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Why ?

4 Physics Topics

Within the realm of neutrino physics, subjects for which statistical issues seem par-
ticularly relevant and which produced interesting discussions included:

e Fitting parameters for 3 neutrino oscillation situations
e Searching for sterile neutrinos

e Determining the neutrino mass hierarchy

e Determining the CP phase

e Searching for rare processes, e.g. ultra high energy cosmic neutrinos, neutrino-
less double beta decayH, supernovae neutrinos, etc.

e Neutrino cross-sections

e Reconstruction and classification issues, e.g. for rings in Cerenkov detectors

L. Lyons, arXiv:1705.01874 [hep-ex]

PHYSTAT-v Workshop Series :
* May30-Junel, 2016, IPMU, Japan
* September 19-21, 2016, Fermilab, USA
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What we need

TOPIC1

e Estimation of parameters
— the likelihood method
— the min-chi2 method

* Estimation of confidence intervals
— Neyman’s C.l.and belt method
— Feldman-Cousins construction
— Use of the likelihood, 1D and ND => tomorrow...

o Tutorial n. 1: Feldman-Cousins construction of confidence intervals

TOPIC 2
* Test of hypotheses

— the case of neutrino Mass Hierarchy in future experiments

e Goodness-of-fit

o Tutorial n. 2: Sensitivity of future experiment to Mass Hierarchy
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« ...and, once you understand what it’s doing: RooFit/RooStats in Root
https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
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Reminders

Probability laws for a random variable X :

* Xdiscrete: N possible values x,...x, ,| p=P(X=x;) | with 0<p;<1 and Ep,- =1
i=1

* X continuous: probability law specified by the cumulative function F(x)

F(x,)=P(x<x,) ; F(-0)=0,F(+0)=1

the Probability Density Function (PDF) is f(x) such that
f(x)dx=F(x+dx)-F(x)=P(x E[x,x+dx])
dl
so f(x)=—
dx

Multidimensional PDF for random variables X,Y,Z...: f(x,y,z,...)

The Central Limit Theorem
N independent random variables X,...,Xy
each having a PDF f(x;) with mean p. and variance ¢;

Gaus( EM’O Eaf)
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S = Exl. PDF(S)

F(a) = P(X<a)

f(x)

F monotonic

Random Variable X

P(X<a)

f(x)




Reminders

Properties of distributions
given a random variable X with PDF f(x)

*  Expectation of a function g(x):  E[g(x)]=(g(x))= fg(x)f(x)dx

- Mean = expectation of X E[X]= [xf(x)dx

« Variance = expectation of (x-u)? V[X]= E[(x—E[X])Z] = E[x*]-(E[X])
— standard deviation o=vV

e Covariance (multi-dimensional case) C,, = E[(X—E[X])(Y‘E[Y])]

— Correlation coefficient o - o
OXOY
* Variance-Covariance matrix
of N random variables ol C, .. Cy
2
V = C12 o
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Reminders

* Bayes’ theorem (on conditional probabilities)
— A and B are sets of events for random variables X,

P(AIB)= P ()

* Bayesian use of Bayes’ theorem
— not events, but hypotheses

— P(6,) = “degree of belief” in hypothesis 6,
— X =observed data

Prior probability

Posterior probability

ISAPP school 2017 Statistics
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ESTIMATION OF PARAMETERS

ISAPP school 2017 Statistics



Parameter estimation

* X:random variable with p.d.f. f(x;9,), where U, is the true value of an unknown
parameter &

* Nindependent trials of X: x,, ..., Xy

What can we say about the value of §, ?

Example (N=5) :

A
f(x; 9) flx; 9,)

Would you say
U,=0, or 9,=0, ?

@

ISAPP school 2017 Statistics



Parameter estimation

* X:random variable with p.d.f. f(x;9,), where U, is the true value of an unknown
parameter U

* Nindependent trials of X: xy, ..., Xy

What can we say about the value of §, ?

