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Extensions of the SM providing neutrino masses 
1- recap of the SM 
2- Dirac and Majorana masses 
3- Weinberg operator 
4- see-saw mechanism 
 
5- Grand Unification 
6- the flavour puzzle 
7- the baryon asymmetry 
8- neutrino masses and the Higgs boson 
9- neutrino masses and lepton flavor violation  

I 

II 

1, 2 see lectures by G. Ridolfi 
4, see lectures by E. Lisi 
3, 4, 6, 9 see lectures by J.F. Valle 
7, see lectures by Melchiorri 





Lecture 1 
Neutrino Masses 



Recap of the Standard Model 
1. Gauge group: SU(3)xSU(2)xU(1) 

2. Particle content: 3 copies of  
q = u

d
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uc (3,1,−2 / 3)
dc (3,1,+1/ 3)

l = ν
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ec (1,1,+1)

notation: 
ψL ≡ψ

ψR → ψR( )c = ψ c( )L ≡ψ
c

all fermions come in four helicity  
states (ψ,ψc), but the neutrino  
which has only two. 
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(1, 2,+1/ 2)Higgs doublet 

(i.e. the requirement that all coupling constants gi have  
non-negative dimensions in units of mass: d(gi)≥0. This allows to eliminate all  
the divergencies occurring in the computation of physical quantities, by  
redefining a finite set of parameters.)    

3. Renormalizability  



1.+2.+3. -> Standard Model (SM) 

LSM = −
1
4
FµνF

µν + iΨγ µDµΨ

+ DµΦ( )
+
DµΦ( )−V Φ+Φ( )

− yΨΦΨ

gauge sector 

symmetry breaking sector 

Yukawa sector 

Symmetries of the Standard Model 
- Lorentz invariance 
- gauge invariance 

invariance of the gauge sector:  global  U(3)5 

q→Ωqq uc →Ω
uc
uc dc →Ω

dc
dc l→Ωll ec →Ω

ec
ec

qi → Ωq( )ij q j etc… 

this huge invariance is broken by the Yukawa sector down to U(1)4 

the four – classically – conserved charges are B, Li (i=e,μ,τ)  

Ωs ∈U(3)



q→ e
iα
3q uc → e

−iα
3uc dc → e

−iα
3dc

li → eiβli ei
c → e−iβei

c

B 

Li 

LY = −d
cyd (Φ

+q)−ucyu( Φ
+q)− ecye(Φ

+l)+ h.c.
after moving in the mass basis the U(1)4 invariance read  

quantum effects break B and Li leaving three linear combinations unbroken 

∂µ ja
µ ∝ tr[Ca{T

A,T B}]

all gauge currents of the SM are anomaly free 

the conserved charges are (B/3-Li)  
and any combination of these, e.g. (B-L)  



Exercise 1: anomalies of B and Li 
the anomaly of the baryonic current and the individual leptonic currents 
are proportional to tr[Q {TA,TB}] and tr[Q {Y,Y}] where Q=(B,Li) and (TA,Y) 
are the generators of the electroweak gauge group 
compute these traces in the SM with 3 fermion generations 
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(B+L) is anomalous,   (B/3-Li) [and (B-L)] are anomaly-free 



Fermion masses in the Standard Model 

l = ν
e
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gauge invariance of the SM forbids a direct mass term like (m ec e) in QED  

ec = (1,1,+1)

remember that in our basis  
all fermion fields are left-handed 
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in the massless limit each spinor comes in two helicity states 

e  destroys an electron of negative helicity 
    creates a positron of positive helicity 

ec destroys a positron of negative helicity 
    creates an electron of positive helicity 

Exercise 2: why? 

lepton sector 



Yukawa interactions 
LY = −e

cye(Φ
+l)+...+ h.c.

