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1 Introduction

At the turn of the twentieth century, the development of tipecal Theory of Relativity brought into
qguestion many of the ideas in classical mechanics that hadously been regarded as fundamental.
Maxwell’s equations governing Electromagnetism had beemdilated 30-40 years earlier and, although
it was not appreciated until later, were to turn out to beapmterlinked with the new theory and sup-
plied convincing evidence for its eventual acceptance.att it was Lorentz who laid the groundwork
for relativity through his studies of electrodynamics, lghtinstein contributed crucial concepts and
placed the theory on a consistent and general footing. Bethia, work throughout the twentieth cen-
tury demonstrated that, even though its origins might haweih electromagnetism and optics, Special
Relativity can be applied to all types of interaction exdepge-scale gravitational phenomena. In mod-
ern physics, the theory serves as a benchmark for desasptibthe interactions between elementary
particles, and relativistic features are now so well eighbt that they form basic criteria to be built into
any new theory.

This paper starts with a brief description of the experirakbasis for Special Relativity, followed
by a more detailed derivation of the mathematical ideasrokits structure. The Lorentz transformation
and its consequences are covered, with worked examplescarfeept of space-time is discussed and
leads to the 4-vector formalism which underlies the thedWodifications to fit classical mechanics
into the new framework are described. Topics related tola@ters, such as the connections between
the energy, momentum and velocity of particles, are presernd a final example, looking at particle
interactions from different frames, is included for itsenednce to colliding beams.

2 Historical Background and Key Experiments

Historically, the turn of the twentieth century was a cruitime in reconciling inconsistencies between
ideas in electromagnetism and optics and the fundamentaldd mechanics. A wave theory based on
Maxwell's equations had previously been shown to corredtgetromagnetism and optics, but assumed
the existence of a medium (the ether) — of negligible denggymeating all space with negligible inter-
action with matter — in which light could propagate. It wascaknown that the laws of mechanics were
the same in different coordinate systems moving uniformelgative to each other, i.e. invariant under
Galilean coordinate transformations. But if the ethertexisthe laws of electromagnetism could not be
invariant under Galilean transformations, so they coulg bold in a preferred coordinate system where
the ether was at rest. In this system the velocity of lightascuum was equal to a quantity labelled
(2.99792458 x 10% m/sec) and by implication it could not be equaktim other coordinate frames.

Several attempts were made to reconcile electromagnetitimtive rest of physics. Various sug-
gestions were put forward, for example: that the velocityigift is equal toc in coordinate systems in
which the source is at rest; that the preferred referencadtar light is the coordinate system in which
the medium through which the light is propagating is at resthat the ether has a very small interaction
with matter, sufficient to be carried along with astronorhimadies such as the earth.

Experiments brought the demise of these ideas and ultiyniato the birth of Special Relativity.
The three most fundamental are:

(i) The aberration of star lightThe small shift in the apparent position of distant staréduthe year
was recorded in ancient times and can be simply explainetidynotion of the earth in its orbit
around the sun (at a velocity 3 x 10* m/sec). This explanation contradicts the hypothesis that



the velocity of light is determined by the transmitting medi (our atmosphere) or that the ether
is dragged along by the earth. In neither case would abansatccur.

(i) Fizeau's experimentseasured the velocity of light in a swiftly moving liquid ipge, first in the
direction of and then opposed to the propagation of lighs fdsults were not consistent with any
previous assumptions, and could only be made so if it wasvasdwhat bodies smaller than the
earth could carry the ether with them in an artificial way Imimg their refractive index.

(i) The Michelson-Morley experimenwas specifically aimed at detecting a motion of the earthivela
to the ether at rest, where the velocity of lightisLight rays were transmitted along paths both
parallel and perpendicular to the direction of motion of¢laeth and reflected back to the observer
from silvered mirrors. The expected small differences attmes taken to traverse the paths were
not detected and, although the experiment has subseqbesihyrepeated many times with various
modifications, no evidence for relative motion through ttreeehas ever been found.

