calibration system

Calorimeter gain fluctuations and monitoring at the 10⁻⁴ level (both during in-beam & out of beam)

Calibration system: diode Laser and distribution system transmission

- **6 lasers Picoquant (750 pJ @ 405 nm) /** Average Power (@ 40 MHz): 28 mW
 - 24 diffusers
 - Monitor system
 - Systematics are measured Source monitor (signal input: ~150 pJ/pulse~ $3x10^8 \gamma$) with reference to a *Am/NaI*
 - 2 PIN diodes and readout electronics
 - 1 PMT with Am/NaI pulser
 - Light mixing chamber
 - **Local monitor** (signal input: ~0.01 pJ/pulse~ $10^4 10^5 \gamma$) **2 PMT**

Required value at the output of each crystal 0.01 pJ/pulse (el. 2 GeV)

Simulating the g-2 experiment by the laser control board, S. Mastroianni

"pulser" with rate of

 $\sim 10Hz \rightarrow \text{need} \sim 3 \text{ hours}$

for 0.01% statistical

accuracy

The functionalities

- Interface with the Trigger system
 - Synchronization with the clock, control and command system (CCC)

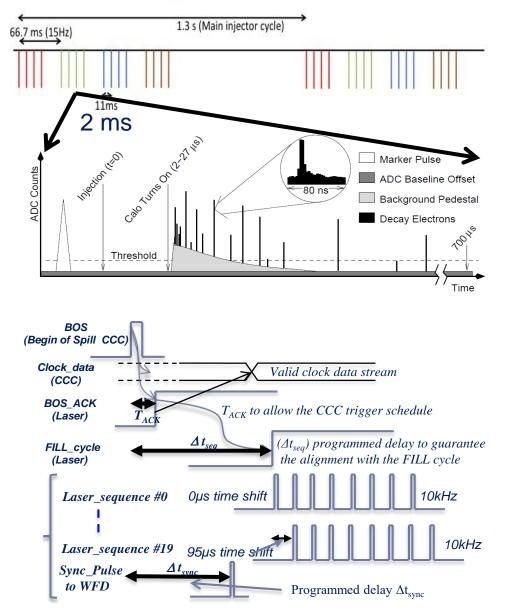
> Provides the calibration pulses according the following modes:

- Pulse train generation at programmable frequencies superimposed to the real data during 700 µs fill window;
- Physics event **simulation** with "flight simulator" mode by triggering the laser according to an exponential function $\exp(-t/\tau)$, as expected from muon decay:
 - Detector/electronics/DAQ test and characterization
- Time reference signal for reset, synchronization and initialization of DAQ and electronics (Sync/RST)
 - Alignment between channels
 - Time measurements
 - Filter wheels managing for SiPM calibration:dynamic ~ 5

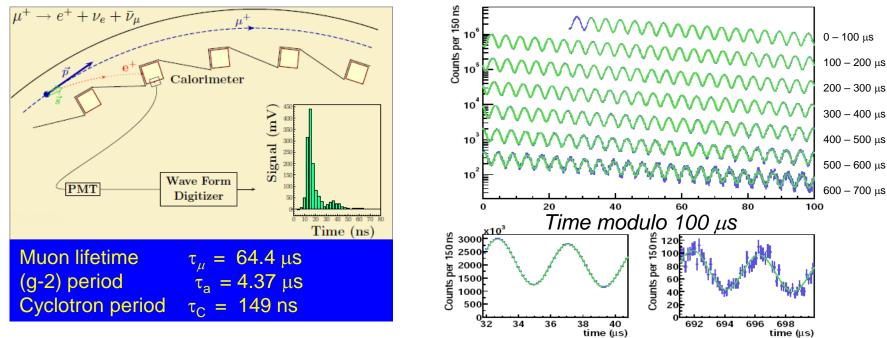
> Interface with the monitor system electronics

- Time reference signals for data processing and readout
- Status and activity of the monitor system

Simulating the g-2 experiment by the laser control board, S. Mastroianni


Operation mode during real data

Required stability at 10^{-4} for a single point every a few μ s:

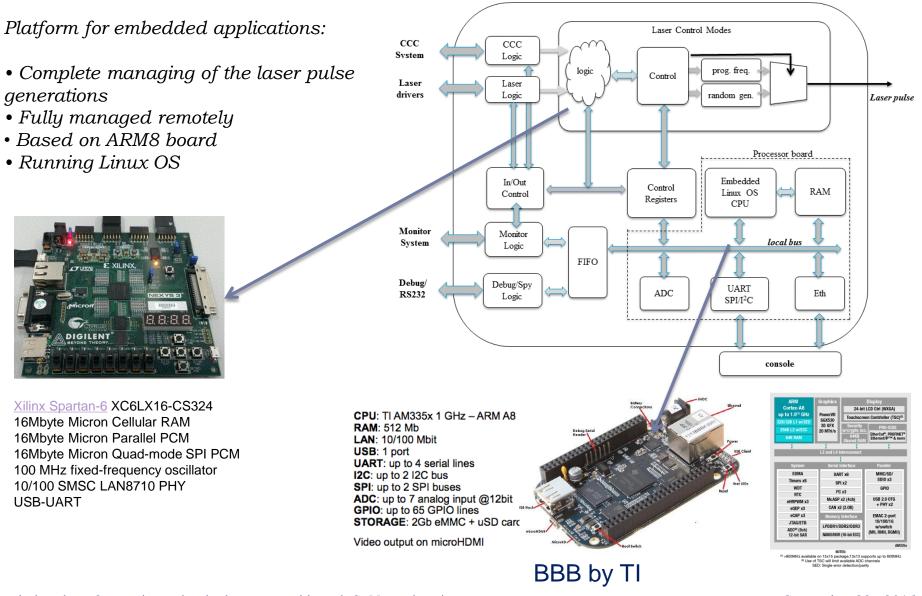

- Sampling of G(t) in more than 100 points between 0 and 700μs
- Laser fired at fixed frequency
- Reduce pileup between muon signal and calibration signal
- Train pulse in fill is shifted cycle by cycle by a *t*_s

with 10 kHz laser frequency and with a t_s = 5µs \rightarrow sampling of G(t) in 140 points \rightarrow each calibration point has about 2000 samples in 30' with a pileup contained under 10⁻⁴ level

Frequency/time shift and time delays are programmable

Simulating the g-2 experiment Measuring ω_a

The integrated number of positrons (above E_{th}) modulated at ω_a

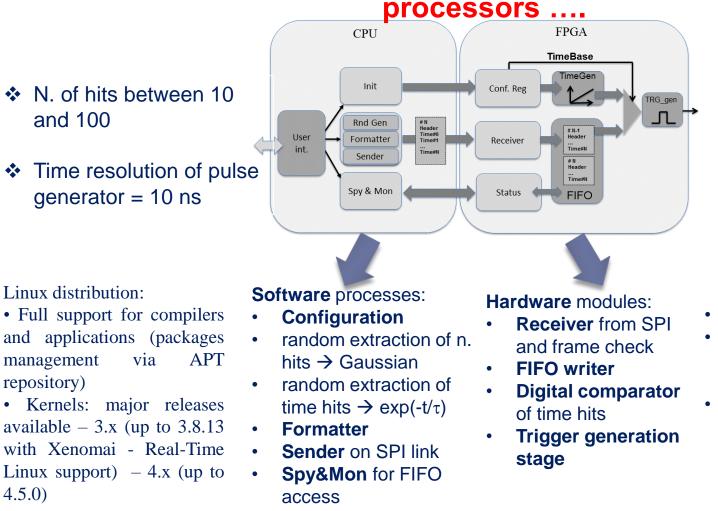

- Angular distribution of decayed positrons correlated to muon spin
- Five parameter fit to extract ω_a $N(t) = N_0 e^{-t/\tau} \left[1 + A \cos(\omega_a t + \phi) \right]$
- Challenging because of:
 - Pileup
 - Gain changes
 - Coherent Betatron
 - Oscillations
 - Muon Losses

Full simulation to test the detector/DAQ under real conditions

Simulating the g-2 experiment by the laser control board, S. Mastroianni

The architecture

Simulating the g-2 experiment by the laser control board, S. Mastroianni


September 29, 2016

The random generator implementation

A random pulse generator is required to simulate the muon decay

- Used for SiPM detector stations studies and pileup measurements over a large dynamic range
- Check of electronics, DAQ and data processing in real conditions

Typically implemented in hardware but with powerful embedded

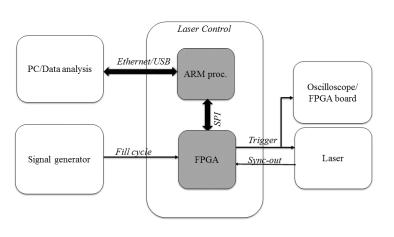
Simulating the g-2 experiment by the laser control board, S. Mastroianni