= −
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ecyee+...+ h.c.
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Higgs doublet 
in the unitary  
gauge 

me =
ye
2
v mee

ce+ h.c.  Dirac mass term 

γ 0 = 0 1
1 0
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Exercise 3: express the Dirac mass term in the Weyl basis 

e and ec are called Weyl spinors, each carrying two components 



a Dirac mass term couples two Weyl spinors e and ec 
-  if the two spinors carry opposite charges C, then the mass term  
   conserves C. In our case the electric charge Q and total lepton number L 
    are conserved. The hypercharge Y is not conserved, since Y(e)=-1/2 and 
    Y(ec)=+1        Y is spontaneously broken by the Higgs VEV 
  
- the chirality L,R are just labels. Actually with Weyl spinors we are working  
    in a basis where all fermions are left-handed.  

suppose now we have an electrically neutral Weyl spinor ν 

mνν +mνν
if we set e=ec=ν in the previous mass terms we get the special case  

this is called a Majorana mass term 
-  it is Lorentz invariant 
-  it conserves the electric charge Q 
-  it cannot conserved (B-L):   |Δ(B-L)|=2 

however in the SM this is forbidden. 

Exercise 4: why? 



Overwhelming evidence  
of  

non-vanishing neutrino masses 
[see other lectures] 



a non-vanishing neutrino mass is the first evidence of the incompleteness of 
the Standard Model [SM] 

Beyond the Standard Model 

in the SM neutrinos belong to SU(2) doublets with hypercharge Y=-1/2 
they have only two helicities (not four, as the other charged fermions) 
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the requirement of invariance under the gauge group G=SU(3)xSU(2)xU(1)  
forbids pure fermion mass terms in the lagrangian. Charged fermion masses  
arise, after electroweak symmetry breaking, through gauge-invariant  
Yukawa interactions 
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Φ ΨΨ'
same helicity


not even this term is allowed for SM neutrinos, by gauge invariance 



Questions 

 why lepton mixing angles are so different from those of the quark sector? 
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+ corrections

€ 

VCKM ≈

1 O(λ) O(λ4 ÷ λ3)
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λ ≈ 0.22

how to extend the SM in order to accommodate neutrino masses? 

why neutrino masses are so small, compared with the charged fermion masses? 
                                    



the SM, as a consistent QFT, is completely specified by  

1.    invariance under local transformations of the gauge group G=SU(3)xSU(2)xU(1)  
       [plus Lorentz invariance] 
 
2.     particle content 

3.    renormalizability (i.e. the requirement that all coupling constants gi have  
       non-negative dimensions in units of mass: d(gi)≥0. This allows to eliminate all  
       the divergencies occurring in the computation of physical quantities, by  
       redefining a finite set of parameters.)    € 

three copies of     (q,uc,dc,l,ec )
one Higgs doublet      Φ

How to modify the SM? 

1.    We cannot give up gauge invariance! It is mandatory for the consistency of  
       the theory. Without gauge invariance we cannot even define the Hilbert  
       space of the theory [remember: we need gauge invariance to eliminate the 
       photon extra degrees of freedom required by Lorentz invariance]! 
       We could extend G, but, to allow for neutrino masses, we need to modify 1. (and/or 2.) anyway…  

(1.+2.+3.) leads to the SM Lagrangian, LSM, possessing additional, accidental,  
global symmetries: (B/3-Li)         



First possibility: modify (2), the particle content 
there are several possibilities 
one of the simplest one is to mimic the charged fermion sector  

€ 

ν c ≡ (1,1,0)add (three copies of) 
right-handed neutrinos  

full singlet under  
G=SU(3)xSU(2)xU(1) 

ask for (global) invariance under B-L  
(no more automatically conserved as in the SM) 
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LY = −d
c yd (Φ

+q)−uc yu ( Φ
+q)− ec ye (Φ

+l)−ν c yν ( Φ
+l)+ h.c.

