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Longitudinal beam dynamics: terminology
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• The beam will be described with reference to a synchronous
particle that follows a particular space-time trajectory. The ‘space’
trajectory is the central orbit of the transverse motion and the
‘time’ trajectory is defined by initial conditions.

• When crossing an RF cavity, the synchronous particle receives a
kick in momentum (∆sp). Non-synchronous particles receive
slightly different kicks (∆sp+∆p ).

• The motion of the non-synchronous particles is then expressed in
terms of how much they lead or lag (∆s) the synchronous particle
in their flight through the lattice and by how much they deviate
from the synchronous particle in momentum (∆p/p).

• ∆s-∆p/p defines the longitudinal phase space.
• A large number of particles concentrated around a synchronous

particle are referred to as bunch.
• Without longitudinal focusing, a bunch will progressively spread

out.



Longitudinal beam dynamics: terminology
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• A focusing region in longitudinal phase-space around the 
synchronous particle is known as an RF bucket. 

• A stationary RF bucket is one that does not alter the momentum of 
the synchronous particle (∆sp=0), but does modify the momenta of 
the non-synchronous particles (∆p ≠ 0). 

• An accelerating bucket applies a positive momentum kick to the 
synchronous particle (∆sp>0). 

• RF cavities are usually configured to bring non-synchronous 
particles closer to the synchronous one. 

• In Linacs, this is called longitudinal focusing. 
• In a ring, it is called phase stability. 



Path length and velocity

• The variable ∆s has two components:

• The first term is the geometric difference in path length, given by
the velocity of the reference particle multiplied by the extra time
taken by the given particle to traverse the element. The second
term is the distance due to the difference in velocity between the
given particle and the synchronous one applied for the time
needed for the reference particle to traverse the element.

• If the change in path length compensates the effect of the
velocity difference (i.e. ∆spath=-∆svelocity), so that ∆s = 0, the transit
time is the same for particles of all momenta and the lattice is
known as an isochronous lattice.
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s = vt⇒Δs = vΔt + tΔv = Δspath +Δsvelocity



Path length and velocity

• Drift spaces, quadrupoles, multipoles and solenoids are
considered to have the same geometric path length to first order
for all momenta, so ∆spath is zero in these cases.

• ∆svelocity is derived from the basic relativistic expression,
p0=m0γβc by differentiation:
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Δp
p0

= γ 2
Δβ
β

⇒Δv = v
γ 2
Δp
p0

⇒Δs = Δsvelocity = tΔv =
l
γ 2
Δp
p0

term used in 6x6
transfer matrices

p0 =m0c
β

1−β 2
⇒ dp0 =m0c

dβ
1−β 2( )

3/2 =m0cγ
3dβ

NB:

dp0
p0

=m0cγ
3dβ m0cβγ



6D transfer matrix for non bending elements
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Longitudinal terms for transfer 
matrices of non-bending elements

 For drift spaces, quadrupoles (magnetic & 
electrostatic), skew quadrupoles, solenoids 
and similar ‘straight’ elements.
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EM fields in RF devices
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•  Let VRF  be the amplitude of the RF voltage 
across the gap g 

•  The particle crosses the gap at a distance r 
•  The energy gain is: 

In the cavity gap, the electric field is supposed to be: 

In general, E2(t) is a sinusoidal time variation with angular frequency ωRF 

where 

Acceleration by time-varying electric field 

r 

s 

g 

E 

r 

[MeV] 
[MV/m] [n]  

(1 for electrons or protons) 

When a particle crosses the gap g at a
distance r, its energy gain is

ΔE = q

E s, r, t( )d

s
−g/2

g/2
∫

In the cavity gap the electric field is

E s, r, t( ) = E s, r( )g t( )

g t( ) = sinΦ t( )In general g(t) is a
sinusoidal function Φ t( ) = ωrf dtt0

t
∫ +Φ0



EM fields in RF devices: convention
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g t( ) = sinΦ t( )
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Convention 

1.  For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage 
with positive slope 

Time t= 0 chosen such that:  

1 

φ1

2 

φ2

2.  For linear accelerators, the origin of time is taken at the positive crest of the RF voltage For circular accelerators, the
origin of time is taken at the zero
crossing of the RF voltage with
positive slope
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Convention 

1.  For circular accelerators, the origin of time is taken at the zero crossing of the RF voltage 
with positive slope 

Time t= 0 chosen such that:  

1 

φ1

2 

φ2

2.  For linear accelerators, the origin of time is taken at the positive crest of the RF voltage For linear accelerators, the 
origin of time is taken at the 
positive crest of the RF 
voltage

g t( ) = cosΦ t( )



EM fields in RF devices: TM010 modes

• The most common accelerating structures in standing wave
structures have rotational symmetry excited by a TM010
mode.

• The term TM (transverse magnetic) indicates that magnetic
fields are normal to the longitudinal direction.

• The other class of modes, TE, have longitudinal components
of B, and Ez=0.

• The first number in the subscript is the azimuthal mode
number: it is zero for azimuthally symmetric modes.

• The second number is the radial mode number. The radial
mode number minus one is the number of nodes in the radial
variation of Ez.

