

MARAGING BLADES: STATO E PROGRAMMA ATTIVITÀ 2017

G. Cella – INFN Pisa

Riunione referee Cascina 8 Settembre 2016

Le lame

- L'attenuazione verticale è realizzata nei filtri meccanici di un superattenuatore utilizzando lame metalliche triangolari montate orizzontalmente;
- Ogni lama ha, a riposo, un raggio di curvatura costante e una larghezza di base appropriata per il carico che deve essere sostenuto. Nella posizione di lavoro, con il carico sospeso alla punto, la lama assume una posizione piatta;

 Le lame sono realizzate in acciaio Maraging: un acciaio ad alta resistenza che dopo un appropriato trattamento riduce drasticamente il creep noise.

Ciclo di produzione:

- 1. Taglio laser delle lame;
- 2. Piegatura al raggio di curvatura appropriato;
- 3. Solubilizzazione @ 840 °C/1 h (in atmosfera di azoto);
- 4. Aging @ 435 °C/100 h (in atmosfera di azoto);
- Rivestimento in nickel per 40-50 min con una procedura «electroless» (velocità di deposizione dl Ni è circa 2.5 μm/h);
- Rimozione dell'idrogeno (entro 4h dalla fine della procedura di rivestimento con Ni) @ 130 °C >15h;
- 7. Caratterizzazione e test di ciascuna lama

Risultato:

Carico di snervamento a trazione = **1940 Mpa** Carico di rottura = **1965 Mpa**

Le lame

- L'attenuazione verticale è realizzata nei filtri meccanici di un superattenuatore utilizzando lame metalliche triangolari montate orizzontalmente;
- Ogni lama ha, a riposo, un raggio di curvatura costante e una larghezza di base appropriata per il carico che deve essere sostenuto. Nella posizione di lavoro, con il carico sospeso alla punto, la lama assume una posizione piatta;

 Le lame sono realizzate in acciaio Maraging: un acciaio ad alta resistenza che dopo un appropriato trattamento riduce drasticamente il creep noise.

Ciclo di produzione:

- 1. Taglio laser delle lame;
- 2. Piegatura al raggio di curvatura appropriato;
- 3. Solubilizzazione @ 840 °C/1 h (in atmosfera di azoto);
- 4. Aging @ 435 °C/100 h (in atmosfera di azoto);
- Rivestimento in nickel per 40-50 min con una procedura «electroless» (velocità di deposizione dl Ni è circa 2.5 µm/h);
- Rimozione dell'idrogeno (entro 4h dalla fine della procedura di rivestimento con Ni) @ 130 °C >15h;
- 7. Caratterizzazione e test di ciascuna lama

Risultato:

Carico di snervamento a trazione = **1940 Mpa** Carico di rottura = **1965 Mpa**

La rottura delle lame e le contromisure adottate

- A partire dal febbraio 2015 sono state osservate diverse rotture sulle lame dei filtri
- Primo obiettivo: ridurre il rischio di ulteriori rotture
 - Comprensione del problema
 - Messa in sicurezza (utilizzo di nuove lame)
- Secondo obiettivo: introdurre il minor ritardo possibile in vista del run O2
 - Determinare la qualità delle lame esistenti (produrne di nuove solo se necessario)
 - Accettazione di un margine di rischio

Si è scelto un compromesso:

- Test diagnostici sulle lame esistenti
- Sostituzione di quelle ritenute di qualità dubbia (107/260)
- Lame interamente nuove sulle torri terminali

Code	Base (mm)	Tower (Virgo)	Filter	Failure
340	160	WE	F0	Broken tip
179	152	WE	F1	Broken tip
307	152	WE	F1	Crack on center hole
193	146	WE	F2	Crack on tip and center hole
366	146	WE	F2	Broken tip
367	146	WE	F2	Broken low body
368	146	WE	F2	Broken tip
369	146	WE	F2	Crack on center hole and body
340	160	WE	F0	Broken tip
415	180	WE	F0	Crack on tip and center hole
219	152	WE	F1	Crack on center hole
316	152	WE	F1	Crack on center hole
383	138	WE	F3	Crack on center hole
182	182	WI	F0	Broken base