Aim: construct a random variable, function of the x,, whose expectation value
is ¥, (at least asymptotically) and with variance as small as possible

ty=h(x, ..., x\)  Efty ]-> 0,

t, is an estimator or statistics for 3,
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Properties of estimators

ty=h(x, ..., Xy)

e t,isan unbiased estimator of &, if E[t,] = J,
— def.: “Bias” by= E[t,] - U,

* t,isaconsistent or convergent estimator of §, if, as N->eo,
b\->0 like 1/N and V(t,) ->0 like 1/N

* an estimator which is unbiased and has smaller variance than any other is
optimal

* t,isan efficient estimator if it is unbiased and its variance reaches the
theoretical lower bound, the “Minimum Variance Bound” (Information)
0’ InL

2

I,(9)=-NE = MVB™

* t,isrobustifitisindependent of the assumptions on the p.d.f. for 0
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ESTIMATION OF PARAMETERS
The Maximum Likelihood method

ISAPP school 2017 Statistics



The Maximum Likelihood method

Compute the Likelihood (=“joint probability”) of the set of N independent

trials: N
L(x),n ;) = | [ £ (559
i=1

The Maximim Likelihood Estimator (MLE ) of the parameter 3§, is the value 1§ML
for which L(x;0) has its maximum, given the particular set of observations x.. x,

It is easier to compute sums than products: take the log

N
InL(x,,o0n X3 3) = Y In f(x,;9)

Likelihood equation : alnL(xl, Xy D) ialnf(xl,ﬁ) 0

i=

A

¥, isaroot of the likelihood equation (if it exists)
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The Maximum Likelihood method

InL(x,...x, ;0)

A Error on the ML estimator
-1 _1
A — 9*InL 9*InL
InL,. ., V(% - ~-E
( ) N — o 99 |, 09 |,_;
the MVB !

InL__-1/2

max

Since L is (asymptotically)

Gaussian because of the CLT,
= Lmax_l/z
gives the “1-sigma” error

dlnL(x,,...,x,;0) _ialnf(x,-ﬁ) _0
96 ZNNFY:

A

¥, isaroot of the likelihood equation (if it exists)
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MLE in practice

It is easier for computer algorithms to find a minimum than a maximum,
and we like integers better...

&
L 2
=>minimize -2 In L &
At O
S &
-2 InL(X,...Xy ;5) NN
A

-2InL,, +1 ... but we will stick

to maximising InL

-2InL, ..
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The MLE : properties

e consistent

* asymptotically normally distributed, with minimum variance (but may have more than one
max for finite N)

« for finite N, optimal only under Darmois theorem (exp. family): f(x:9)=exp(a(x)-a(9)+b(x)+B())

e invariance: the MLE T of a function 17(19“) is|T = 'L’(ﬁ)

InL(Xy...Xy ;) InL(X,..x, T Viceversa:
! A v :> ( ! AN’ ) can find a transformation

that makes L Gaussian !

InL

max

InL

max

InL__-1/2

max

InL_-1/2

max

ISAPP school 2017 Statistics 16



Simple examples

2
. 1 X
* MLE of the mean of a Gaussian f(xfu)= exp —( —.2) o known
N2mo 20
L exe| =8 o (=)
L(xw-,xN2M)=(\/EG)N DGXP(— '202 ] 1HL(XI,--,XN;M)=—§ l202 —Nln( 2:m)
IInL(x,..xy:0) 1 X I - The MLE of the mean is
=7 x,-u)=0 < u=—>rx=u,, ~ -
ou o’ El( ) NEI the sample average: U, =x

it is easy to verify that (i, — u for N — o (unbiased) and V(g,,)=

o
N

(efficient)

e Estimate of g, or rather of the Variance V=02 (not strictly with ML)

N

o . Ao 1 L o
it is natural to use the sample variance V = FE(X,- —u)z, which is “good” if u is known.

i=1

If wis not known it needs to be replaced by #&,, =x and...
N

i(x,. —)_c)2 = i(xlz —in)?+)_c2)= Exf —2)_c§x,. +Nx = ixf —2NX+Nx = i(xf —)_cz)
i=1

i=1 i=1 i=1 i=1 i=1

> (5 -1)

i=1

E

1 % _ 1
SO E[NE(X,- -x)2]=V(x)(1-ﬁ)¢V(X) => use “Bessel’s correction” to obtain an unbiased estimator
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’ —E[(f—u)z])=v(x)—v(7c)
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Simple examples

* ML and weighted average

measurements with the same mean p and different variances V,=6.2, which are known: estimate p

oo L _(xi—u)2
f(xinu)_\/ﬁo_exp( 20_2 )

1

2 2
1 L - N -
L(xl,..,xN;y)=—Hexp(—(x’20!;) ] lnL(xl,..,xN;M)=—E(x’20‘l;) —Nln(\/2ﬂoi)
i i=1

(\/2:101.)1\, =l i
N / 5
(xi Ui)
alnL(xl,..,xN;M)=§(xi_1“)=0 & u= g—sﬁm
du < o i(l/og)
i=1