• The third number is the longitudinal mode number. It is zero if
Ez is constant in the z direction: in the TM010 mode, only the
Er, Ez and Bθ components are non-zero.
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EM fields in RF devices: TM010 modes
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𝐵 = 𝐵#𝜃%
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EM fields in RF devices: TM010 modes

• The wavenumber and frequency of TM0N0 modes depends
only on R0, not g. This is not generally true for other types of
modes.

• TM0N0 modes are optimal for particle acceleration. The
longitudinal electric field is uniform along the propagation
direction of the beam and its magnitude is maximum on axis.

• The transverse magnetic field is zero on axis; this is important
for electron acceleration where transverse magnetic fields
could deflect the beam.

• Whether the standing-wave structure is called a gap, a cavity, 
or a tank with drift tubes depends on the external geometry.

• The basic modules can be used individually or in a periodic 
array operating in the so-called π-mode in which the fields of 
adjacent cells are π out of phase, or the 2π-mode for drift 
tubes in a tank. 
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RF standing waves structures
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RF standing-wave structures

The beige colour shows the ‘useful’ RF field region.
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DAΦNE MAIN RING CAVITY
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HOMs evaluation 

28/03/12 Past collective effects studies for DAFNE Pag. 35 



Alvarez structure (non-relativistic)
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• Start with a series of cavities with
‘noses’ or drift tubes and excite all
cavities in phase (2π mode). Note that
wall currents cancel.
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Alvarez linac (non-relativistic)

 Start with a series of cavities with ‘noses’ or drift 
tubes and excite all cavities in phase (2ππππ mode).  
Note wall currents cancel.

 As wall currents cancel, remove walls except for a 
support column for the drift tubes. 

 Now adjust the drift tube lengths for the velocity.

 Note there are quadrupoles lodged inside the drift 
tubes for additional focusing.

 You have an Alvarez.
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Alvarez linac (non-relativistic)

 Start with a series of cavities with ‘noses’ or drift 
tubes and excite all cavities in phase (2ππππ mode).  
Note wall currents cancel.

 As wall currents cancel, remove walls except for a 
support column for the drift tubes. 

 Now adjust the drift tube lengths for the velocity.

 Note there are quadrupoles lodged inside the drift 
tubes for additional focusing.

 You have an Alvarez.
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• As wall currents cancel, remove walls except for a support
column for the drift tubes, then adjust the drift tube lengths
for the velocity.

• Note that there are 
quadrupoles lodged 
inside the drift tubes 
for additional 
focusing.

support column



Alvarez structure: proton and ion LINACS
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• Used for protons and ions (50 – 200 MeV, f ~ 200 MHz)
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Synchronism condition 

Alvarez structure 

g 

L1 L2 L3 L4 L5 

RF generator 

Used for protons, ions (50 – 200 MeV, f ~ 200 MHz) 
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Synchronism condition 

Alvarez structure 

g 

L1 L2 L3 L4 L5 

RF generator 

Used for protons, ions (50 – 200 MeV, f ~ 200 MHz) 
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Synchronism condition 

Alvarez structure 

g 

L1 L2 L3 L4 L5 

RF generator 

Used for protons, ions (50 – 200 MeV, f ~ 200 MHz) 

• Synchronism condition (g<<L) is such that the time the
particle takes to cross a drift tube has to be the RF period:



Standing wave structures
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• The beam velocity is virtually that of light, so the cavities are
identical. These LINACS are used for electrons.
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Coupled-cavity linac (relativistic)

 The beam velocity is virtually that of light, so 
the cavities are identical.

 The cavities are coupled to be excited in the ππππ-
mode.  This saves having an RF source for 
each cavity and synchronising them.
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• The cavities are coupled to be excited in the π-mode. This
saves having an RF source for each cavity and synchronising
them.

be pulsed during a short period corresponding to the filling time of the structure.  In this pulsed
mode of operation much higher peak power pulses can feed the structure, increasing the
accelerating field.  As a consequence only pulsed beams can be accelerated leading to small duty
cycles.

Standing-wave structures can also be used for ultrarelativistic particles.  In that case the π
mode of operation is efficient, where the field has opposite phase in two adjacent cells.  This
type of structure as shown on Fig. 8, often called "nose cone structure", is very similar to the
drift tube one in which the length of the tubes has been made very small.  A variant of this
scheme is used in the high energy proton linac (E = 800 MeV) at Los Alamos, where the
coupling between cavities has been improved by adding side coupled resonant cavities as
sketched on Fig. 9.

Fig. 8  Nose-cone structure

Fig. 9  Side-coupled structure

1 . 4 Induction linac

Resonant structures as described previously cannot handle very high beam currents.  The
reason is that the beam induces a voltage proportional to the circulating current and with a phase
opposite to that of the RF accelerating voltage.  This effect known as "beam loading" disturbs
the beam characteristics and can even destroy the beam by some instability mechanism.

A cure for such an effect in the case of very high currents consists of producing an
accelerating field with a very low Q resonator.  This is obtained with an induction accelerator
module (Fig. 10) in which a pulsed magnetic field produces an electric field component,
according to Maxwell equations, just similar to the betatron principle.

