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Yesterday’s hands-on session...

Quick Links: ROOT Homepage Class Index Class Hierarchy
Source: ‘ header file source file viewVC header ‘ viewVC source

Sections: class description function members data members class charts

ROOT » ROOFIT » ROOSTATS » RooStats::ConfidenceBelt

class RooStats::ConfidenceBelt: public TNamed

@ ConfidenceBelt is a concrete implementation of the Conflnterval interface. It implements simple general purpose interval of
arbitrary dimensions and shape. It does not assume the interval is connected. It uses either a RooDataSet (eg. a list of
parameter points in the interval) or a RooDataHist (eg. a Histogram-like object for small regions of the parameter space) to store
the interval.

ROOT » ROOFIT » ROOSTATS » RooStats::FeldmanCousins

class RooStats::FeldmanCousins: public
RooStats::IntervalCalculator

@ The FeldmanCousins class (like the Feldman-Cousins technique) is essentially a specific configuration of the more general
NeymanConstruction. It is a concrete implementation of the IntervalCalculator interface that, which uses the
NeymanConstruction in a particular way. As the name suggests, it returns a Confidencelnterval. In particular, it produces a
RooStats::PointSetinterval, which is a concrete implementation of the Confinterval interface.

The Neyman Construction is not a uniquely defined statistical technique, it requires that one specify an ordering rule or ordering
principle, which is usually incoded by choosing a specific test statistic and limits of integration (corresponding to
upper/lower/central limits). As a result, this class must be configured with the corresponding information before it can produce an
interval.

In the case of the Feldman-Cousins approach, the ordering principle is the likelihood ratio -- motivated by the Neyman-Pearson
lemma. When nuisance parameters are involved, the profile likelihood ratio is the natural generalization. One may either choose
to perform the construction over the full space of the nuisance parameters, or restrict the nusiance parameters to their conditional
MLE (eg. profiled values).
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SUMMARY

* Parameter estimation
— The Maximum Likelihood Estimator: construction and properties
— The Least Squares estimator: construction and properties

* Estimation of confidence intervals
— general case 1D: Neyman belt construction
— the Feldman-Cousins approach

— hands-on: the Feldman-Cousins approach

— use of the Likelihood function
— case of multiple parameters

— Bayesian credibility intervals
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Interval estimation : use of the Likelihood

Use asymptotic normality of the Likelihood function:

P[(x-p)%<0] = 68.3% =>
P[x-o<p<x+0] = 68.3%

InL(x,...x ;0)
A
P[(x-p)?<20] =95.5% => T
P[x-20<p<x+20] = 95.5% max :
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Interval estimation : use of the Likelihood

Case of non-Gaussian Likelihood function (non-parabolic InL):

=> the invariance property allows to find a transformation that makes the L Gaussian

=> the contents of the interval are preserved

=> can determine the confidence intervals without actually making the transformation to gaussian
BUT the Confindence Intervals are only approximate for N finite ! USE WITH CAUTION

S
InL(x,...x, ;O NI
InL(x ;.0 T) :> (x; " n:9) \Qfé:&
< &
L . InL,, t-----------= .
/anax'l/z ___________ ST InL, . -1/2 [~=""7 fommmm- dm oo |
Ianax'Z_ __________ 'i ————————————— ! lanax'Z """ i‘ ———————— E ————————— i_ - .:
! y —\> ¥ y v
=L A A \ |} | — Y . ! >
Tur {UT Ty T, + a; i 9, -0 9. duro i 5
*> ' Y : :
S inten N ) 95.5% CLinterval |
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Interval estimation : use of the Likelihood

Case of ill-shaped Likelihood function with multiple maxima
= multi-interval CL

[6,<6<6,] U [6,<6<6,]

InL(x,...x, ;0)

the interval is approximate InLpo ===~

better to show the whole L curve

191' @2'
Y

! ) S
95.5% CL interval
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Interval estimation: multi-parameter case

f}=(z§1,z§2
k parameters: the C.I. with probability simultaneous MLE of
content 8 is given by the k- the two parameters
dimensional confidence regions given r
by the hyper-surface defined by 0]
UDN
1 19)=1 Lk 5
nL(X )= anax_EXﬁ( ) S ]
‘©
b
(asymptotic x?(k) distribution of InL) g s
g U
C
% ~0.4 A
=
[
(@)
U -0.6 :
1
1
ks I
IR, Sy Ta—T 030 R o036

Probabiility content
different from that of 9

1
the 2D-contour | Confidence Interval for ¥,

“Tilt” of the shape (~ellipse) indicate the
correlation (negative in this case).
Larger correlation results in larger C.1.