La comprensione del problema: Maraging Hydrogen Embrittlement

Ultimate Tensile Strength vs Hydrogen Concentration in Maraging C250 for AdV Treatments - Traction Test Results -

UTS [MPa]

Le rotture sembrano provocate dal cosiddetto «Hydrogen Embrittlement»

- Immagini al SEM images mostrano tipiche fratture intergranulari
- Misure dirette danno elevate concentrazioni di idrogeno (da 1ppm a 5.6ppm)

Il meccanismo che ha portato all'HE non è ancora del tutto chiaro

- Contaminazioni di Al, Cu, Si (sand blasting?).
- Ipotesi: celle galvaniche? (In opportune condizioni)
- Lo spessore del coating di Ni è a volte maggiore di quanto atteso (VIR-0451A-15), e si hanno segni di corrosione
- La concentrazione di idrogeno nelle lame «nuove» è piccola

Attività future

- Riduzione dei tempi di intervento in caso di rottura
 - Preparazione di spare in numero sufficiente.
 - 80 lame «nuove»
 - 120 vecchie
 - 60 da tagliare e preparare
 - Definizione delle procedure e dei tool per gli inteventi
- Studio dei meccanismi di infragilimento
 - Analisi su lame «vecchie»
 - Certificazione del processo di preparazione sulle lame «nuove» (provini)
- Test su facility dedicate (SAFE)
 - Test meccanici
 - Creep
 - Meccanismi non lineari e up conversion

Test

- Misura della concentrazione di idrogeno
- Analisi di superficie al SEM
- Spettrometria X al SEM
- Determinazione UTS
- Correlazioni
- Ispezione visiva
- Eddy current scanning
- Radiografia X
- Diffrattometria X
- Misura contaminanti (AI,....)

Correlazioni

Esempio: correlazione UTS-CH

- Idea: indurre le condizioni che hanno portato alla rottura drogando alcuni provini (sottoposti allo stesso trattamento termico e di copertura con Ni delle lame)
- Misura: carico di rottura (UTS) al variare della percentuale di idrogeno
- Scopo: definire un limite superiore della concentrazione di idrogeno che non causa una riduzione drammatica del carico di rottura.

Deidrogenazione e coating

- Un coating troppo spesso può ridurre l'efficienza del processo di deidrogenazione (15h @ 130 °C, snon più tardi di 4h dal bagno chimico)
- Il tempo di diffusione $\tau = \frac{\lambda^2}{D_{Ni}}$ un fattore particolarmente critico
- Necessario probabilmente un modello più sofisticato:

$$\mathbf{F}^* = \frac{\lambda^2}{D_{Ni}} \Phi\left(\frac{D_{Ni}}{D_{Mar}}, \frac{\mu_{Ni}}{\mu_{Mar}}, \cdots\right)$$

Inoltre:

- Possibili approcci diversi per la passivazione?
- Possibili trattamenti meccanici/termici differenti?

Considerazioni finali

- La protezione con coating Ni sembra essere un punto critico
 - Evitare contaminanti
 - Alternative?
- Ipotesi preliminare sul meccanismo di contaminazione da H da validare;
- Modello quantitativo della procedura di deidrogenazione, tenendo conto della geometria, della diffusività, della affinità e di effetti di intrappolamento in preparazione;
- Investigare il ruolo dello stress e della fatica;
- Studio di interesse per tutta la comunità delle onde gravitazionali.

La procedura corrente si basa sull'esperienza accumulata negli anni in virgo, che si trova in parte sintetizzata negli articoli:

- S. Braccini et al., The maraging-steel blades of the Virgo Super Attenuator. Meas. Sci. Technol. 11 (2000) 467-476
- F. Cordero et al., *Elastic and Anelastic properties of Marval 18 Steel*. Journal of Alloys and Compounds 310 (2000) 400-404
- S. Braccini et al., Monitoring the acoustic emission of the blades of the miror suspension for a gravitational wave interferometer. Physics Letters A 301 (2002) 389-397
- M. Beccaria et al., The creep problem in the VIRGO suspensions: a possible solution using Maraging steel. Nucl. Instr. & Meth. in Phys. Res. A 404 (1998) 455-469