The accelerator will consist of an array of such modules triggered at a rate compatible
with the particle velocity, and fed by high power short pulse generators.

side coupled structure nose-cone structure



Travelling wave LINAC
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• In a resonant structure the standing wave pattern can be
expanded into two travelling waves, a forward one
synchronous with the particle and a backward one which has
no mean effect on the particle energy.

• However TM modes (with an electric field in the direction of
propagation) in rectangular or cylindrical guides have phase
velocities bigger than c. Then it is necessary to bring the
phase velocity of the forward wave at the level of the particle
velocity (vph ~ c) and to do so the simplest method consists
of loading the structure with disks: the size of the holes
determines the degree of coupling and so determines the
relative phase shift from one cavity to the next. When the
dimensions have been tailored correctly the phase changes
from cavity to cavity along the accelerator to give an overall
phase velocity corresponding to the particle velocity.



Travelling wave LINAC
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Electron Linac 

Electrons are light ⇒ fast acceleration 

⇒ β ≅ 1 already at an energy of a few MeV 

Uniform disk-loaded waveguide, travelling wave 

(up to 50 GeV, f ~ 3 GHz - S-band) 

Synchronism condition 

Wave number 

Electric field 

Phase velocity Group velocity 
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© CERN Geneva 

LEP Injector Linac (LIL) 

LIL accelerating structure with quadrupoles  © CERN Geneva 

Electron linacs 
& structures 

CLIC Accelerating Structures (30 GHz & 11 GHz)   

© CERN Geneva 

At the same time emerged the idea that ultrarelativistic particles could be accelerated by
travelling guided waves.  It is a matter of fact that in a resonant structure the standing wave
pattern can be expanded into two travelling waves, one which travels in synchronism with the
particle and the backward wave which has no mean effect on the particle energy.

However TM modes (with an electric field in the direction of propagation) in rectangular
or cylindrical guides have phase velocities bigger than c.  Then it was necessary to bring the
phase velocity at the level of the particle velocity (vp ~ c) and to do so the simplest method
consists of loading the structure with disks as shown on Fig. 6, where the size of the holes
determines the degree of coupling and so determines the relative phase shift from one cavity to
the next.  When the dimensions (2a, 2b) have been tailored correctly the phase changes from
cavity to cavity along the accelerator to give an overall phase velocity corresponding to the
particle velocity.

Fig. 6  Disk-loaded structure

This type of structure will continuously accelerate particles as compare to the drift tube
structure which gives a discontinuous acceleration corresponding to the successive gaps.

Figure 7 is a more complete drawing of such a travelling-wave structure showing both,
the input coupler which matches the source to the structure and the output coupler which
matches the structure to an external load (resistive load for instance) to avoid the backward
wave.

Fig. 7  Travelling-wave accelerating structure

These structures generally operate in the π/2 mode or the 2π/3 mode.  For the former the
height of each cell is equal to λ/4 while it is equal to λ/3 for the latter.  This is important, as will
be seen later, for the electromagnetic energy to propagate.  The interesting thing with travelling-
wave structures, in which the energy propagates relatively fast, is that the RF power source can
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Electron Linac 

Electrons are light ⇒ fast acceleration 

⇒ β ≅ 1 already at an energy of a few MeV 

Uniform disk-loaded waveguide, travelling wave 

(up to 50 GeV, f ~ 3 GHz - S-band) 

Synchronism condition 

Wave number 

Electric field 

Phase velocity Group velocity 

synchronism:



Physical description of em fields in a cavity
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Qualitative action of a cavity

 Wall currents flow back and forth between the end 
plates that store the charge.  

 The current flow supports an azimuthal magnetic field.

 The charge accumulation on the end plates drives an 
electric field that acts on the beam.

 To relate the azimuthal magnetic field to the induced 
axial electric field use Faraday’s law.

 

Beam axis s 

Positive charge 
wall current  

Negative charge 
accumulates on end wall 

Positive charge 
accumulates on end 
wall 

Induced axial 
electric field 

Induced azimuthal 
magnetic field 

∇∇∇∇ ×××× E = -∂∂∂∂ B/∂∂∂∂ t

Equivalent circuit

• When a charge crosses a resonant structure, it excites the
fundamental mode and high order modes (HOMs). Each mode
can be treated as an electric RLC circuit loaded by an impulsive
current.

• Wall currents flow back and 
forth between the two end 
plates of the cavity

• The current flow supports an 
azimuthal magnetic field.

• The charge accumulation on 
the end plates drives an
electric field acting on the 
beam.

• To relate the azimuthal 
magnetic field to the induced 
axial electric field use 
Faraday’s law.
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Qualitative action of a cavity

 Wall currents flow back and forth between the end 
plates that store the charge.  

 The current flow supports an azimuthal magnetic field.

 The charge accumulation on the end plates drives an 
electric field that acts on the beam.

 To relate the azimuthal magnetic field to the induced 
axial electric field use Faraday’s law.