ISAPP school 2017 Statistics



Interval estimation: multi-parameter case

Example: 2D Normal distribution

t2u
020 + 02
_
B2
3 B
010 — 01 (610, 620) / 010 + 01 Table 9.1. Probability content of different regions in two variables.

inner ellipse (3 0.393 0.865 0.989
square 3 for p = 0.00 0.466 0.911 0.995
for p = 0.50 0.498 0.917 0.995
for p = 0.80 0.561 0.929 0.996
/ for p = 0.90 0.596 0.936 0.996

for p = 0.95 0.622 0.941 0.996
for p = 1.00 0.683 0.954 0.997
infinite band f3 0.683 0.954 0.997

a0 — o2

B, = P(9, and ¥, in the ellipse)
B, = P((ﬁlo —0, <, <V, +0,) and (05, -0, <9, <y, +02))
B, = P(ﬁzo —0,<0, <y, +02)
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Interval estimation: multi-parameter case

An example from neutrino physics [KamLAND, Phys.Rev.Lett. 100 (2008) 221803]

20¢
15
10}

Ax? ~ -2InL
x
<

KamILAND
N 95% CL.
99% C.L.
B 99.73% C L.
* bestfit

~— 9973% C.L.
best fit

. ' . . ",
I e .
1 l.lill.lll;l l'llllllll;l

e a® -
W,

10!

1

tan’6,

10 20 30 40
sz

Multi-parameter

Profile

Note: different
confidence
intervals/regions
in the two cases !

FIG. 2: Allowed region for neutrino oscillation parameters from
KamLAND and solar neutrino experiments. The side-panels show
the Ax?-profiles for KamLAND (dashed) and solar experiments
(dotted) individually, as well as the combination of the two (solid).
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Bayesian credibility intervals

Base on the probability contents of intervals for the posterior distribution rt(4/X)
(distribution of degrees of belief), based on the prior distribution rt(9)

[]/(x.2)(2
fﬁf(Xi,ﬁ)n(ﬁ)dﬂ

n(ﬁlX)

9y .

Define an interval [$,¥ ] such that f ﬂ(ﬁ | X)dﬁ =p
o'

= degree-of-belief (¥, <0<9’)) = 6

= [, ] is the credibility interval with probability content 8 for the parameter ¥

Often coincides with the frequentist interval, as
a uniform prior is used... but not always
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SUMMARY of TOPIC n.1

* Parameter estimation
— The Maximum Likelihood Estimator: construction and properties
— The Least Squares estimator: construction and properties

* Estimation of confidence intervals
— general case 1D: Neyman belt construction
— the Feldman-Cousins approach

— hands-on: the Feldman-Cousins approach

— use of the Likelihood function
— case of multiple parameters
— Bayesian credibility intervals
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HYPOTHESIS TESTING
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Test of simple hypotheses

Aim: test a “Null Hypothesis” H, Both hypotheses are “simple”
against an “alternative hypothesis” H,. = completely specified

Method (“frequentist”):

1) define a “test statistic” T, function of the data

2) construct the PDF of T under under each hypothesis

3) define a “critical region” Q. such that T in Q. suggests H, is true

0.07

0.06

0.05

PDF(T|H,) PDF(T|Ho)

0.04

“, e H ” a
0.03 critical region” T>T_
0.02

0.01

IIII|IIII’llll‘IIIIllIII’III[‘IIIIlI

P P - PSR SR SR NN S SR S S I '
L -30 -20 -10 0 10 20 30

T

4) Evaluate the probability to give the wrong answer
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Test of simple hypotheses

4) Evaluate the probability to give the wrong answer,
which you can do in two ways:
— reject Hywhenit’s true:  Error of type | or “loss”: a
— accept Hy when H, is true: Error of type Il or “contamination”: B

Deﬁnitions‘:k Confidence Level CL=1-a = [ PDF(T|H,)dT
Tc T +00
Power p=1-B - [ PDF(T1H,)dT [ PDF(T | Hy)dT =99.73%

e )

0.07—

0.062—

>**E PDF(T|H,) PDF(T|H,)

0.04 —

o.03F “critical region” T>T ®

0-02 *reject H, at CL (1-a)