Although the negative result of the Michelson-Morley expent can be explained by the ether-
drag hypothesis, that hypothesis is inconsistent with begration of starlight. Only theories where the
velocity of light is constant relative to the source (knoven‘amission theories”) are in accord with (i),
(i) and (iii), but other experiments exclude these projaa well. Various alternatives were conceived,
notable amongst which was the suggestion by FitzGerald amenttz that the null result obtained by
Michelson-Morley could be explained while retaining thaestconcept if all material objects are con-
tracted in their direction of motion as they move throughetteer. The rule of contraction is
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The ether advocates were really clutching at straws butdéa cannot be dismissed and does in fact
contain the germs of Special Relativity.

3 ThePostulates of Special Relativity

Two basic ideas are important in the structured formulabbispecial Relativity, helping to explain
where Newton went wrong and how new thinkers, such as Emsk¢inkowski and Lorentz put the
theories to rights. First, we have the idea of simultanemplicit in the statement that two clocks at
points A and B are said to beynchronisedf they read the same time at the mid-point4B. Secondly,
there is the concept of anertial frame defined to be a frame in which particles acting under no ®rce
move with constant velocity.

Using ideas from projective geometry, it is fairly easy toyw that transformations between such
frames must be linear. More formallythe time and position coordinatés, x, y, z) of a particle with
respect to a frame of referendgé are linearly related to thosét’, z’, ', ') in another frameF”, the
frames both being inertial.

Thus, if we consider only transformations#imndz, there must be constants 3, v, & such that

t' = at+px, ' = yt+dx. Consider a point fixed it (i.e. x fixed ast varies). Thendz’ = vy dt, dt’ =
adt and so

v da’ . . , ,

Pl velocity of frameF with respect taF” = v(F, F") Q)
If instead one takes a point fixed i (i.e. 2’ fixed ast’ varies), one haslt’ = adt + fdz, 0 =
~vdt + d dx. Thus

~
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5= d—f = velocity of frameF’ with respect to framé” = v(F’, F) (2)

One would expect(F, F') = —v(F’, F) so thate = § (see below).



Practically, we can only consider relations between iakftames such that our measuring appa-
ratus (e.g. rulers and clocks) can actually be transfenad bne to another. Such frames are said to be
related To go further we need two additional assumptions, that:

(1) the behaviour of apparatus transferred frBrto F’ is independent of the mode of acceleration.

(2) apparatus transferred froi to F’ and then fromF” to F” agrees with apparatus transferred
directly from F' to F".

With these assumptions and definitions, it is possible te $tae Principle of Special Reativity:
that all physical laws take equivalent forms in related tiaéframes, so that we cannot distinguish
between the frames.

Even in the 1900’s, this was hardly new. Newton was aware blit he based his mechanics on
the two fundamental premises (a) a rigid body has the saredrsill frames, and (b) time is absolute.
However, a very simple thought experiment shows why a rewisif these ideas was needed. Consider
two pointsA and B in an inertial framef’. Two events can be said to be simultaneous'iifi light rays
emitted fromA and B at the time of the event meet at the mid-paihbf AB.

FrameF' .A .C .B

/ ! !
FrameF’ .A .C .B

A// C// B//

Suppose a second frani® moves with velocityv relative to frameF. The diagram shows that by
the time the light rays meet &t, C’ will have moved toC” # C, so that events which are simultaneous
in I’ cannot be simultaneous if’. We conclude that simultaneity is not absolute but depemndthe
frame of reference under consideration.

Einstein’s reformulation adopted new postulates morene With these observations. Instead of
Newton’s hypotheses, he assumed: (a) the velocity of lighinite, and (b) the velocity of light has
the same value in any inertial frame. These two assumptienat the basis of the theory of Special
Relativity.

4 The Special Lorentz Transformation

The negative results of the Michelson-Morley and relatggeexents led to the formulation of a new
theory based on Einstein’s two postulates (a) and (b).A.ahd F’ be two inertial frames of reference
equipped with synchronised clocks such that, whent’ = 0, the spatial origins coincide &&. A flash
of light, emitted fromO att = 0 becomes, in framé’ at timet, ct = /22 + y2 + 22, and in frameF’

at timet’ becomes:t’ = /2’2 + 32 + 2/2 sincec is the same in botlt” and F’. We demand that these
coincide. Thus

3)

P=a?+ 9%+ 22— 322 = 0
whenever Q=a"+y?+2%2-? = 0

According to the theorem above!, v/, 2/, ¢ are linear functions of, y, z, ¢, so thatQ is quadratic in
x,y, z,t. We therefore have two quadratic functiosand(@, of the same variables which vanish at the
same points. This is only possible if

P=kQ 4

wherek is independent of, y, z, t.