 

Beam axis s 

Positive charge 
wall current  

Negative charge 
accumulates on end wall 

Positive charge 
accumulates on end 
wall 

Induced axial 
electric field 

Induced azimuthal 
magnetic field 
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Physical description of em fields in a cavity
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Nose-cone cavity 
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Qualitative action of the cavity fields

 The ‘noses’ shield the incoming ion from the axial field.

 As the ion enters the gap, the axial field rises with a 
cosine-like form.

 The radial focusing at the entry slightly exceeds the 
defocusing at the exit because the ion has a higher 
energy and is stiffer.

Radial electric 
field focuses

Radial electric field 
defocuses

Axial electric field 
accelerates

Azimuthal magnetic field 
weakly focuses

• The ‘noses’ shield the incoming particle from 
the axial field.

• As the particle enters the gap, the axial field 
rises with a cosine-like form.

• The radial focusing at the entry slightly 
exceeds the defocusing at the exit because 
the ion has a higher energy and is stiffer.

I

B
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+
+
+

+
+
+

-
-
-

-
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-

Ib t( ) = q0δ(t)

Equivalent circuit



Transit time factor
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E s, r, t( ) = E s, r( )g t( ) simplified 
model

E s, r( ) =
Vrf
g
= const

g t( ) = sin ωrf t +Φ0( )

At t=0 and s=0, with v≠0 parallel to the axis (s=vt), the energy 
gain is

ΔE = q

E s, r, t( )d

s
−g/2

g/2
∫ =

qVrf
g

sin ωrf
s
v
+Φ0

%

&
'

(

)
*ds

−g/2

g/2
∫ =

qVrf
g
sinΦ0 cos ωrf

s
v

%

&
'

(

)
*ds

−g/2

g/2
∫

=
2qVrf
ωrf g / v

sin
ωrf g
2v

!

"
#

$

%
&sinΦ0 = qVrfTt sinΦ0

Tt =
sin

ωrf g
2v

!

"
#

$

%
&

ωrf g
2vtransit time 

factor Tt<1 and Tt → 1 if g → 0



Transit time factor
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In the general case, the transit time factor is given by

Tt =
E s, r( )cos ωrf

s
v

!

"
#

$

%
&ds

−∞

∞

∫
E s, r( )ds

−∞

∞

∫
It is defined as the ratio of the peak energy gained by a particle with
velocity v to the peak energy gained by a particle with infinite velocity.

The energy gain is therefore

NB: the field distribution with distance in the gap is not constant but close
to a cosine so it is possible to improve the approximation.

ΔE = qVrfTt sinΦ0



RF parameters

• The transit time factor is mostly important for LINACS. 
• In circular machines it possible to take a very simplified 

model of the RF cavities. 
• The RF period Trf is related to the revolution period T0 by 

the harmonic number h because at every turn the particle 
must see the same voltage

• In most cases, the time to cross the gap in a ring is very 
small compared to the RF period, so that the transit time 
factor is close to unity. 

• In this case, the energy gained by the particle is

• where Φs is called synchronous phase
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T0 = hTrf frf = hf0

ΔE = qVrf sinΦs



Momentum compaction

• In a circular accelerator a nominal closed orbit is defined
for a particle with a nominal momentum p0.

• For a particle with momentum p0 + Δp the trajectory length
can be different from the length L0 of the nominal trajectory
due to the different bending radius in the dipoles.

• We call ΔL this extra length, and define a new quantity, the
momentum compaction, as

• so that
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αc =
ΔL / L0
Δp / p0

ΔL
L0

=αc
Δp
p0



Momentum compaction

• Example for a dipole
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∆∆∆∆s for dipoles continued

 Thus, the geometric path difference is given by,

 This reduces the problem to the integration of the 
expression for the radial position x(s) of the orbit in the 
plane of bending as derived in Lecture 2 and given in 
the Formula Book.

 The final expression is also given in the Formula Book.

 The detailed mathematics is not important, but 
remember the method, because you will have a hard 

time finding this explanation in the literature.

Equilibrium orbit
General orbit

Sector
dipole

x0

ρ0

dl dl*

∫−=−=∆
l

ll
00

* (2)       d)(
1

lengthpath ssxs
ρ

L0 = ρ0θ
θ

dL = (ρ0 + x0 )dθ =
(ρ0 + x0 )

ρ0
ds

L = (ρ0 + x0 )
ρ0

ds
0

L0∫ = L0 +
x0
ρ0
ds

0

L0∫ ΔL = x0
ρ0
ds

0

L0∫ =
Δp
p0

D
ρ0
ds

0

L0∫

ΔL
L0

=αc
Δp
p0

αc =
1
L0

D
ρ
ds

0

L0∫
if ρ=ρ(s)

by definition
of dispersion



Momentum compaction

• For a circular machine we can also write

• In most circular machines αc is positive: higher
momentum means larger circumference.

• This does not necessarily means larger revolution time:
higher momentum means also higher velocity and lower
revolution time (if β<1)
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αc =
ΔL / L0
Δp / p0

=
ΔR / R0
Δp / p0

ωrev =
2πv
L0

dωrev =
2π
L0

dv− 2πv
L0
2 dL⇒ dωrev

ωrev

=
dv
v
−
dL
L0



Slippage factor

remember that

so that, including also the definition of momentum
compaction

η is called slippage factor and it depends on the beam energy.

