

ADVANCED VIRGO

MAIN MESSAGES

- AdV construction (phase 1) completed
 - Some integration issues still pending
- Commissioning: working for the 1st lock
 - MICH and 3km cavities locked independently
- Goal: be ready for O2b with a sensitivity good enough to contribute to the network
 - minimal requirement: ¼ of the LIGO sensitivity for BNS
- In parallel:
 - working to solve the issue with monolithic suspensions
 - investigating the options for the mid/long-term
- NEED TO PURSUE R&D

Virgo central hall SPRING 2016

Virgo central hall SPRING 2013

EXPECTED CONFIGURATION for 02

3 test masses suspended with steel wires, after repeated failures of monolithic suspensions

Choice driven by the priority of joining O2

Integration of mirrors completed

in July

- The integration of the last mirror (July 2016) marks the "end of the installation"
- ~7 months of delays with respect to the "end 2015" project milestone
 - Combined effect of blade/monolithic susp issues
- Main impact: time for commissioning compressed

O2 TARGET SENSITIVITY

Inspiral range (Mpc), steel wires on 4 TM, ϕ = 1e-4 (1e-3)

BNS 60 (45) BBH 313 (202)

V1:LSC_B7_DC_mean__TIME

- Both locked (N arm since May)
- Lock very stable (~2 days of continuous lock in the weekend)
- Cavity finesse as expected

1156873353.0000 : Sep 2 2016 17:42:16 UTC

Two arms locked together

PR-N cavities locked together

TOWARDS FULL LOCK

- Now: working to lock 3 dof (2 FP+MICH at half fringe)
- Next steps
 - move CARM correction to laser frequency (SSFS)
 - align PRM and lock PRCL (tested that single cavity survives flashes)
 - Slowly move towards dark fringe: *cure thermal and polishing* aberrations using TCS, improve sideband gain of marginally stable cavities
 - Lock OMCs (already tested) and move DARM to DC phds

Same locking scheme as Virgo+

STEPS TOWARDS 02

Milestone 1: 1st lock

Address issues with MSRC configuration (thermal aberrations). Requires smart use of TCS

Fix some leftovers:

- replace NI metal susp with optimized ones
- install few more components (some photodiodes,

Hartmann sensors, phase cameras)

Milestone 2: make lock stable and reproducible

Noise, budget, noise hunting, calibration

Milestone 3: good sensitivity, data quality, duty cycle

FINAL GOAL: Join O2b

- TCS actuation (ring heaters, CO2 lasers) completely installed
- Integration of TCS sensing (Hartmann sensors) being completed

2.500

BUDGET

92% of project cost committed 287 kE of contingency available

PROJECT BEING COMPLETED ON BUDGET

- The project will formally end when AdV starts the run
- The mandate of PL and the SSM will end
- Virgo is preparing the transition
 - Spokesperson proposal to be discussed at the VSC

AFTER 02

TARGETS

Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories

J. Aasi¹, J. Abadie¹, B. P. Abbott¹, R. Abbott¹, T. D. Abbott², M. Abernathy³, T. Accadia⁴,
F. Acernese^{5ac}, C. Adams⁶, T. Adams⁷, P. Addesso⁸, R. X. Adhikari¹, C. Affeldt^{9,10}, M. Agathos^{11a},
O. D. Aguiar¹², P. Ajith¹, B. Allen^{9,13,10}, A. Allocca^{14ac}, E. Amador Ceron¹³, D. Amariutei¹⁵,
S. B. Anderson¹, W. G. Anderson¹³, K. Arai¹, M. C. Araya¹, C. Arceneaux¹⁶, S. Ast^{9,10}, S. M. Aston⁶,
P. Astone^{17a}, D. Atkinson¹⁸, P. Aufmuth^{10,9}, C. Aulbert^{9,10}, L. Austin¹, B. E. Aylott¹⁹, S. Babak²⁰,