SPI link = 5 MHz

polling

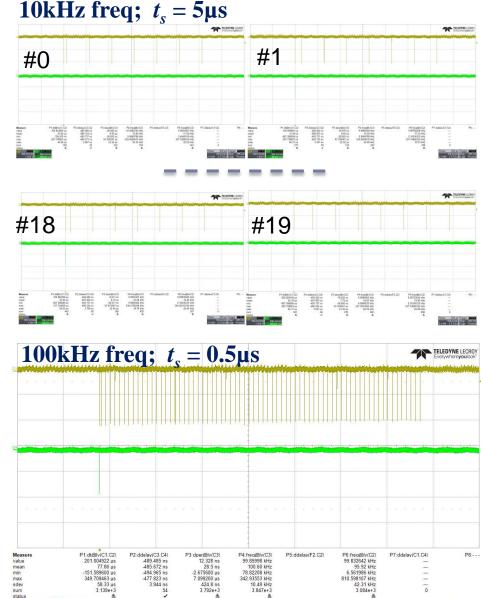
Sender process checks

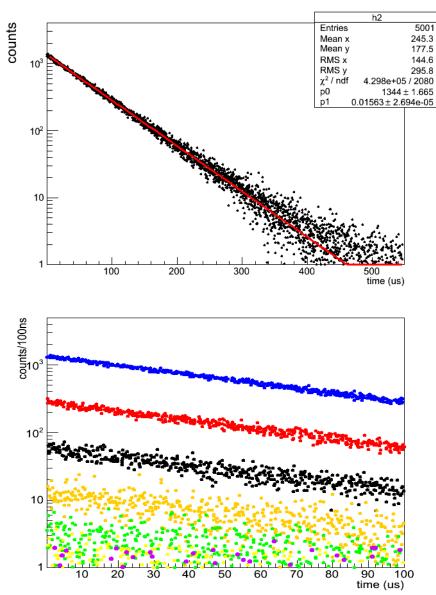
the FIFO status with a


Timing characteristics of

pulses defined in the

final trigger generation


Test measurements: fixed frequency mode


Test bench setup

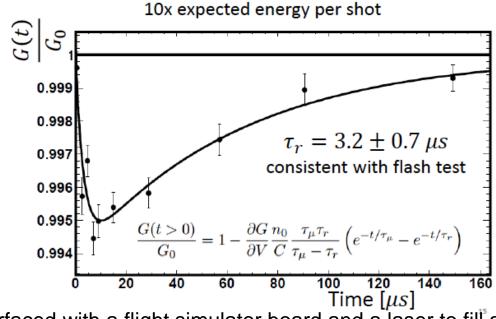
- A signal generator to replace the • DAQ and the CCC system
- PicoQuant LDH-P-C405M pulsed • diode laser for fully interface
- LeCroy oscilloscope for • measurements
- PC for spy and data analysis

Test measurements: flight simulator

Laser control board used to simulate (g-2) fill (with no wiggles)

20ns Average 96 hits; pulse width

Simulating the g-2 experiment by the laser control board, S. Mastroianni


TELEO

Test measurements (3)

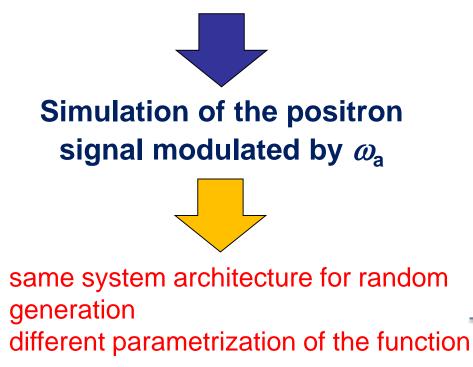
- Flash at t = 0: detectors near injection site face saturation
- G(t) over fill: average current varies with muon lifetime, spans several orders of magnitude
- Short term G(Δt): (pileup / double pulse)

$$\mathbf{G}(\mathbf{t})/\mathbf{G}_0 = 1 - \frac{\partial G}{\partial V} \frac{n_0}{C} \frac{\tau_\mu \tau_r}{\tau_\mu - \tau_r} \left(e^{-t/\tau_\mu} - e^{-t/\tau_r} \right)$$

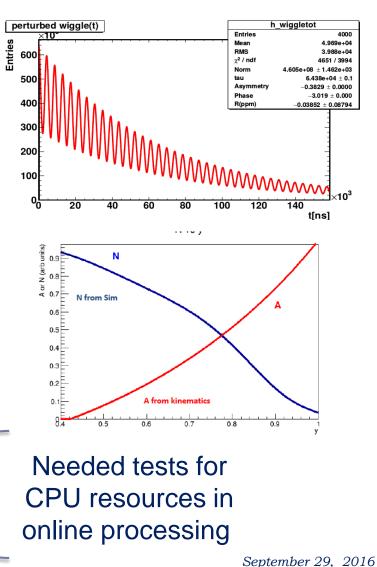
simulating Bias Voltage recovering curve

G(t) result for LED $\sim 2300 \text{ MeV/shot}$

From Aaron presentation using a Led interfaced with a flight simulator board and a laser to fill at constant rate (<u>http://gm2-docdb.fnal.gov:8080/cgibin/ShowDocument?docid=2708</u>)


Simulating the g-2 experiment by the laser control board, S. Mastroianni

Tests @ LNF and SLAC during 2016


Next step: simulation with wiggle

Wiggle plot: 5-parameters fit function N(t) = N(y)[1+A(y)cos($\omega_a(1+R)t+\phi(y)$)]exp(-t/ τ)

- > $Y=E_e/E_{max}$ ($E_{max}=3.1$ GeV) 0<y<1
- Normalization N(y), Asimmetry A(y) and phase φ(y) depend on the electron energy y

Simulating the g-2 experiment by the laser control board, S. Mastroianni

Conclusions

- The Laser control system manages the interface with the trigger system and the local DAQ system
- It provides the laser calibration pulses according to
 - Sync/RST for electronics initialization and synchronization
 - Pulse train at programmable frequency ($kHz \div MHz$) during the FILL
 - Muon decay simulation with "Flight simulator"
- The laser control is based on an hybrid platform with an FPGA and a embedded processor
 - The core is a random number generator
- The system is fully (re)configurable and managed remotely
- The laser control has been intensively tested at LNF/SLAC and in other test stands
- The system will be installed at FNAL by the end of this year
- Simulation with wiggle is under way