For a given machine (with momentum compaction αc) there is
an energy at which η=0: transition energy
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dωrev

ωrev

=
dv
v
−
dL
L0

Δv
v
=
1
γ 2
Δp
p0

dωrev

ωrev

=
df
f0
=
1
γ 2
−αc

"

#
$

%

&
'
dp
p0
=η

dp
p0



Transition energy

• Below transition, γ<γtr ⇒ (η>0): higher momentum gives
higher revolution frequency (velocity is important: proton
machines).

• Above transition, γ>γtr ⇒ (η<0): higher momentum gives
lower revolution frequency (dispersion is important:
electron machines).

• For LINACS αc=0⇒ η>0 (either protons and electrons).

the slippage factor can be also written as
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η =
1
γ 2
−αc

"

#
$

%

&
'= 0⇒

1
γ tr
2 =αc ⇒ γ tr =

1
αc

η =
1
γ 2
−
1
γ tr
2

"

#
$

%

&
'



Synchronous particle in storage rings

• Let’s consider a simplified assumption of no acceleration
of particles and time constant magnetic fields (circular
accelerators, not synchrotrons but storage rings).

• A synchronous particle is a particle that, at each turn,
sees always the same phase in the RF cavity.
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Synchronous particle 
Simple case (no accel.): B = const.  

Synchronous particle: particle that sees always the same phase (at each turn) in the RF cavity  

In order to keep the resonant condition, the particle must keep a constant energy 
The phase of the synchronous particle must therefore be φ0 = 0 (circular machines convention) 

Let’s see what happens for a particle with the same energy and a different phase (e.g., φ1) 

φ1

φ0

€ 

ΔE = e ˆ V 
RF

sinφ

ωrev =
ωrf

h

ΔE = qVrf sinΦ0

=ωrf t



Synchronous particle in storage rings

• In order to keep the synchronous condition, the particle
must keep a constant energy

• The phase of the synchronous particle must therefore be
ϕ0 = 0 if there are no losses in the machine (good
approximation for protons).

• If there are losses U0, due, for example, to synchrotron
radiation, then

• There are two values of ϕ0 satisfying this relation. Let’s
see that for stability, below transition energy, we must
choose the value below π/2.
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sinφ0 =
U0

qVrf



Synchrotron oscillations

• A particle that enters in 1 gains energy and it is accelerated.
• Below transition its revolution frequency increases.
• The particle arrives in the cavity earlier, its phase tends to

ϕs.
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φs 

Phase stability 

2 

1 

U0



Synchrotron oscillations
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φ2

φ2 - The particle is decelerated 
 - decrease in energy - decrease in revolution frequency 
 - The particle arrives later – tends toward φ0

φ1 - The particle is accelerated 
 - Below transition, an increase in energy means an increase in revolution frequency 
 - The particle arrives earlier – tends toward φ0 
 

φ1

φ0

Synchrotron oscillations 
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φ1

φ0
φ2

Synchrotron oscillations 

Phase space picture 

€ 

φ =ω
RF
t

U0 = 0



Synchrotron oscillations: unstable phase
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φs 

φ

Phase stability 

stable region 

unstable region 

separatrix 

The symmetry of the case  
with B = const. is lost 
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φs 

φ

Phase stability 

stable region 

unstable region 

separatrix 

The symmetry of the case  
with B = const. is lost 



Synchronous particle: acceleration

• In order to maintain ρ constant, if the particle accelerates,
the magnetic field must increase

• Δp is related to energy ΔE by the relativistic expression
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qBρ =mv = p

dp
dt
= qρ dB

dt
= qρ B Δp( )turn = qρ BTrev = qρ B

2πR
βc

p =m0cβγ =m0c γ 2 −1⇒ dp = m0c
β

dγ = dE
βc

ΔE( )turn = 2πRqρ B

L0



Synchronous particle: acceleration

• ΔE is related to the synchronous phase

• Also the RF frequency must change with the magnetic
field
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2πRρ B =Vrf sinφs

ΔE = qVrf sinφS

sinφs =
2πRρ B
Vrf

frf = hf0 =
hv
2πR

=
hcβ
2πR

=
hc
2πR

1− 1
γ 2

B = mv
qρ

=
m0cγβ
qρ

=
m0c
qρ

γ 2 −1

frf =
hc
2πR

qρ
m0c

B 1

1+ qρ
m0c

B
!

"
#

$

%
&

2



Synchrotron oscillations
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θs 

Δθ 

R 

v 

Since 

Over one turn θ varies by 2 π 

 φ varies by 2 π h 

φs φ 

Δφ 
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θs 

Δθ 

R 

v 

Since 

Over one turn θ varies by 2 π 

 φ varies by 2 π h 

φs φ 

Δφ 

Synchronous particle

Δφ = −hΔθ
The azimuthal angle θ is related to the azimuthal position by ds = Rdθ. In one 
revolution this angle varies by 2π while the RF phase varies by 2πh.