0.011— if T<T.®

0: ! 1

:30 f P 10. P P .30.
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Comparison of tests

More general case: “composite hypotheses”, with dependence on a parameter 6
Hyis ©=6, , H,is6=6,

Define the power function as p(8)=1-B(8). By construction, p(6,)=1-B(8,)=a

p(6) A C

Test B is better (more powerful) than test A for 6>8"
Test Cis the best (most powerful) of the three for 6>8’ (in particular for 8=6,)

A test at least as powerful as any other at a given 0 is “the most powerful test” for that 6

A test which is most powerful for all values of 6 is Uniformly Most Powerful (UMP)

Important criteria are also: robustness, consistency, unbiasedness

ISAPP 2017 Statistics 15




Comparison of tests

a-B symmetric 1
comparison :

for this value of 3, test
------------ > A s better than test B

for this value of a, test
B is better than test A

a-------———--4-

Test Cis “better” than A and B for any value of a and for any value of B

For simple hypotheses, a UMP test exists: the Neyman-Pearson test
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The Neyman-Pearson test

finding the most powerful test <> finding the best critical region

Given a signficance a, find the region w, maximising P=1-

PDF(XH,)

PDF(XlHl)PDF(XIHO)dX _E
PDF(XH,)

PDF(X |H,) @

1—/3=fPDF(XIH1)dX=f

Hy

this will be maximal only if w, contains the largest values of the ratio of PDFs

PDF(X|H) _

I(X|H H)= ;
(X1H,.H,) PDF(X | H,)

= if I(X/H,.H,)>c,, choose H,
= if I(X/H,.H,)<c,, choose H,

I(X|H,.H,) is the ratio of likelihoods for the two hypotheses.
It is the best test if Hy and H; are completely specified
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HYPOTHESIS TESTING
The case of neutrino Mass Hierarchy in
future experiments

Some references :

[Quian] X.Qian et al., Phys.Rev. D86 (2012) 113011, arXiv:1210.3651
[CEZ] E.Ciuffoli, J.Evslin and X.Zhang, arXiv:1305.5150

[BCHS] M.Blennow, P.Coloma, P.Huber and T.Schwetz, arXiv:1311.1822
[Blen] M.Blennow, arXiv:1311.3183

[Ciuf] E.Ciuffoli, ArVix:1704.08043
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The test statistic for MH

H,=IH , H,=NH

If the two hypotheses are “simple”, the uniformly most powerful test is
provided by the Likelihood Ratio (Neyman-Pearson lemma)

* Ingeneral, the LR is a good choice
* For the MH problem, it is equivalent to a difference of x?’'s
(in the gaussian limit)
NH)2

~InL,, = —ln( [1L(n IMI_NH)) i ln( |1 exp[_ (';-MZV:I D -3 [(Z:’VH ]= o idem for IH

i€bins i€bins lu i i€bins

L
ln% = _X]%JH + XIZH
IH

» Definition of the test statisticfor MH : T = leH-szH (“Ax2”)
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PDFs of the test statistic for MH

If the hypotheses are “nested” (eg: H, is {6 in w, subset ofQ} and H, is {6 in Q}),
Wilk’s theorem states that
PDF(T|H,) = X3(1dof) => “No” CLis ensured at T_=N?

But, for the MH case, the hypotheses are NOT nested | Hy,=IH, H,=NH

= PDF(T|H,) is not X*(1dof) and the T_values must be computed based on
the correct distribution [CEZ,Qjian]

* |deally: get PDFs from toy-MC simulations
* A good approximation for the MH case [CEZ,Qian,Ciuf]:

Gaussians with o0=2Vu

Only under certain conditions :

(1) expected number of events per bin is an approximately linear function of the
parameters

(2) the hyper-planes defined by (1) for the two hypotheses are parallel
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PDFs of the test statistic for MH

Case of reactor neutrino exoeriments Case of Very Long BaseLine experiments (LBNO)
- 3 True NH
< % True H
0.06 %
0.047 _|
0.027 —
950 00150

Case of accelerator experiments (NOvVA)

Scp=0 5cp=90

Ax? AY?