The MLE of the mean is
the weighted average

ISAPP school 2017 Statistics
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Nuisance parameters

Parameters whose value are not of interest
but which need to be taken into account to estimate the parameter of interest

One option : e
- fix the nuisance parameters 02 L(X,ﬁl,t%)
to a given value - E S
- maximise L with respect to

interesting parameters
=> “PROFILE LIKELIHOOD”

L(X,0,)

A more general approach :
- assume the Likelihood to factorize

- assume normal distributions with known mean and sigma for the nuisance parameters

2
InL(X19,,9,)=InL(X19)- (9, "i‘)
20 ~~ Nuisance term
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ESTIMATION OF PARAMETERS
The Least Squares method
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N observations

—

The Least Squares method

X ={x

Consider the quadratic form

V: covariance matrix
of the data (NxN)

O(%.8)=[X-(8)] v [x- 1 ()]&i[x - (8)](v), |

The Least Squares Estimator of 5

n
Son

0%}

J

= m, ()

Particular case: independent observations, V diagonal: V.=0’ =Q-= E

Case k=1 (1 parameter):

-1
2
’ E[a %] ) 2D2'1‘ﬁ_1§ Qi1
00 )., i1

Qmin

ISAPP school 2017
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is the value minimising Q

Q A

i=1

o[- (9]
)

o
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The Least Squares estimator: properties

* The LSE can be shown to be consistent, in general biased, non-optimal

e (Case of the linear model

— if the o, are independent of ¢ and the p,(3) are linear functions of &, then the
minimisation can be done analytically and the estimator is optimal and convergent

 What about the asymptotic distribution ?
— case of x/s normally distributed: f(x,.;ﬁ)=G(xl.;,ul.(1§),al.(1§))

3\ filx)
then *0~ o (5 is distributed according to a x? law

i=1

with N degrees of freedom

_L/H ~02 _ _ 0.3+
f(QO)_zr(N/z)e (Q0)=N.V(Q))=2N ”‘”ﬁ

®

I n

P

0471

0.0

I

By =

S D W

When the model is linear, Qi = Qo(é) is distributed according to a x? law with N-K
degrees of freedom

and ) according to a N-dim normal law with mean ﬁoand variance 2D,?

ISAPP school 2017 Statistics
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Applications: fitting a histogram

Histograms with N bins (N large), Y; events in each bin, E[Y,]=f{(0)
the number of events per bin follows a multinominal distribution with o?=E[Y ]=f(3)

20
|
=<

. f(5)
/N
o 1 || TR
\¢ L\
—f— -
o || T
w — |
|
|
| YN
o 1
[ T | 1 X
0.00 0.05 0.10 0.15

Find an estimator for &
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Applications: fitting a histogram

Histograms with N bins (N large), Y; events in each bin, E[Y ]=f(0)
the number of events per bin follows a multinominal distribution with o2=E[Y,]=f,(9)

4 v h
Least square estimator of & : minimize Q° = E[ ’ ](:(9) )] : the usual “minimum chi-square method”
i=1

In general no predictions on its properties if there are few events in some bins.
However, it can be proven to have optimal asymptotic properties: consistent, asymptotically
Normal, efficient

/

: “modified min. chi-square method”

Reasonable to use <Y >=f(%) and minimize Q" 2
i=1

w5, - £(9)]
7

Same properties as Q? asymptotically (for large N)

/Maximum Likelihood method (Multinomial) InL=YYInf(#) : “Binned Max. Likelihood method"\

i=1

Asymptotically equivalent to the previous two, but converges faster. And no problem with low-
content or empty bins. Recommended !
KP.S.: converges to “unbinned M.L.” when N->co J
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Extended Maximum Likelihood

* The total number of events does not intervene in the maximisation of /InL if it is
independent of the parameter

* If N,,, depends on the parameter => Extended Maximum Likekihood (EML)

Case of a histogram:
in each bin, Poisson distribution with mean f,(8) and number of events per bin Y,
N

f.0)= £ e 1y NY =N, (9)
i=1

InL= iYilnfi(ﬁ) —f;(®)-InY,!= —Nmt(ﬁ)+iYilnfi(ﬁ)+cste

l

identical to ML if N, does not depend on ¥

= ML (normalisation independent of the parameter) uses shape
= EML (normalisation dependent on the parameter) uses shape + normalization

* Same results when N, is independent of ¢
* Needs care in the interpretation of errors (e.g. when size and shape are not indep.)
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ESTIMATION OF CONFIDENCE INTERVALS
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Interval estimation

Find the range [J,0,] which contains the true value 9, with a given
probability B :

P(9,<0,<8, ) =8
[3,0,] is the Confidence Interval for & with probability content (3

In physics, often used for “errors”: 10 <& B=68.3%, 20 <& B =95.5% etc.
Strictly true only for Normal distributions !