The - sign comes from the fact that a particle behind the synchronous particle (∆θ < 0) 
arrives later in the gap 



Synchrotron oscillations
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θ = ω(τ )dτ
t0

t
∫

Δω =
d
dt

Δθ( ) = − 1
h
d
dt

Δφ( ) = − 1
h
d
dt

φ −φs( ) = − 1
h
dφ
dt

Δω
ω0

=η
Δp
p0

remember

constant

synchronous 
particle

Δp = − p0
hηω0

dφ
dt

in energy 
(ΔE=vΔp=ω0R0Δp) ΔE = −

R0p0
hη

dφ
dt

dφ
dt

= −
hη
R0p0

ΔE time phase 
dependence

NB: remember that ΔE is the 
energy difference from that of 
the synchronous particle



Synchrotron oscillations
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En −En−1 = qVrf sinφThe energy gain for any particle in one turn is 

En,s −En−1,s = qVrf sinφsFor the synchronous particle we have, as well

En −En,s( )− En−1 −En−1,s( ) = qVrf sinφ − sinφs( )

ΔEn −ΔEn−1 = qVrf sinφ − sinφs( )2π
ω0

1
T0

2π
ω0

d ΔE( )
dt

= qVrf sinφ − sinφs( )

introducing W = 2π ΔE
ω0

dW
dt

= qVrf sinφ − sinφs( )

													



Synchrotron oscillations
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The two equations of motion of the non-synchronous particle are then

dW
dt

= qVrf sinφ − sinφs( )

dφ
dt

= −
hηω0

2πR0p0
W

NB: W and ϕ are canonical variables since the equations of 
motion can be derived from the Hamiltonian

dφ
dt

=
∂H
∂W

dW
dt

= −
∂H
∂φ

H = eVrf cosφ − cosφs + φ −φs( )sinφs"# $%−
hηω0

4πR0p0
W 2

This Hamiltonian, although legitimate, is inconsistent with the Hamiltonian for transverse 
betatron oscillations, where s is the independent coordinate. To simplify our discussion, we 
will disregard the inconsistency and study only the synchrotron motion. A fully consistent 
treatment is needed in the study of synchro-betatron coupling resonances.



Synchrotron oscillations
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The second order equation for the phase can be obtained

Let’s consider R0, p0, ω0, η and Vrf constant or slowly changing with 
time compared to Δϕ=ϕ-ϕs

with

d
dt

R0p0
hηω0

dφ
dt

!

"
#

$

%
&+

qVrf
2π

sinφ − sinφs( ) = 0

d 2φ
dt2

+
ωs
2

cosφs
sinφ − sinφs( ) = 0

ωs
2 =

qVrf hηω0 cosφs
2πR0p0

=
qVrf hηc

2 cosφs
2πR0

2E0



Synchrotron oscillations: small amplitude
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small Δϕ

sinφ = sin φs +Δφ( ) = sinφs cosΔφ + cosφs sinΔφ

d 2φ
dt2

+ωs
2Δφ = 0

⇒ sinφ ≅ sinφs +Δφ cosφs

or, equivalently d 2Δφ
dt2

+ωs
2Δφ = 0

which represents the differential equation of an harmonic
oscillator with ωs called synchrotron frequency. It must be real
for the stability condition

ωs
2 =

qVrf hηc
2 cosφs

2πR0
2E0

η cosφs > 0



Synchrotron oscillations: stability condition
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Stability is obtained when the angular frequency of the oscillator, is real positive:  

VRF 

cos (φs) 

acceleration deceleration 

Stable in the region if 

NB: at transition energy η vanishes, ωs goes to zero and there is no more
phase stability. During acceleration through transition energy, in a proton
synchrotron, the RF phase must be switched rapidly from ϕs to π - ϕs in
order to maintain stability above transition.

Remember: 
below transition η>0



Synchrotron oscillations: small amplitude
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The solution for small amplitude oscillations is

and

the motion is an ellipse (circumference) in the phase space

Δφ = Δφmax cos ωst +θ0( )

W = −
2πR0p0
hηω0

dφ
dt

=
2πR0p0
hηω0

ωsΔφmax sin ωst +θ0( )

Δp = p0
hηω0

ωsΔφmax sin ωst +θ0( ) = Δpmax sin ωst +θ0( )



Synchrotron oscillations: lepton machines
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β≅1, γ large è η≅-αc, ω0≅c/R0

the synchrotron tune = number of synchrotron oscillations 
per turn is

The rf frequency does not change

ωs
2 = −

eVrf hαcc
2 cosφs

2πR0
2E0

Qs =
ωs

ω0

= −
eVrf hαc cosφs

2πE0



Synchrotron oscillations: large amplitude
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multiplying by dϕ/dt and integrating

The small amplitude motions are pure 
harmonic oscillations which correspond 
to circles in the frame                . For 
larger amplitudes the circles are 
distorted by the non-linearity of the 
motion but the curves will still close on 
themselves. 

