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Modern accelerators require high quality beams:   
==>     High Luminosity & High Brightness  

– Small spot size => low emittance


– N of particles per pulse => 109


– High rep. rate fr=>  bunch trains


– Little spread in transverse 
momentum and angle => low emittance


– Short pulse (ps to fs)






Interaction Point 

Collider e+ e- DAFNE (INFN) 





Particella carica in moto circolare 

Radiation Simulator – T. Shintake, @ http://www-xfel.spring8.or.jp/Index.htm 





SLS (Svizzera) 

Elettra (Trieste) 

ESRF (Francia) 
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SPARC_LAB  
Sources for Plasma Accelerators and Radiation Compton  

with Lasers And Beams 











Thomson backscattering


Courtesy C. 
Vaccarezza




Fascio di 

elettroni


Magnete di focalizzazione 

per gli elettroni


Camera di collisione

elettroni-fotoni


Specchio di focalizzazione 

per i fotoni laser


Raggi X


Magnete di deflessione 

per gli elettroni


Thomson Interaction region (20-550 keV)  
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 Laser beam 

Electron beam 

1 mm 

 Direct production of e-beam 

INFN, Frascati, March 7 (2006) 



High quality beam Plasma Accelerattion






Fundamental relations of the relativistic dynamics

Rest 
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Newton’s 2nd Law Lorentz Force 
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Velocity variations are 
negligible at energies well 

above the particle rest energy! 
β= v/c 

e-  relativistic (         ) at W>1MeV (W0=511keV) 
p relativistic  at W>1000 MeV (W0=938MeV) 

Energy-velocity plot 
Leptons (light particles) are pratically 
fully relativistic in any existing 
dedicated accelerators (Wk>>W0, 
with the exception of the very first 
acceleration stage) while protons 
and ions are typically weakly 
relativistic (Wk<W0 – but not always, 
see high energy hadron colliders 
such as the LHC). 
For leptons the accelerating process 
occours at constant particle 
velocity (v ≈ c), while protons and 
ions velocity may change a lot 
during acceleration. This implies 
major important differences in the 
technical characteristics of the 
dedicated accelerating structures. 

cv ≅

Particle energies are tipically expressed in 
electron-volt [eV], equal to the energy gained 
by  1 electron accelerated through an 
electrostatic potential  of 1 volt:  
1 eV=1.6x10-19 J 

Wk[MeV] 



Fundamental equation of the particle motion 
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ACCELERATION 
BENDING AND FOCUSSING 

Beam

Electric field

Transverse Dynamics 
Longitudinal Dynamics 

Deflection 
(magnetic field) 





Relativistic equation of motion


Acceleration does not generally point in the direction of the applied force
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A moving body is more inert in the longitudinal direction than in the transverse direction
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Consider longitudinal motion 
only :
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Longitudinal motion in the laoratory frame 

==> ex:  beam dynamics in a relativistic capacitor
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After separating the variables one can integrate once more to obtain 
the position as a function of time : 
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β t( ) =
ao t − to( ) + cβoγ o

c2 + cβoγ o + ao t − to( )( )2

Solving explicitly for  β one can find:


In the non relativistic limit:
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The previous solution can be written also in the form: 
the corresponding world 
line in the Minkowsky 
space-time (ct,z) is an 
hyperbola 
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Therefore such motion is called hyperbolic motion. 

It describes the motion of  a particle that arrives from large positive z , 

slows down and stops at turning point   

then it accelerates back up the z axis. 

The world-line is asymptotic to the light cones, and obviously, it will 
never reach the speed of light.
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in the simpler case with 
initial conditions: 


and shifted variable: 


==> hyperbolic motion




The paradox of relativistic bunch compression 

γ ≈1
Lb = 3mm ≈ "Lb

γ =1000

Lb =
!Lb

γ
= 3µm

Length contraction? Low energy electron bunch injected in a 
linac: 



Bunch length in the laboratory frame S 

Let consider an electron bunch of initial length  Lo inside a capacitor 
when the field is suddenly switched on  at the time to.  
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L t( ) = zh t( ) − zt t( )
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L t( ) = Lo + h t( )( ) − h t( ) = Lo

Thus a simple computation show that no observable contraction 
occurs in the laboratory frame, as should be expected since both 
ends are subject to the same acceleration at the same time. 




Bunch length in the moving frame S’


Inverse Lorentz transformations:
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leading for the tail particle to:
 and for the head particle to:
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The key point is that as seen from S’ the decelerating force is not applied 
simultaneously along  the bunch but with a delay given by: 


€ 

Δ # t o = # t o,h − # t o, t = −
V
c
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More interesting is the bunch dynamics as seen by a moving reference 
frame S’, that we assume it has a relative velocity V with respect to S 
such that at the end of the process the accelerated bunch will be at rest 
in the moving frame S’. It is actually a deceleration process as seen by S’
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At the end of the process when both particle have been subject to the 
same decelerating field for the same amount of time  the bunch length 
results to be: 
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Accelerator length in the moving frame 
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T=qΔV 





ΔVT=0 