=20 -10 10 20
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Quantifying the sensitivity: Frequentist approach

Common approaches for a future experiment

1) for a given CL, consider the possible 2) Quote the CL with a given outcome
fluctuations and quote Power 2a) “typical”or “Asimov”” experiment:
00 P(T|H;)=max

P= f PDF(T |H,)dT 2b) “median” experiment: P=0.5
Tc

~ probability to do “at least as good”

A A

PDF(T|H,) PDF(T|H,)

/ PDF(T| H,)
> /
Tc v T
T TAsimov
= Tmedian

More common

PDF(T|H,)

v

* «Franchise», a story by Isaac Asimov
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Quantifying the sensitivity: Frequentist approach

PDF(T|IH)=N(-T,",2vT ")
PDF(T|NH)=N(T,NH,2vT NH)

typically, T,N" and T,M increase (in absolute value) with exposure, so you get this kind of plots

/ KM3NeT/ORCA sensitivity (PRELIMINARY Febm\
. . 4 ; —
/ =>»The Power for fixed CL |s\ o L -
given by simple formulae =» The g 3 =
= =
1 “median” S 25 |
. z 2 L Z
=08 or “typical” ¢ | 4
v epe . 5 . 7 ¥ : ‘
g_. 0.6 senS|t‘|V|ty 3 1 44 Nlu (g parameters :itteg)
. s ters fitted) ———
5 04 increases 05 / . Erﬁo b ;Enigi .............
. no parameters fitted) -~
202 with Vv 0
: 0 0.5 1 155 2 2.5 3 3.5

Years of ORCA proposed detector operation
f (115 strings, 18 DOMs/string)

More common

- Hands-on session later today
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Quantifying the sensitivity: Bayesian approach

In the “frequentist approach” discussed so far, two sets of information must be
provided (for NH and for IH).

With a Bayesian approach [Blen], a single set of values can contain all the information
on the test :

* You need a “prior” P on each hypothesis, providing a relative normalization
between the two PDFs

* It can be proven that P(NH)=P(IH)=0.5 is the most conservative choice

1) Define a threshold t

0.07—

PDF(T | NH) :
NH >t 0-061-
2) Compute T such that oo o e s
for T>Tév " :::
PDF(T | IH) . 3
and Tc'" such that  ppr (1| NH) + PDF(T 11H) oEs

for T<T/"

NOTE !!!l we are looking the “Odds” or “ratio of posterior probabilities” :
IF YOUR EXPERIMENT GIVES A RESULT T, THE PROBABILITY THAT NATURE IS ACTUALLY
NH(IH) is >CL . A question that cannot be answered in the frequentist approach !
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The Bayesian approach for MH

3) Define the “pvalue” as [ PDF(T|IH)dT + [, PDF(T | NH)dT

For example, in
D.Franco et al, JHEP 1304 (2013) 008 ArXiv 1301.4332 (ORCA/PINGU)

St wecrate  f DO
g B CL 230 30 CL means t=99.73%
§ 80 Cl<3a : —
: [ ven it tegim .g lit """" / =
s . F /! » E
60 > 0.9 / -
Q. T -
t i j -]
40 0.3 g . 4 =
0.7k & o =
20 T ]' -
............ < o 0.6 :E l'. :
% 40 3020 10 0 10 20 30 40 50 0.sELi / =
=T TELT / Energy dependent: 3
* T/ are set by the ratio of the 0.4F =t / / by —
heights of the two gaussians 0.3[F / / Optimal: =
at a given value of T 02::»" / / — 56CL. E
* p-valueis E / / Nt
0.5* (blue area + red area) 0.1 10

2
Effective Exposure [Mt x19ears at 40 GeV]
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The case of &,

Test statistic Ax? = min(AX%scp-0, AX*scpor)

This is a case of “nested hypotheses”: H, = {6,=0 or i}, H; = {0<6p<2m}
= Wilk’s theorem PDF(Ay?|Hy)=X?(1dof) => T =(# of 0)?

independent of exposure (unlike for MH)

. , — , oie 15—+ — LBNO20
X i ST J—

‘! LBNO, 15X1020p0t ’_g | 3()E+2] P()T, 75%\’.25%V, Nll LBNO7O
N ——

—

10° = L i
6CP=O'T[ E 8 10
102 SN f(AyH,) from toy MC _;
—— x? distribution fit - ﬁ /\
10 . 5 /////\\ {50

) \/______ 430
0... Lo o b o INE s M |
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The case of &,

1-CDF

However, Wilk’s theorem does not always hold when the experiment has
limited sensitivity to 6., => PDF(T|H,) is not x*(1)