€ 

mf =
y f
2
v         f = u,d,e,ν

the neutrino has now four helicities, as the other charged fermions, 
and we can build gauge invariant Yukawa interactions giving rise, after 
electroweak symmetry breaking, to neutrino masses 

with three generations there is an exact replica of the quark sector and, after diagonalization of the  
charged lepton and neutrino mass matrices, a mixing matrix U appears in the charged current interactions 
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−
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Wµ
−e σ µUPMNSν + h.c. UPMNS has three mixing angles and one phase, like VCKM 

Example 1 
νR( )c =ν c



Exercise 5: count the number of physical parameters in the lepton sector 
                   of example 1 

ye, yν depend on (18+18)=36 parameters, 18 moduli and 18 phases 

we are free to choose any basis leaving the kinetic terms canonical 
(and the gauge interactions unchange)  

ec →Ω
ec
ec ν c →Ω

ν c
vc l→Ωll [U (3)3]

one of these transformation is B-L, a symmetry of the Lagrangian 
so that we can remove 26=(27-1) parameters from ye, yν   

we remain with 10 parameters: 9 moduli and 1 phases 
the moduli are 6 physical masses and 3 mixing angles 

these transformations contain 27 parameters (9 angles and 18 phases) 
and effectively modify ye, yν  

ye →Ω
ec
T yeΩl yν →Ω

ν c
T yνΩl

this is exactly the same count as in the quark sector and Example 1 
replicates for leptons what occurs for quarks  



conventions for neutrino masses: 

21 mm < ][ 222
jiij mmm −≡Δ

2
31
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32

2
21 , mmm ΔΔ<Δ i.e. 1 and 2 are, by definition, the closest levels 

two possibilities: 

normal 
hierarchy inverted  

hierarchy 
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3 

3 

2 
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UPMNS =

c12 c13 s12 c13 s13 e
iδ

−s12c23− c12 s13 s23 e
−iδ c12c23− s12 s13 s23 e

−iδ c13s23
−c12 s13 c23 e

−iδ + s12 s23 −s12 s13 c23 e
−iδ − c12 s23 c13c23
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Mixing matrix UPMNS (Pontecorvo,Maki,Nakagawa,Sakata) 

ν f = Ufiν i
i=1

3

∑ ( f = e,µ,τ ) neutrino mass 
eigenstates 

neutrino 
interaction 
eigenstates 

U is a 3 x 3 unitary matrix 
standard parametrization 

not yet the most general 
possibility! 

0 ≤ϑ ij ≤ π / 2
0 ≤ δ < 2π



Δmsol
2 ≡ Δm21

2 = (7.37−0.16
+0.17 )×10−5  eV2

Δmatm
2 ≡

Δm31
2 = (2.525−0.030

+0.042 )×10−3  eV2 NO
Δm32

2 = −(2.505−0.032
+0.034 )×10−3  eV2 IO

%
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('

sign [Δmatm
2 ]    unknown  

sin2ϑ12 = 0.297−0.016
+0.017

sin2ϑ 23 =
0.425−0.015

+0.021

[0.433−0.016
+0.015 ]⊕ [0.589−0.022

+0.016 ]

#
$
%

&%

sin2ϑ13 = 0.0215± 0.0007

[complete ordering 
(either normal or inverted 
hierarchy) not known] 

[CP violation in lepton  
sector not yet established] 

violation of individual lepton number 
implied by neutrino oscillations 

violation of total lepton number 
not yet established 

€ 

mν < 2.2 eV (95% CL) absolute neutrino mass 
scale is unknown 
[but well-constrained!] 