Within each frame of reference we can rotate the coordinggs antil Oz and O’z’ are both
parallel to the direction of relative motiof)y is parallel toO’y’, andOz is parallel toO’z’. This leaves
invariant the forms ofP and Q. Since the motion can at most produce a re-scaling of lerigttise
two-directionsOy andOz, the transformation must be of the form

' = at+ fBx
/
= t
:L'/ vt + 0x (5)
y = €y
7 = (z.

From (4), we deduce
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and equating coefficients of individual variable terms give
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k

caf—~5 = 0. (9)

From (7) and (8),
2
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and so, invoking (9),
o? = 62

However, we saw in equations (1) and (2) théF, F’) = v/« andv(F’, F) = —v/§ and argued that it
is natural to make the choiee= +4. With this substituted in (9), we find that

av
B= 2_2 =——  Wherev = v(F', F). (10)
Now, from (8),
1, v? 1
N I — a=+ 11
k ( cz> Vi1 = v2/c2) ()

Choosing the positive root preserves the sense of time amdiorilarly takes positive roots of (6). Thus
the transformation (5) is of the form

1 VT
NN ETI] (t‘ 0_2)
1

e NN (x — vt)
oL

y = \/Ey

S

Z = TR

Although & is independent of, y, z, ¢, it seems reasonable to suppose that it depends dthowever,
because of the isotropy of space, it cannot depend on thetidineof the relative motion, only on its



magnitude. Further a transformation frdmto F followed by the reverse transformation fraf back
to F would be expected to lead to the identity. Thus

L= k(v)k(=v) = k(IV)k(v]) = (k(v))*.

We deduce that(v) = 1 and finally arrive at th&pecial L orentz Transfor mation:

/ ,2\ 2

= y(x—vt) where y=(1-— . (12)
! C

y =Y

Z = z

There is the following, more general, form, which we notdidwhen the relative motion of the frames
is not parallel to a coordinate axis:

VX
/
x = x+v|vt+ —1—)
<7 (v =1)—3
, VX
= y{t+—71-
c

4.1 Consequencesof the Lorentz Transformation

(13)

Consider first arigid rod i and lying along the’-axis between pointd andB. Its length as measured
in £ is

L'=2a2y — 2 (14)
independent of the tim& at which we measure it. With respect&athe rod is moving and it only makes

sense to talk about its length if we measure the positionsoéiitds at exactly the same time. At the
instantz in F' at which these ends occupy positiong andx, we have, by (12),

2’y = y(za — vt), 1’y = y(zp — vt)

so that
L' =~y(xa—zp)=~L> L. (15)

The length of the bar accordingly suffers contraction wheis imoved longitudinally relative to an
inertial frame. This is the Fitzgerald contraction, andas 1 be thought of as the physical reaction of
the rod to its motion (c.f. the contraction of a metal rod witenled) but rather as due to the changed
relationship between the rod and the instruments measitsilgngth: some instruments are stationary
with respect to the bar, others are moving with respect talgo the measurement df can be carried
out without the assistance of a clock, but the second operatiolves simultaneous observation of the
two ends of the bar and clocks must be employed. It is the duoeein the measurement that actually
defineghe length.