J. C. Driggers^{*}, Z. Du^{**}, J.-C. Dumas^{**}, S. Dwyer^{**}, T. Eberle^{*,**}, M. Edwards^{*}, A. Effler^{*}, P. Ehrens^{*}, S. Eikenberry¹⁵ G. Endrőczi⁵⁹ R. Engel¹ R. Essick²⁴ T. Etzel¹ K. Evane³ M. Evane²⁴ T. Evane⁶

AFTER 02

UPGRADES

REQUIRED TO INCREASE SENSITIVITY AS ENVISAGED

- Install monolithic suspensions (see talk by H Vocca)
- Install signal recycling mirror
- Install 100W laser amplifier

GOOD TO HAVE

Squeezing (talk by JP Zendri)

HP LASER AMP

- After a dedicated review we understood that:
 - a reliable 200W amplifier is not available (even the LIGO one has failed)
 - we should rather focus on the coherent sum of two 100W amp
- A reliable 100W amp is not ready. Two possibilities:
 - a fiber amp developed by Alphanov (prototype under test at Nice)
 - a solid state amp developed by Neolase
- Path: comparative test in order to choose the final technology
- Final decision in 2017

GLOBAL FRAMEWORK

Category *Odor code scaled from aUGO new engineering	ROM Estimate (FY'17k\$)*
Core optic coating pathfinder	3,546
Core optic coating patrimider Core optic production FC facility mods FC vacuum FC seismic isolation FC suspensions	4,266
FC facility mods	1,023
FC vacuum	1,761
FC seismic isolation	4,728
FC suspensions	990
Balanced homodyne readout	339
Sensing & control	214
Other equipment	601
Labor	5,648
Contingency (25%)	5,779
Total	28,896

- An incremental upgrade to aLIGO that leverages existing technology and infrastructure, with minimal new investment and moderate risk
- Target: factor of 1.7* increase in range over aLIGO → About a factor of 5 greater event rate
- Stepping stone to future 3G detector technologies
- Link to future GW astrophysics and cosmology
- Could be observing within < 6.5 years (mid-2022)
 - with prompt funding (FY'19 or earlier)
- "Scientific breakeven" within 1/2 year of operation
- Incremental cost: a small fraction of aLIGO

*BBH 20/20 M_@: 1.64x *BNS 1.4/1.4 Ma: 1.85x

LIGO-G1601435

LIGO DAWN II WORKSHOP ZUCKER

GLOBAL FRAMEWORK

- LIGO is starting a wide and heavy R&D program
 - ~3 M\$ being asked to NSF for research on coating
 - Mid-term target: installation of A+ in ~2019
- AdV must pursue a continue improvement of sensitivity
 - A "vision document" is being finalized and will be issued soon
- We need to convince the agencies that the best way to protect the investment done is continue investing

IT'S TIME TO RESTART R&D

A WIDER COMPARISON

SNAPSHOT at the time of the TDR (2012)

	Advanced LIGO	Advanced Virgo
# DETECTORS	2+1	1
MAX CBC RANGE (BNS)	200 Mpc	140 Mpc
BUDGET	205 ^(A) M\$ + 16 ^(B) (D/UK/AUS)	21.8 ^(C) M€ + 2 ^(B) (NL)
FUNDING APPROVED	Apr 2008	Dec 2009
CONSTRUCTION END ^(D)	Jul 2014	May 2016
1st PROJECT REVIEW	2003	2008
MEMBERS	~900	~200
COUNTRIES	17	5
LABS	82	19
R&D INVESTMENTS	~60 ^(E) M\$	~2 ^(F) +1.5 ^(G) M€

- (A) Includes money for people ("half stuff, half staff")
- (B) In kind contribution
- (C) Only for investments
- (D) Expected according to the latest planning
- (E) Personal communication from D Shoemaker. LIGO lab R&D (+2-3 M\$/yr in other labs)
- (F) EGO R&D calls 2003 and 2007
- (G) CSN2 funding 2005-2010 (data from Fulvio Ricci)