=> need to get PDFs from (toy)-MC

3.0 30

NOvA
1-cumulative of PDF(T|H,) from MC g ey
2.0 adi Asimov ] 20t i

with HO : 6.,=0,1t

T

1.5F 1 & 15}

1 - , ;
X N ]
1 ,
0587 osh
0-0’ lllllllllll Ll, ....... ‘\‘ 0-0
oal 0 45 00 135 180 225 270 315 360 0 45 00 135 180 225 270 315 360
: o é
30 30
25t 25t
20} 20f
001}
& 15 515
Lof 10
0.5F o5l i
. L . :
0.001, 00 35 o0 135 180 25 270 315 360 % a5 00 135 180 225 270 315 360
. s s
Median sensitivity
———- using vT
Blennow et al., ArXiv:1407.3274 .
’ using PDF(T|H,) from MC
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GOODNESS-OF-FIT
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Goodness-of-fit

“Are my observations compatible with hypothesis H, ?
The alternative hypothesis cannot be formulated ! Therefore

the Likelihood ratio is useless

the risk of 2" kind B is unknown

the power of the test is undefined

impossible to tell whether a test is better than another

A new type of problem : “Goodness-of-fit”:
compare the experimental data with their p.d.f. under the null hypothesis H,

If H, was true and one repeated the experiment many times, one would

obtain data more far away from H, than the observed values with
probability P

- small P = “bad fit”
- large P = “good fit”
=>» The “P-value” is the figure of merit of the goodness-of

ISAPP 2017
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Goodness-of-fit test

To construct a goodness-of-fit test, we need

* atest statistic T: a function of H, and of the data X, which measures how
far away the data is from the hypothesis

* away to calculate the probability of exceeding the observed value of T, if
H, were true: a map from values of T to the P-value

Prob(T>T(X)|H,)=P

In practice: look for a test statistic T such that its distribution is independent
of H, (“distribution-free” test) => P does not depend on the details of H, =>
the mapping from T to P is easy to find (tables etc.)

L0 o=

Degrees of freedom
AN — k=1
. —k=2

0.8

k=3
—— k=4 -
k=5

An example of such T: the x? distribution

o 0.6
3

1 1 T
0 2 4 6 8

ISAPP 2017 X2 = Pearson's ¢
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Pearson’s x? test for histograms

7 | k bins

N = total number of events, fixed
| N n, ... N events per bin: n;+..+n, = N
B V : covariance matrix of the observations (kxk)

1,

Hm_m Model (H,): probability per bin = p., i=1...k
' L Consider (fi—Nﬁ)T V='(ii - Np)

0.00 0.05 0.10 0.15

normalization => rank(V) = (k-1) : take (k-1) terms and sub-matrix W ( (k-1)x(k-1) );
it can be shown that 1 1
N (W )J =—8;+p,

T

Now consider the statistic 7 =(7i—Np) W~ (ii—=Np) (only k-1 components of the vectors)
=> T is asymptotically distributed as x?(k-1)

Make the expression symmetric in the bins: with some manipulations, you will get

k _ 2 ko2
T = ! E(n’ Np") = 1 Eni - N close to x?(k-1) if Np>5
N i=1 pi N i=1 pi
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Pearson’s x? test for histograms

15 20

10

X2 (T)

1 k 2

\ i_Ni2 ;
E(” pip) =NE” - N

i1 Pi

e
-i_ |\ 1
z \ I =
: N3
s |'|| Model (H,)
|l
- [ —— [ — 1
0.00 0.05 0.10 0.15 X
Case 1 E
4
(@V]
>~

P(T>T,) is small

4

T, T T,

“Bad fit” : reject H,

ISAPP 2017 Statistics
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P(T>T,) is large

v

“Good fit” : accept H,
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Tests free of binning

Based on the “distance” between the cumulative distribution of the hypothesis F(X)
and the empirical distribution function of the data S, (X)

e Smirnov-Cramer-vonMises test

—_

2
W= [[Sy(X)-F(X)] f(X)ax -
—o 3 08
=> binomial distribution §
with <W>=1/6N and V(W)=(4N-3)/180N3 % 081
* Kolmogorov (-Smirnov) test -
3 02+
max
D, = Sy (X)-F(X)
X 0
-4
=> the limiting distribution can be computed
W PND, >2) <231 expl-2r) .
<
. Q\O
* Anderson-Darling test 5

A= —N—izé\; ! [ln(F(Xi))+ln(1—F(XN+1_i))] NS

i=1

ISAPP 2017 Statistics 33



Sensitivity and Discovery potential

Both are often quoted for future neutrino experiment

* e.g.: CUORE for BB-0Ov decay of Te, Double-Chooz (in the past) for 8,;>0, KM3NeT
for point-like v sources. PROSPECT for sterile neutrinos...