Now consider two events occuring at the same pgint, z) of frame F' and different times 4
andt g, as measured if. Observers with synchronised clocksihwill measure the time interval as

At =ty —t'y =~(tp — ta) = YAt (16)

using (12). This equation shows that relativeftothe clock moving withZ will appear to have its rate
reduced by a factot /. This is thetime dilatationeffect. It implies that all physical processes will
evolve more slowly when observed from a frame relative tocwhhey are moving. Thus the rate of
decay of cosmic rays moving with high velocities relativetie earth has been observed to be reduced
by exactly the factor predicted by (16). In particle accatiers, rapid acceleration to high velocities can



be used to extend the laboratory life-time of muon beamsefample, and this technique lies behind
current ideas for a muon-based neutrino factory or a mudideol

It may also be deduced that if a human passenger were lauatihégh speed from the earth and
after proceeding a great distance were to return at the seyhaeed, observations made from the earth
would indicate that all physical processes within the rodkeluding the ageing of the passenger, would
be retarded. As all processes would be equally affectedydbsenger would be unaware of this effect,
but nevertheless, upon his return to earth he would find fsagtimate of the duration of flight was less
than the terrestrial estimate. One might also claim thaptssenger is entitled to regard himself as at
rest and the earth as having suffered the displacementasththterrestrial estimate should be less than
his own. Thisthe clock paradoxis resolved by observing that a frame moving with the rocksubject
to an acceleration relative to an inertial frame and consetiyicannot be regarded as inertial. Since the
results of Special Relativity apply only to inertial framése rocket passenger is not justified in making
use of them in his own frame.

4.2 Examples

Example 1: A rocket passes at speedhrough a tunnel of length. ObserverB is in the tail of the
rocket and observed is stationed in the nose. Their clocks are synchronised lagy dre a distance
L apart in the rocket. Two other observep§,andY , are positioned at the tunnel exit and entrance

respectively, also with synchronised clocks. The follayvévents occur:
1. X sees the rocket nose (add emerge from the tunnel.

2. Y sees the rocket tail (and) disappear into the tunnel.

(i) If X'’s clock read zero at event (1), what dids clock read at event (2)?
(i) If A’s clock read zero at event (1), what ditls clock indicate at event (2)?
(iii) Where wasB when his clock indicated zero?

(iv) Where wasA when his clock indicated the same as 8@ at event (2)?

The essence of this problem is thdtandY see the moving rocket as Lorentz contracted to
L/~ and therefore shorter than the tunnel. On the other hand,aod B the tunnel is moving and it is
contracted td./~ so their rocket is longer.

(i) Since the clocks are synchronisedXifs clock reads zero at event (1), then so désand at this
time, Y will claim that the tail of the (contracted) rocket is alrgddside the tunnel by a distance
L — L/~. He will therefore say that, when the tail passed him, hiskclead

L(-h) -



(i) Similarly, if the exit of the tunnel &) coincides withA at time zero, since the observers in the
rocket see the tunnel contractdél,will claim he is still a distancd. — L/~ outside the entrance
and that when he gets there his clock will read

+§ (1 _ %) ' (ExL.ii)

(i) When B’s clock read zeroA'’s clock also read zero and the front of the rocket was justrgimg
from the tunnel.B will say he still has a distanck — L/~ to travel before he enters. This is in his
frame; in the frame of the tunnel, the distance becomes

y x (L - %) = L(y-1). (ExL.iii)

(iv) Similarly, at event (2),B is just entering the tunnel, and because it is contracted, a distance
L — L/~ outside. Converted to the tunnel frame, this means thatrdme 6f the rocket has left the
tunnel and is a distancg(y — 1) down the track.

Though puzzling, the results are quite consistent when owerstands how the length of a moving
object is defined. In this example, the heuristic approadmgugngth contraction is acceptable, but in
more complicated scenarios it may be necessary to workmilla safety of the mathematical Lorentz
formulation (12). In this casé'(¢, z) would be the frame oK andY and F’(¢', ') would be the frame
of A andB. Event (1) is(z,t) = (0,0), atevent (2 = L,atA 2’ = 0and atB 2/ = L. The
transformation formulae are

/
x=~(z' —ot), t=r <t/ — %) (Ex1.iv)
c
2 = y(x + vt), t'=x (t + %) (Ex1.v)
c

since the rocket in the picture moves from right to left. Ttmanswer part (i), we put = 2’ = L into
(Ex1.v) to deduce as in (Ex1.i) above. For part (ii), we put these values intl(l) to deduce’ as in
(Ex1.ii). For part (iii),t’ = 0, 2’ = L givesz = L, or (v — 1)L outside the tunnel, as in (ExL1.iii); and
for part (iv) we putz’ = 0, t' = L (1 — 1) to getx = —L(y — 1). OO
v Y
The following example, concerning the change in frequeneasared by a moving observer, is
the relativistic counterpart of the Doppler shift.