€ 

mi < 0.2 ÷1 eV
i
∑

(lab) 

(cosmo) 

δCP /π =1.38−0.20
+0.23

Summary of data Summary of unknown 

NO 

IO 

[Capozzi et al. 1703.04471] 



if neutrinos are so similar to the other fermions, why are so light? 

the particle content can be modified in several different ways 
in order to account for non-vanishing neutrino masses 
(additional right-handed neutrinos, new SU(2) fermion triplets, additional 
SU(2) scalar triplet(s), SUSY particles,…). Which is the correct one? 

a generic problem of this approach 

a problem of the above example 

Quite a speculative answer: 
neutrinos are so light, because the right-handed neutrinos have access 
to an extra (fifth) spatial dimension 

Y=0 Y=L 

νc 

all SM particles 
live here except 

neutrino Yukawa coupling 

€ 

ν c (y = 0)( ˜ Φ +l) = Fourier expansion

                       =
1
L
ν 0
c ( ˜ Φ +l) + ...

if L>>1 (in units of the fundamental scale) 
then neutrino Yukawa coupling is suppressed 

[higher modes] 

€ 

yν
ytop

≤10−12



Second possibility: abandon (3) renormalizability 

€ 

L = Ld≤4
SM +

L5
Λ

+
L6
Λ2

+ ...

a new scale Λ enters the theory. The new (gauge invariant!) operators L5, L6,… 
contribute to amplitudes for physical processes with terms of the type 

A disaster? 
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L5
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E
Λ
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Λ2
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E
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the theory cannot be extrapolated beyond a certain energy scale E≈Λ. 
[at variance with a renormalizable (asymptotically free) QFT] 

If E<<Λ (for example E close to the electroweak scale, 102 GeV, and  
Λ≈1015 GeV not far from the so-called Grand Unified scale), the above  
effects will be tiny and, the theory will look like a renormalizable theory! 

€ 

E
Λ
≈
102GeV
1015GeV

=10−13 an extremely tiny effect, but exactly what 
needed to suppress mν compared to mtop ! 



Worth to explore. The dominant operators (suppressed by a single power of 1/Λ) 
beyond LSM are those of dimension 5. Here is a list of all d=5 gauge invariant 
operators  

L5
Λ
=
Φ+l( ) Φ+l( )

Λ
=

    = v
2

v
Λ

#

$
%

&

'
(νν +...

Weinberg operator: a unique operator  
[up to flavour combinations] 
it violates (B-L) by two units 
 
it is suppressed by a factor (v/Λ)  
with respect to the neutrino mass term 
of Example 1: 

€ 

ν c ( ˜ Φ +l) =
v
2
ν cν + ...

since this is the dominant operator in the expansion of L in powers of 1/Λ, we could have expected  
to find the first effect of physics beyond the SM in neutrinos … and indeed this was the case!  

it provides an explanation for the smallness of mν:  
the neutrino masses are small because the scale Λ, characterizing (B-L)  
violations, is very large.  How large? Up to about 1015 GeV 

from this point of view neutrinos offer a unique window on physics at very large scales, inaccessible 
in present (and probably future) man-made experiments.  

a Majorana mass term 



ye and w depend on (18+12)=30 parameters, 15 moduli and 15 phases 

we are free to choose any basis leaving the kinetic terms canonical 
(and the gauge interactions unchange)  

ec →Ω
ec
ec l→Ωll [U(3)2 ]

so that we can remove 18 parameters from ye and w   

we remain with 12 parameters: 9 moduli and 3 phases 
the moduli are 6 physical masses and 3 mixing angles 

these transformations contain 18 parameters (6 angles and 12 phases) 
and effectively modify ye and w  

ye →Ω
ec
T yeΩl w→Ωl

TwΩl
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Exercise 6: count the number of physical parameters in the low-energy theory  
                  described by the Weinberg operator 

Majorana phases 

Φ+l( )w Φ+l( )
Λ



L5 represents the effective, low-energy description of 
several extensions of the SM 

€ 

ν c ≡ (1,1,0)    add (three copies of)  full singlet under  
G=SU(3)xSU(2)xU(1) 

Example 2: 
see-saw 

this is like Example 1, but without enforcing (B-L) conservation 

Leff (l) =
1
2
( Φ+l) yν

TM −1yν#
$

%
&( Φ

+l)+ h.c.+ ...

mass term for right-handed  
neutrinos: G invariant, violates 
(B-L) by two units. 