φ + ωs
2

cosφs
sinφ − sinφs( ) = 0

φ 2

2
−

ωs
2

cosφs
cosφ +φ sinφs( ) = const

amplitudes the circles will be distorted by the non-linearity of the motion but the curves will still
close on themselves (Fig. 6).  The extreme elongations of the oscillation correspond to φ = 0
and the constant of the motion can be expressed in terms of these values.

When φ reaches the value π - φs the factor (sin φ - sin φs) in the equation of motion
becomes zero and for higher values of φ the force is no more attractive so that the motion
becomes unstable.  Hence π - φs is an extreme elongation corresponding to a stable motion.
The corresponding curve in the (φ /Ωs,φ) space or in the (W,φ) space is called the separatrix and
the area delimited by this curve is called the RF bucket.  The equation of the separatrix is:

Fig. 6  Stable phase space trajectories

φ̇ 2

2
−

Ωs
2

cosφs
cosφ + φ  sin φs( ) = − Ωs

2

cosφs
cos π - φs( ) + π − φs( )sin φs[ ]

The second value φm, for which φ̇  = 0, is such that:

cosφm + φm  sin φs = cos π - φs( ) + π − φs( )  sin φs

From the equation of motion it is also seen that φ̇  reaches an extremum when ˙̇φ  = 0
corresponding to φ = φs.  Introducing this value in the equation of the separatrix gives the
maximum stable values of φ̇  and W:

φ̇max
2 = 2Ωs

2 2 − π − 2φs( )tgφs[ ]
Wmax

2 = 2eV̂ 2  cosφs − π − 2φs( )  sin φs[ ]2πpsRs
hηωs

or
ΔE
Es

(

)
*

+

,
-
max

= ±β
eV̂

πhηEs
G φs( )

/
0
1

2
3
4

1/2

This last expression is called the RF acceptance.  The function G(φs) is given by:

G φs( ) = 2  cosφs − π − 2φs( )  sin φs[ ]

and varies from     +     2 to 0 when sin φs varies from 0 to 1.

φ
ωs

depends on the 
initial conditions

!φ /ωs,φ( )

Remember that Φs (150°) is stable, and π-Φs unstable



Synchrotron oscillations: large amplitude
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Equation of the separatrix: dϕ/dt=0 and ϕ=π-ϕs (unstable point)

The sum of the potential energy and the kinetic energy is constant

φ 2

2
−

ωs
2

cosφs
cosφ +φ sinφs( ) = − ωs

2

cosφs
cos π −φs( )+ π −φs( )sinφs"# $%

potential energy U from 
which the equation of 
motion can be derived

U =
ωs
2

cosφs
cosφ +φ sinφs( )

F φ( ) = −∂U
∂φ

∂2φ
∂t2

= F φ( )



Synchrotron oscillations: large amplitude
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The shape of the potential energy
corresponds to the sum of a linear
function and a sinusoidal one. An
oscillation can only take place if
the particle is trapped in the
potential well which means that the
total energy cannot exceed a
certain value (dotted line)
otherwise the particle will slide
along the curve. Hence the maxima
of the curve correspond to
unstable equilibrium points for the
synchrotron motion.

d2φ
dt2

= F φ( )

F φ( ) = − ∂U
∂φ

U φ( ) = − F φ( )dφ = − Ωs
2

cosφs
∫ cosφ + φ  sin φs( )

The sum of the potential energy and the kinetic energy is a constant (the total energy):

φ̇ 2

2
+U φ( ) =U0

The RF voltage as well as the corresponding potential energy function are shown on
Fig. 8.  The shape of the latter corresponds to the sum of a linear function and a sinusoidal
one.  An oscillation can only take place if the particle is trapped in the potential well which
means that the total energy cannot exceed a certain value (dotted line) otherwise the particle will
slide along the curve.  Hence the maxima of the curve correspond to unstable equilibrium for
the synchrotron motion.

Fig. 8  Accelerating voltage and potential energy function

4 . ADIABATIC DAMPING OF SYNCHROTRON OSCILLATIONS

So far one has assumed that the parameters Rs, ps, ωs and V̂  did not change appreciably
at least over a time scale of one synchrotron period.  However in a synchrotron these
parameters will vary over a large range, even slowly, during an acceleration cycle.  Then one
needs to study the long term evolution of the motion under adiabatic changes of these
parameters.  This is possible with the help of the Boltzman-Ehrenfest adiabatic theorem which
states that, if p and q are canonically conjugate variables of an oscillatory system with slowly
changing parameters, then the action integral is constant:

I = pdq = cte∫
the integral being taken over one period of oscillation. It has been already mentioned that the
variables W and φ, describing the synchrotron motion, were canonically conjugate. Hence
applying the theorem leads to:

RF voltage and corresponding potential energy function



Synchrotron oscillations: RF acceptance
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The maximum value of dϕ/dt is reached when d2ϕ/dt2=0, that is
when ϕ=ϕs. Introducing this value in the equation of the separatrix

From the previous equations it is possible to obtain that

RF acceptance:

The RF acceptance plays an important role when designing a
machine, since it determines the capture efficiency at injection and
the lifetime of stored beams

φmax
2 =

2ωs
2

cosφs
2cosφs − π − 2φs( )sinφs"# $%=

2ωs
2

cosφs
G φs( )

ΔE
E0

"

#
$

%

&
'
max

= ±β
qVrf
πhηE0

G φs( )
"

#
$

%

&
'

1/2

!φ ∝W ∝ΔE( )



Synchrotron oscillations: RF acceptance
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The RF acceptance plays an important role when designing a machine, since it determines
the capture efficiency at injection and the lifetime of stored beams.  Outside the stable region
plots of the trajectories (Fig. 7) show that particles get out of synchronism, their phase sliding
along.  Moreover the energy is continuously changing which means that the particles may get
lost.