Example 2: Using the Lorentz transformation, find an expression forftbguency.’ observed by an
observerO’ when light of frequency is emitted from a poin© moving directly away fronO’ with
velocity v.

Let F"andF” be inertial frames with parallel coordinate axes centre@@mdO’ respectively such
that the relative motion is directed aloy:. Successive light pulses emitted fr@prin F are represented
by the two eventst;, 0,0,0) and(¢2,0,0,0) wheret, — t; = 1/v. By (12) and the observation that
has velocity—v alongOz relative toF’, the events correspond il toy(t1, vty, 0,0) andy(tz, vte, 0,0).

But light signals inF” emitted atz’ reachO’ a timez’/c later. Thus the pulses are received by the
observer0’ at timesyt; + vyvt; /c for i = 1,2. He deduces a frequency given by

1 v v\ 1
—,27(1+—) (tz—t1)=7(1+—) =
14 C C 14

V= [C_“r. (Ex2.i)
o0

Thus, from (12),




5 Spacetime

In section 4 it was proved that, sinée= 1, the quantityP given by (3) is invariant, i.e. has the same
value for all observers employing inertial frames and megtdar coordinate axes. With respect to a
general origin of coordinates:g, o, z0) and origin of timet,, this quantity is

As? = AA? — Ax? — Ay? — AZ? a7

whereAz = x — z( etc. The 4-dimensional space with coordingtes:, v, z) is calledspace-timeand
the point(¢, z, y, z) or (¢, x) is calledan event As is referred to as the separation between the two events
(t,x) and(tg, x0). The path of a succession of events in space-time is ctideed/orld-line

Theproper time 7, between two events is defined by

1
AT? = — A% (18)
C
Calling Ad the distancéx — xg|, we have
1
A%%:Aﬁ—ggAf. (19)

Suppose now that a new inertial framié is defined, moving in the direction of the line joining the two
events with speedh\d/At < c. Relative toF”, the events occur at the same point and hekde= 0.
By (19) therefore

AT = At

and one deduces that the proper time interval between twidsigthe ordinary time interval measured
in a frame in which the events occur at the same point (if istsxi ThenA72? > 0 and the separation is
termedtimelike.

If, on the other hand, it is possible to find a frafierelative to which the events are simultaneous,
At' = 0 and )
AT? = ——Ad”? <0,
C

andAd/At > c¢. The separation is now callegpacelike

If the separation is timelikeAd/At < ¢ and it is possible for a material body to be present at
both events, but this is not true for a spacelike separatibar@Ad/At¢ > c. The intermediate case,
whenAd/At = ¢ and AT = 0 corresponds to aull or lightlike separation and only a light pulse can
be present at both events. It may also be observed that therdime interval between the transmission
and the receipt of a light signal is zero.

6 4-Vectors, Invariants and Covariance

A physical quantity which has the same numerical value fboléervers is called an invariant or 4-
scalar. Examples are the separation of two events, the mtiasavave, and the rate of radiation of a
moving charged particle.

From the discussion so far it is already apparent that in i@pBelativity the concepts of space
and time are intertwined. To treat the subject rigorouslyi@equire definitions of tensors, metric and
covariant and contravariant vectors. Fortunately for cator physicists’ purposes, it is sufficient to
adopt a simpler approach.

Define theposition 4-vectotto be the set of four quantities given by

X = (ct,x). (20)



X consists of two parts, time and the normal position 3-vectdnder a Lorentz transformation, its
components change according to (12), which we can write imixrfarm as

Y

Ct/ v _? 0 0 ct

o || Y v 00 x 21
P = c (21)
v o o0 1o0]|7Y

“ 0 0 0 1 &

We denote the matrix by so that the transformation law can be written compacthyfas- AX.