* Sensitivity = fluctuation of the “null hypothesis” (background only) up to a
fixed “significance”
— a goodness-of-fit problem ! significance = 1 — P-value, set the discovery
potential at T(P)

* Discovery potential = the smallest signal required to obtain an observation
at a given significance level (e.g. 50 or 30) with 50% probability

— atest of hypotheses | Hy,=background only, H,=bkg+signal, require a=3c or 50
for P=0.5
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Different methods give different results...

Example: experiment with mean background b, observed n events: quote upper limit on signal

ISAPP 2017

Upper limit ot 90% CL, s

Upper limit at 930% CL, s,

Number of events in the signel region, n

[ & Bayesion fidt ) ! b=0.0 x
. @ Boyesion 1/sqrt(s+b) .
- [0 Bayesion 1/(s+b) ‘ .
r M clossicol X o 4
" A stot. significonce i @
[~ A integration of likeiihood P »
[ ¥ MC likelihood technique ' o ]
[ X Feldman Cousins |
x .
- I ]
- x . b
! ' o ]
! « a :
o o
a . N
o m x
[ « !
L e x .
1 — . L - [
0 2 4 6
Number of events in the signol region, n
- O Boyesion fldt Y 1 b=30 |
- @ Bayesion 1/sqrt(s+b) 1
+ O Bayesion 1 /{s+b) 1
- W clossicol 1
A stot. significance a
[~ A integration of likelihood '_:
¥ MC likelihood technique ]
E X Feldmon Cousins 4 ? -
x . -
! A g ° j
A # w
L [ | .
L A - o 1
[ . i ’ ]
y s b . ]
A J
v
.. X - -
C ¢ ! IR P
0 2 4 6

Upper limit ot 9307% CL, s

Upper fimit ot 90% CL, &,

1

1

Number of events in the signal region, n

[ 5 Boyesion 11dt T =10 ']
L @ Boyesion 1/sqrt(s+b) -
- O Boyesion 1/(s+b) x
- B clossical P
- A stot. significance ! ]
~ A integration of likelihood i ]
¥ MC likelihood technique ! o ]
X Feldman Cousing 'Y j
: ;e :
L . o J
= x ]
E ; ;
L ¢ o 4
. _
[ i
.
. x ]
x B
1 . 1 % 1 " 1
o 2 4 6

T T T T T T

LA B B S e m

X<ApD>DROOC

4a®

Buye'sion fidt

Boyesion 1/sqrt(s+b)

Boyesion 1/(s+b)
classical
stot. significance

integration of likelihood
MC likelinood technigue

Feldman Cousins

xd B3O »

X <4EE»

X

3

T

- aec

1

b=5.0

«“AdE G

i

amex

PR RTINS N ST S S N T

0

] ) L]
2

Number of events in the signeal region, n

4

I. Narsky
PhyStat05
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The conclusion

ISAPP 2017

Be explicit on the statistical method you are using to

guote your results (or expected results) !

... which implies you have to know exactly what you are doing...

Statistics
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SUMMARY of TOPIC n.2

Test of hypotheses
— classical approach
— Neyman-Pearson’s likelihood ratio
— the case of neutrino Mass Hierarchy and the case of 6,

Goodness-of-fit
— chi2 test statistic
— tests free of binning

ISAPP 2017 Statistics

37



Why ?

4 Physics Topics

Within the realm of neutrino physics, subjects for which statistical issues seem par-
ticularly relevant and which produced interesting discussions included:

e Fitting parameters for 3 neutrino oscillation situations
e Searching for sterile neutrinos

e Determining the neutrino mass hierarchy

e Determining the CP phase

e Searching for rare processes, e.g. ultra high energy cosmic neutrinos, neutrino-
less double beta decayH, supernovae neutrinos, etc.

e Neutrino cross-sections

e Reconstruction and classification issues, e.g. for rings in Cerenkov detectors

L. Lyons, arXiv:1705.01874 [hep-ex]
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