the new mass parameter M is independent from the electroweak breaking 
scale v. If M>>v, we might be interested in an effective description valid 
for energies much smaller than M. This is obtained by “integrating out’’ the 
field νc  

L(ν c ,l) = −ν c yν ( Φ
+l)− 1

2
ν cMν c + h.c.

terms suppressed by more 
powers of M-1 

this reproduces L5, with M playing the role of Λ. This particular mechanism  
is called (type I) see-saw.  
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Exercise 7 
derive the see-saw relation by integrating out the fields νc through their e.o.m.  
in the heavy M limit. Compute the 1st order corrections in p/M 

ν c

ν c

!

"
##

$

%
&&=

iσ µ∂µ −M +

−M iσ µ∂µ

!

"

#
##

$

%

&
&&

−1

yν
*ω

yνω

!

"

#
#

$

%

&
&
=

−M −1yνω

−M *−1yν
*ω

!

"

#
#

$

%

&
&
+ ... ω ≡ ( Φ+l)

equations of motion of νc   

Leff = ilσ
µ∂µl +

1
2
ω(yν

TM −1yν )ω + h.c.#
$

%
&+ iω(yν

+M +−1M −1yν )σ
µ∂µω +O(M

−3)

d-=5 d-=6 renormalizes the KE of ν by v2/M2

propagator 
in heavy mass 
limit 

vertex 



there are 3 types of see-saw depending on the particle we integrate out 
they all give rise to the same d=5 operator 

type I type II type III 

yN
T (MN )

−1 yN y
Σ
T (M

Σ
)−1 y

Σ
y
Δ

µ
M

Δ
2

Exercise 8 
find the quantum numbers of the three type of particles that can be 
exchanged in this diagram 

Type I        (1,1,0) 
Type II      (1,3,0) 
Type III    (1,3,±1) 



Theoretical motivations for the see-saw 

Λ≈1015 GeV is very close to the  
so-called unification scale MGUT. 
 
an independent evidence for MGUT  
comes from the unification of the  
gauge coupling constants in (SUSY  
extensions of) the SM.  

such unification is a generic prediction 
of Grand Unified Theories (GUTs): 
the SM gauge group G is embedded into a simple 
 group such as SU(5), SO(10),… 

Particle classification: it is possible to unify all SM fermions (1 generation) 
into a single irreducible representation of the GUT gauge group. Simplest  
example: GGUT=SO(10)  

€ 

16 = (q,dc,uc,l,ec,ν c ) a whole family plus a 
right-handed neutrino! 

quite a fascinating possibility. Unfortunately, it still lacks experimental tests. In GUT new, very heavy, 
particles can convert quarks into leptons and the proton is no more a stable particle. Proton decay 
rates and decay channels are however model dependent. Experimentally we have only lower  
bounds on the proton lifetime. 
Unity of All Elementary-Particle Forces 
Phys. Rev. Lett. 32, (1974) 438  
Howard Georgi and S. L. Glashow 

Georgi, H.; Quinn, H.R. and Weinberg, S. 
Hierarchy of interactions in unified gauge theories.  
Phys. Rev. Lett. 33 (1974) 451 



SK limits 

Where We Are… 
November 11, 2013 J. Raaf, NNN 2013 26 
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Antilepton + meson two-body modes 

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) and 2013 partial update for the 2014 edition (URL: http://pdg.lbl.gov)

N BARYONSN BARYONSN BARYONSN BARYONS
(S = 0, I = 1/2)(S = 0, I = 1/2)(S = 0, I = 1/2)(S = 0, I = 1/2)

p, N+ = uud; n, N0 = udd

pppp I (JP ) = 1
2 (1

2
+)

Mass m = 1.00727646681 ± 0.00000000009 u
Mass m = 938.272046 ± 0.000021 MeV [a]
∣