Any physical quantity, suck’, with four components which transform undé&ras in (21), is
calleda 4-vector and equations involving 4-vectors hold in all inertialfres. For example, 4 and
B are 4-vectors andl = B in one frame, thel\ A = AB, so A’ = B’ also holds in the new frame. In
classical mechanics the scalar products of 3-vectors aagiamt and we would like an analogous result
in relativity. Now we know from (17) thatct)? — x - x is invariant; therefore, referring to (20), we define
the relativistic scalar product o4 = (ag,a) andB = (b, b) by

A‘B:aobo—a'b. (22)

Then
A B =AANTAB=A-B since ATA=1I. (23)

With this definition therefore, the scalar product of twoektors is invariant.

7 Special Relativity Mechanics

In sections 4.1 and 5 it was shown that the time interval betwe/o events is dependent on the frame
of reference from which the events are observed. The praperibterval d7 is the time interval which
would be measured by clocks in the frame for which the evertsiroat the same point. It is related to
the time intervaldt in any other frame by equation (16)

At = vy dr. (24)

If a clock leaves a point at timet; and arrives at a poinB at timet, the time of transit as registered
by the moving clock will be

to ,1)2 %
Ty —T] = 1-— = dt. (25)

The successive positions of the clock together with the dih@ccupies these positions constitute a
series of events which lie on the clock’s world-line in sptioge. If F' is an inertial frame of reference
and(t,x) and(t + dt,x + dx) represent adjacent points on the world-linefinthe velocity vector of
the moving clock with respect tb' is

_dx

=T

This, however, does not possess the transformation prepeequired for a 4-vector in Special Relativ-
ity. But a 4-vector with the correct properties can be defiagdollows: dx is a displacement vector
relative to rectangular axes anid is an invariant. Thusd X/ dr is a 4-vector relative to Lorentz trans-
formations in space-time. Under a Lorentz transformattbe, numerator takes on a factdrand the
denominator is unchanged. This quantity will be denoted’land is called the velocity 4-vector. From
(24) and (20), it follows that

\%

dXx d
V= P 7&(01@)() =(c,v). (26)



Knowing how this transforms enables us to calculate how ¢imeponents ofr appear when mea-
sured from a new framé&"”: by comparison with (20) we merely write out the transforioratquations
(21) with ¢ replaced byy andx replaced byyv. Thus

%’Ugc = V(Yo — uyy)
/ _
’YU’,UZ,/ - ’vay (27)
TV = MUz
Yo' = ’Y(’Yv - uv’Yv/Cz)

wherey, = (1 —v2/¢®)"2 andy = (1 — u2/c2)"2, u being the relative velocity of the framé&and
F’. Eliminating~,,, we have the velocity transformation laws:

vl = Qvy —u) -1
V= Quy/y with Q= (1 - %) . (28)
U,/z = sz/7

Note that ifv, = ¢, then alsa’, = ¢, confirming that light propagates with speeinh all inertial frames.

Consider now conservation of momentum for the collisionvad fparticles. To generalise the
familiar mathematical expression, we tentatively write

Z MY = constant

whereV is the 4-velocity vector and/ (to preserve an overall 4-vector form) represents an iaéri
associated with the particle in question that is to corredgo its classical mass. By (26), this implies
that

> “m(c,v) is conserved

wherem = M~. If m is identified with the relativistic analogue of Newtoniangsait appears that
our tentative conservation law incorporates both the fplas of conservation of (3-)momentum and
conservation of mass:

Z mv is conserved: Z m is conserved.

M is called thaest mas®f the particle and is usually denoted hyy. Then the relativistic mass is

N\~
m=mg|1l— 2 = mgy. (29)

my IS the mass of a particle in its rest-frame (where= 1) and one must regard the mass of a moving
particle as being dependent on its speed. vAs» c¢ inertia effects become increasingly serious and
prevent the speed of light being attained by any particlés Bin agreement with observations.