Probability content of a region [a,b] in the space of the variable X, given the
PDF of X and if the parameter & is known: ﬁ=P(a<X<b)=jPDF(XI19)dX

If ¥ is unknown: find a new variable such that its PDF is independent of 0 =>
find the range of & such that P(0 <0,<0,) = 8

- property of COVERAGE
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Interval estimation: general case 1-D

Construction of Neyman’s confidence belt

ISAPP school 2017

Statistics

For a given value of the parameter p,
draw the interval with probability content

a (horizontal line)
* arbitrary positioning... here we choose a
symmetric one, leaving out (1-a)/2 on each side

Repeat for all values of p => you have the
Confidence Belt

Consider the result x of your experiment
and draw a vertical line

Take the values y,,, 1,, where the
vertical lines intersects the confidence
belt

The interval [y, , 1] is the Confidence
Interval with probability content a for the
true value p, of the parameter p

28



Interval estimation: problems

90%CL central interval for
the mean of a Gaussian

90%CL upper limit for
the mean of a Gaussian

6 _llll LI LI LB LELELI ) IIII- () T™TTT TTITT TIr 1T TIr T T TIT7T L
s //: 5 f( ) //
4 V4 ] 4 : VA4 :
= 1 = [ / ]
=P N TN N 0 N N ] . E /| .
§ " ] g3 1
: /l | | z :
2 /—2 2 / :
1 u // // . 1 - // :
O -l Z - Ll .l l/ L Ll L1 l- 0 " L l/ 111l 1111 1111 L1111 l-‘
2 -1 0 1 2 3 4 2 -1 0 1 2 3 4

Measured Mean x Measured Mean X

However, suppose that ...
1) you decide to use (a) if your result is x>3 and (b) if x<3

* FLIP-FLOPPING

2) you don’t want negative values, because allowed physical
values for your parameter can only be positive (e.g. mass)

* UNPHYSICAL VALUES

... S0 you use this confidence belt

G.J. Feldman and R.D. Cousins, Phys.Rev.D57:3873-3889,1998
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Both ensure correct coverage if
the choice is made beforehand

Coverage
T<90% 11
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Interval estimation: Feldman-Cousins

Feldman-Cousins “unified approach” (originally for neutrino physics):
likelihood ratio ordering principle

6 rrri LIILILILI LIILILIL] rrri lllllllll_

* intheinterval for u=u,, include the
elements of probability P(x/u,) giving

the largest value of the likelihood 14
ratio =
P(xlu) o
R(x)=—"—0 = /
P(xlu) S N W NP0 N N

-

AR N

-2 -1 0 1 2 3
Measured Mean x

where # is the value of p for which P(x[u) is
maximal within the physical region.

N

=» Hands-on session today
G.J. Feldman and R.D. Cousins, Phys.Rev.D57:3873-3889,1998
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Example: measuring 0,, in Double Chooz

Choose a value for *

sin?(26, ") ‘
[N/

Fill histogram for all &

- >

\ /

sin*(20, ")

Draw for the Find boundary values Find critical value
chosen sin?(26 ") for sin*(26,*): for Ay -
— 10% i
1 T
g 0% [ W
s : TR |
S|n2(2913) | Feldman-Cousins 90% CL belit
o -
2 0.3
‘(\2 -
& 025 y 7
g : < e
S ozl y yd
S. Schoppmann, RWTH Aachen » - / ﬁf”
DC internal meeting, 2012 G 4 4(,/:4
(confidential ??? !!) 0.1}/;’ A
“Alternative method” to the published analysis °‘°5§ ,,f,,//
0:‘ L uia»/fﬁ. | | | |

T T T T T T O T A
0 0.05 0.1 0.15 O. 0.25 0.3 035 04

sin*(26_ )
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SUMMARY

* Parameter estimation
— The Maximum Likelihood Estimator: construction and properties
— The Least Squares estimator: construction and properties

* Estimation of confidence intervals
— general case 1D: Neyman belt construction
— the Feldman-Cousins approach

— hands-on: the Feldman-Cousins approach

— use of the Likelihood function
— case of multiple parameters

— Bayesian credibility intervals
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