∣mp − mp

∣

∣/mp < 2 × 10−9, CL = 90% [b]
∣

∣

qp
mp

∣

∣/(
qp
mp

) = 0.99999999991 ± 0.00000000009
∣

∣qp + qp

∣

∣/e < 2 × 10−9, CL = 90% [b]
∣

∣qp + qe

∣

∣/e < 1 × 10−21 [c]

Magnetic moment µ = 2.792847356 ± 0.000000023 µN

(µp + µp)
/

µp = (0 ± 5) × 10−6

Electric dipole moment d < 0.54 × 10−23 e cm
Electric polarizability α = (11.2 ± 0.4) × 10−4 fm3

Magnetic polarizability β = (2.5 ± 0.4) × 10−4 fm3 (S = 1.2)
Charge radius, µp Lamb shift = 0.84087 ± 0.00039 fm [d]

Charge radius, e p CODATA value = 0.8775 ± 0.0051 fm [d]

Magnetic radius = 0.777 ± 0.016 fm
Mean life τ > 2.1 × 1029 years, CL = 90% [e] (p → invisible mode)
Mean life τ > 1031 to 1033 years [e] (mode dependent)

See the “Note on Nucleon Decay” in our 1994 edition (Phys. Rev. D50D50D50D50,
1173) for a short review.

The “partial mean life” limits tabulated here are the limits on τ/Bi , where
τ is the total mean life and Bi is the branching fraction for the mode in
question. For N decays, p and n indicate proton and neutron partial
lifetimes.

Partial mean life p

p DECAY MODESp DECAY MODESp DECAY MODESp DECAY MODES (1030 years) Confidence level (MeV/c)

Antilepton + mesonAntilepton + mesonAntilepton + mesonAntilepton + meson
N → e+π > 2000 (n), > 8200 (p) 90% 459

N → µ+π > 1000 (n), > 6600 (p) 90% 453

N → ν π > 112 (n), > 16 (p) 90% 459

p → e+η > 4200 90% 309

p → µ+η > 1300 90% 297

n → ν η > 158 90% 310

N → e+ρ > 217 (n), > 710 (p) 90% 149

N → µ+ρ > 228 (n), > 160 (p) 90% 113

HTTP://PDG.LBL.GOV Page 1 Created: 7/12/2013 14:49
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Three (or more) leptonsThree (or more) leptonsThree (or more) leptonsThree (or more) leptons

p → e+ e+ e− > 793 90% 469

p → e+µ+µ− > 359 90% 457

p → e+ν ν > 17 90% 469

n → e+ e− ν > 257 90% 470

n → µ+ e− ν > 83 90% 464

n → µ+µ− ν > 79 90% 458

p → µ+ e+ e− > 529 90% 463

p → µ+µ+µ− > 675 90% 439

p → µ+ν ν > 21 90% 463

p → e−µ+µ+ > 6 90% 457

n → 3ν > 0.0005 90% 470

Inclusive modesInclusive modesInclusive modesInclusive modes
N → e+ anything > 0.6 (n, p) 90% –
N → µ+ anything > 12 (n, p) 90% –
N → e+π0anything > 0.6 (n, p) 90% –

∆B = 2 dinucleon modes∆B = 2 dinucleon modes∆B = 2 dinucleon modes∆B = 2 dinucleon modes

The following are lifetime limits per iron nucleus.

pp → π+π+ > 0.7 90% –
pn → π+π0 > 2 90% –
nn → π+π− > 0.7 90% –
nn → π0π0 > 3.4 90% –
pp → e+ e+ > 5.8 90% –
pp → e+µ+ > 3.6 90% –
pp → µ+µ+ > 1.7 90% –
pn → e+ ν > 2.8 90% –
pn → µ+ ν > 1.6 90% –
nn → νe νe > 1.4 90% –
nn → νµ νµ > 1.4 90% –

pn → invisible > 0.000021 90% –
pp → invisible > 0.00005 90% –

p DECAY MODESp DECAY MODESp DECAY MODESp DECAY MODES

Partial mean life p

p DECAY MODES (years) Confidence level (MeV/c)

p → e−γ > 7 × 105 90% 469

p → µ−γ > 5 × 104 90% 463

p → e−π0 > 4 × 105 90% 459

p → µ−π0 > 5 × 104 90% 453

p → e−η > 2 × 104 90% 309

p → µ−η > 8 × 103 90% 297

HTTP://PDG.LBL.GOV Page 3 Created: 7/12/2013 14:49

Citation: J. Beringer et al. (Particle Data Group), PR D86, 010001 (2012) and 2013 partial update for the 2014 edition (URL: http://pdg.lbl.gov)