The 4-momentum vector is accordingly defined by
P =mpV. (30)

Being the product of an invariant and a 4-vec@thas the desired transformation properties for a vector.
Its components are

P =mgy(c,v) = (me,mv) = (me, p) (31)
wherep is the classical momentum.
d . . . .
Newton’s second lavf, = —p, can now be generalised within the framework of Special iRetha

In the classsical form is the force acting on a particle having massand velocityv relative to some



inertial frame. It implies that, if equal and opposite far@xt upon two colliding particles, momentum
is conserved. The conclusion is certainly true, but it tuaisthat if the forces are equal and opposite for
one observer, they are not in general so for another. Aaaghydive define the 4-forcé& by the equation

Py

F dr mo dr’ (32)
This has the correct transformation properties for a veaorhas components
dv
Fo= moygy
_ <Cd_m d_P)
- T\Ta
dm
= —,f . 33
3 (gt) (33
From (26) we calculate
V-V =272 —0v?) = (34)
Differentiate with respect to:
dy 1
0=V —=—V- - F. (35)
dr mo
This result, which has important consequences, can beswiittcomponent form as
dm
2
— —v.f=0. 36
TV 0 (36)

By definition, v.f is the rate at which the force is doing work, so that duringreetinterval(ty, to] the
work done is

dt

Classically, we equate the work done by a force to the cham@ggnetic energy of the moving particle,
T. Hence one must defirié by a formula of the form

t
/ : czd—m dt = mac® — mic?. (37)
t1

T = mc® + constant. (38)
Whenv = 0, T = 0 and so the constant ismgc?. Thus
T = mc® — moc® = moc?(y — 1).

If vis small, using a binomial expansion,

1
2\ 32 2 4
v 1o v
—1=11-—= —1l~-—=+0|—

soT approximates t(%movz in agreement with classical theory.

Suppose two equal elastic particles approach each otheg #he same straight line with equal
speedsv. If their rest masses are bothg, the net mass before collision Bnyvy. We accept as a
fundamental principle that this mass will be conservedrduthe collision. However, it is clear that at
some instant during the collision both particles will beumybt to rest and their masses at this instant will
be their rest masses;,. By our principle

2my = 2myy,



so that at this instant the rest mass of each particle hasdsed by

1
moy —mo = 5T (39)

62
whereT is the original kinetic energy of the particle. In losingshiinetic energy the particle has had
an equal amount of work done upon it by the force of interactiad this has resulted in a distortion
in the elastic material of which it is made. This distortiaa maximum when the particle is at rest
and the elastic potential energy as measured by the workwlibiige exactlyT'. If we assume that this
increase in internal energy of the particle leads to a ptapwl increase in rest mass, the increment (39)
is explained. Considerations such as this suggest stramatynass and energy are equivalent. All forms
of energy, mechanical, thermal, electromagnetic, ete.f@be thought of as possessing inertia of mass
m, according to Einstein’s equation

F = ch (40)
Written as
E =T+ myc?, (41)

moc? can be interpreted as the internal energy of the particlenvet@tionary. Such energy would be
released if the particle could be completely converted @iatromagnetic energy and is the source of
energy in an atomic explosion.

8 Relationships between Energy, Momentum and Velocity

Relativistic kinematics is the standard tool of high engsbysics and we now give some illustrations of
the methods used to tackle problems.

Several identities are useful in switching between vejocitmomentunyp (which is proportional
to yv), and energy (which is effectively). In accelerator theory, it is common to write = v/c,
0 < 8 < 1. Thus, it follows from the definition

_1
U2 2 oy 1
r=1-3) =0a-/7, (42)
that )
v
(B =T5 =71 (43)
We also have
, v 1

Charged particles in accelerators usually have energisnamenta spread over a small range of
values. By differentiating (42) to (44), we see that firstarvariationsA 5, A~ from the means$ and
~ are related by
BA(BY) = Ay = By°AB. (45)

Since the energy of a particle I8 = mgc?y and the momentum (for one dimensional motion) is-
moyv = mocly, we have

= === (46)

with T' the kinetic energy. The complete set of relations betwestditder increments ip, F, T,
and-~ is given in Table 1.



AB Ap AT AE Ay
B P T E v
1 Ap 1 Ay
AB Ap 1% p 1 AT | %42 4
R Kl Ap Ay |2+ T | 1 Ay
P 72 -1 v
Ap 5 AB Ap v AT 1 Ax
» | TF > | T | 7
AFE A A
= = (57)275 52713 1\ AT Avy
el v rae~n I GRS
Y B p B

Table 1: Incremental relationships between energy, viglarid momentum.