Fig. 7  Phase space trajectories for different φs

For any invariant of the motion there exists a relation between the maximum energy and
the maximum phase deviations.  However it is in general difficult to derive it analytically unless
special assumptions are made.  For instance in the case of small amplitude oscillations the
invariant becomes simply:

φ̇ 2

2
+Ωs

2 Δφ
2

2
= cte

which leads to:

Δφmax =
hηEs
psRsΩs

ΔE
Es

%

&
'

(

)
*
max

since φ̇max is directly related to ΔEmax.

In the case of ultra relativistic electrons this reduces to:

Δφmax =
αh
Qs

ΔE
Es

%

&
'

(

)
*
max

3 . 5 Potential energy function

The synchrotron motion is produced by a force field which can be derived from a scalar
potential:



Adiabatic damping of synchrotron oscillations

• The expressions that we have seen are valid when the
parameters R0, p0, ω0, η and Vrf are constant or slowly
changing with time compared to Δϕ=ϕ-ϕs (slow variation
in a synchrotron period).

• However in a synchrotron these parameters vary over a
large range, even slowly, during an acceleration cycle.

• Let’s then study the long term evolution of the motion
under adiabatic changes of these parameters.

• This is possible with the help of the Boltzman-Ehrenfest
adiabatic theorem which states that, if p and q are
canonically conjugate variables of an oscillatory system
with slowly changing parameters, then the action integral
over one period of oscillation is constant:
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I = pdq∫ = const



Adiabatic damping of synchrotron oscillations

• The variables W and ϕ are canonical variables, so for
them the theorem is valid:

• Let’s write again the Hamiltonian

• For small oscillation amplitudes it becomes

• The harmonic solutions are
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I = W dφ∫ = const

H = eVrf cosφ − cosφs + φ −φs( )sinφs"# $%−
hηω0

4πR0p0
W 2

H = −
eVrf
2
cosφsΔφ

2 −
hηω0

4πR0p0
W 2

Δφ = Δφmax sin ωst +θ0( )
W = ΔWmax cos ωst +θ0( )



Adiabatic damping of synchrotron oscillations

• Since

• the action integral is

• ΔWmax is related to Δϕmax so that
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I = W dφ
dt
dt∫ = −

hηω0

2πR0p0
W 2 dt∫ = −

hηω0

2R0p0ωs

ΔWmax
2 = const

dφ
dt

=
∂H
∂W

= −
hηω0

2πR0p0
W

Δφmax( )4 = const2 hηc2

2π 3qVrf R0
2E0 cosφs

ΔWmax( )4 = const2
2qVrf R0

2E0 cosφs
πhηc2



Radiation damping of synchrotron oscillations

• The product ΔWmax *Δϕmax is constant, which means that
the phase space area is invariant and Liouville's theorem
still holds in adiabatic conditions. The phase space area is
not damped, only the shape of the ellipse is modified.

• However, in particular for electrons, if we take into account
also the energy lost by synchrotron radiation, we have
another term in the harmonic oscillator equation, which
produces a damping of synchrotron oscillations.
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which moves cyclicly around an ellipse. See Fig. 35(a). The ratio of the two 

(a) 

(b) 

FIG. 35--Phase diagram for energy oscillations. (a) Without damping. 
(b) With damping. (The damping rate is very much exaggerated. ) 

semimajor axes of the ellipse would’be - by Eq. (3.45) 

fmax= u= nEg 
S max 171 o 

(3.47) 

If the scales are chosen so that the ellipse becomes a circle, the reference point 
rotates at the constant angular frequency R. With damping, the size of the ellipse 

decreases slowly and the phase trajectory is a slow inward spiral as indicated 

crudely in Fig. 35(b). The phase diagram also makes transparent why the damping 

depends on dU rad/dE. If this derivative is positive, the electron is losing a little 

extra amount of energy while on the upper half of the ellipse, and gaining a little 
extra energy while on the lower half. So it is always “drifting” toward the axis of 
;c and the oscillation amplitude is decreasing - in proportion to dUrad/dE. 

According to our solution, the energy oscillations of all electrons should 
ultimately be completely damped out and they should all end up on top of the syn- 
chronous electron. But we have not yet taken into account the excitation of the 
oscillations by the quantum effects which “shake up” the oscillations and prevent 
them ever from going completely to zero. (They are considered in the next part. ) 
Under stationary conditions any stored electron will typically be found with some 
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