Three (or more) leptonsThree (or more) leptonsThree (or more) leptonsThree (or more) leptons

p → e+ e+ e− > 793 90% 469

p → e+µ+µ− > 359 90% 457

p → e+ν ν > 17 90% 469

n → e+ e− ν > 257 90% 470

n → µ+ e− ν > 83 90% 464

n → µ+µ− ν > 79 90% 458

p → µ+ e+ e− > 529 90% 463

p → µ+µ+µ− > 675 90% 439

p → µ+ν ν > 21 90% 463

p → e−µ+µ+ > 6 90% 457

n → 3ν > 0.0005 90% 470

Inclusive modesInclusive modesInclusive modesInclusive modes
N → e+ anything > 0.6 (n, p) 90% –
N → µ+ anything > 12 (n, p) 90% –
N → e+π0anything > 0.6 (n, p) 90% –

∆B = 2 dinucleon modes∆B = 2 dinucleon modes∆B = 2 dinucleon modes∆B = 2 dinucleon modes

The following are lifetime limits per iron nucleus.

pp → π+π+ > 0.7 90% –
pn → π+π0 > 2 90% –
nn → π+π− > 0.7 90% –
nn → π0π0 > 3.4 90% –
pp → e+ e+ > 5.8 90% –
pp → e+µ+ > 3.6 90% –
pp → µ+µ+ > 1.7 90% –
pn → e+ ν > 2.8 90% –
pn → µ+ ν > 1.6 90% –
nn → νe νe > 1.4 90% –
nn → νµ νµ > 1.4 90% –

pn → invisible > 0.000021 90% –
pp → invisible > 0.00005 90% –

p DECAY MODESp DECAY MODESp DECAY MODESp DECAY MODES

Partial mean life p

p DECAY MODES (years) Confidence level (MeV/c)

p → e−γ > 7 × 105 90% 469

p → µ−γ > 5 × 104 90% 463

p → e−π0 > 4 × 105 90% 459

p → µ−π0 > 5 × 104 90% 453
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>170 (SK-I-IV)  

>190 (SK-I-IV) 

pp → K+K+                    > 170 (SK-I only) 
                                                             per oxygen nucleus 

>30.7 (SK-IV only) 

per oxygen nucleus 

x1030 yrs 

x1030 yrs >1000 (SK-I only) 

per oxygen nucleus 

nucleon lifetime 
lower bounds 



Exercise 9: gauge coupling unification 
Oth order approximation  

5
3
gY = g2 = g3justify this sin2ϑW =

gY
2

gY
2 + g2

2
=
3
8
≈ 0.375

include 1-loop running 

1
αi (Q)

=
1

αi (mZ )
+
bi
2π
log Q
mZ

b1
b2
b3

!

"

#
#
##

$

%

&
&
&&
MSSM

=
33 / 5
1
−3

!

"

#
#
#

$

%

&
&
&

b1
b2
b3

!

"

#
#
#
#

$

%

&
&
&
&
SM

=
41/10
−19 / 6
−7

!

"

#
#
#

$

%

&
&
&

knowledge of b.c. MGUT and αU=α(MGUT) would allow to predict αi(mZ) 
in practice, we use as inputs  
αem

−1 (mZ ) MS =127.934 sin2ϑ (mZ ) MS = 0.231

to predict 
[MSSM] 

α3(mZ ) MS =
7αem(mZ )

15sin2ϑ (mZ )−3
≈ 0.118

αU =
28αem(mZ )

36sin2ϑ (mZ )−3
≈
1
25

log
MGUT

mZ

!