More useful than using andv is to concentrate on expressions involving enefggnd momen-
tum p. Combining (40) with the expression (31) for the 4-momentuauotor, we have

P =(E/c,p). (47)
The quantityP - P is an invariant. Its value may be calculated fr@m= my) and (34), giving
P-P== —|p*=mic (48)

SinceP transforms in exactly the same way.&sfrom (12), we can write down the connection between
energy and momentum between inertial frames of reference:

, Ev
Pz = Y|Pz~ —3

2
Py = Dby (49)
plz = Dz
E' = ~(FE—uvpy).

It is often helpful when dealing with problems involving aminer of particles to work in the
centre of momentum frame (often loosely called the centmaads frame). SincP is a 4-vector for an

individual particle, so too is
> P:(%ZE,Zp). (50)
particles
The centre of momentum frame (COM) is that in whichp = 0.
From (50), the quantity

L (S =

is invariant, equal to (the total energy}? in the centre of momentum frame. This is an enormously
useful invariant. A good rule for solving many problems istart in the laboratory frame, transform to
the centre of momentum frame, where you carry out the workinifpe question, then transform your
results back to the laboratory frame. The idea is illusttaethe following examples.



Example 3: Two patrticles have equal rest masg. Their total energy in the inertial frame in which
one of them is at rest iB1. In the frame in which their velocities are equal in magn@ingit opposite in
direction, their total energy iB>. Show that

E22 = 2m002E1 .

Let P; andP;, be the 4-momenta of the two particles. In the frame in whichigla 1 is at rest

. 1 .
P, = (mopc, 0) and, since the total energy 15, P, has the form(—(El — moc?), P) wherep is the
C
3-momentum of particle 2.

The second frame is the centre of momentum frame since thielparhave equal rest masses.
Moreover (48) implies that they have equal energies sineerthgnitude of their momenta is the same.

Thus in this frame 5 5
_ (=22 _ H2
Pl_<2c7p)7 P? (267 p)
Now consider the produ@®; - (P; + P5). This is invariant and has the same value in both frames. ¢lenc

moc X &—O.p:@ X @—p’.o,
c 2c c
or
2mgc?Ey = F3. (Ex3.i)
Note that, by considering the 4-vector product7af and P; + P», we create enough zero terms to
eliminate the unknown quantitiep,andp’, which we are not asked to find. OO

The next example makes use of this result.

Example 4. In an accelerator a protaB, with rest massn collides with an anti-protorP, (with the
same rest mass), producing two partidfés andW, with equal masd/ = 100m. First the experiment
takes place withP; and P, having equal and opposite velocities in the laboratory &af@alculate the
minimum energyF, the laboratory had to supply 18 in order for'W, andW, to be produced.

Next the experiment takes place with at rest. Calculate the minimum energy the laboratory
has to supply ta@> in order forlW, andWs to be produced in this case, to within 1%.

In the COM frame, since the rest masses are the same and tloen&nta must be equal and
opposite, equation (48) shows that the energies of the pratd the anti-proton must be equal. Hence
the 4-momenta before the collision have the form

E E
& &

After the collision, when thé&V -particles are produced, the total 3-momentum must be ceedeso the
energies are again the same and

Conservation of 4-momentum gives
P14+ P2 = Pw, + Pw,.
Hence, equating the energy parts, we have

E = E > rest energy of &/ -particle= Myc? = 100mgc?. (Ex4.i)



In the laboratory frame, the proton is at rest and the amtigor moves with relativistic energl’. The
total energy,F, = E’' +moc?, is the same for th&/ -particles produced after the collision. Transformed
into the COM frame, this total energy Is, given by (Ex3.i). Thus

2moc? (B + moc?) = 2moc*E; = E2 = (2F)?
> (2Mpc?)? = 4 x 10*(moc?)?.
We deduce that
E' > (2 x 10 = 1)moc? ~ 2 x 10tmoc?,

demonstrating that considerably more energy is requirguidduce an event via a fixed-target collision
(B}, = 20000mqc?) than with two colliding beamsHy = 100mqc?). OO