"
##

$

%
&&= π

3−8sin2ϑ (mZ )
14αem(mZ )

⇒ MGUT ≈ 2×10
16GeV

[corrections from 2-loop RGE,  
threshold corrections at MSUSY,  
threshold corrections at MGUT] 



Exercise 10: effective lagrangian for nucleon decay 
recognize that, the with the SM particle content, the lowest dimensional 
operators violating B occur at d=6. Make a list of them 

color and SU(2) 
indices contracted 

notice that they respect ΔB=ΔL: nucleon decay into antileptons 
e.g. p->e+ π0, n->e+ π-     [ n->e-π+ suppressed by further powers of ΛB] 

1
ΛB
2
×
#
$
%

&%
qquc+ec+ qqql
qluc+d c+ ucucd cec

naïve estimate 

τ p ≈
ΛB
4

mp
5

τ p ( p→ e+π 0 ) >1.4×1034 ys
assuming 

we get ΛB > 2.6×10
16 GeV

[SK] 

in GUTs ΛB is related to the scale MGUT at which the grand unified symmetry 
is broken down to SM gauge group 
the observed proton stability is guaranteed by the largeness of MGUT   
In SUSY extensions of the SM the lowest dimensional operators violating B 
occur at d=5: why?   



SU(5) GUT in one slide 

it contains 24 generators: 12 <-> SM gauge bosons 
remaining 12 = (3,2,-5/6) and conjugate <-> (X,Y) gauge bosons                                      

SU(5) à SU(3)xSU(2)xU(1) at the superheavy scale MGUT 
(X,Y) gauge bosons become massive 

2. (minimal) particle content 

1. gauge group SU(5) 

LY = −10yu10Φ5 − 5 yd10Φ5
+ −1yν 5Φ5 −

1
2
1M1+ h.c.

€ 

yd = ye
T

€ 

mb = mτ

€ 

ms = mµ

€ 

md = me

ms ≈ mµ / 3

€ 

md ≈ 3me

O.K. 
wrong, but not by orders of 
magnitude 
can be fixed with additional Higgs  

5 = (l, dc ) 10 = (q, uc, ec ) 1=ν c Φ5 = (ΦD ,ΦT )
Higgs 

Exercise 11. (X,Y) mediate nucleon decay.  
                    Which of the 4 operators arises from their exchange? 



flavor puzzle made simpler in SU(5) ? 

suppose that yu, ye, yν and M/Λ are anarchical matrices [O(1) matrix elements] 
and that the observed hierarchy is due to a rescaling of matter multiplets  
(there are many mechanism that can produce this) 

10 → F10 10

5 → F5 5

1 → F1 1
FX =

λ
QX1 0 0
0 λ

QX2 0
0 0 λ

QX3

!

"

#
#
#
##

$

%

&
&
&
&&

λ ≈ 0.22

QX1 ≥QX 2 ≥QX3

Y d = F5 ydF10 Y e = F10 yd
T F5Y u = F10 yuF10 mν ∝ F5 yν

TM −1yνF5

large mixing in lepton sector suggests F5 ≈ diag(1,1,1)
hierarchy mostly due to F10 mu :mc :mt ≈ md

2 :ms
2 :mb

2 ≈ me
2 :mµ

2 :mτ
2

large l mixing corresponds to a large dc mixing: unobservable in weak int. of quarks 

F1 dependence 
cancels in mν 



The see-saw mechanism can enhance small mixing angles into large ones 

example 

€ 

yν =
δ δ

0 1
$ 

% 
& 

' 

( 
) 

M =
M1 0
0 M2

$ 

% 
& 

' 

( 
) 

δ<<1 
small mixing 

€ 

yν
T M−1yν =

1 1
1 1
$ 

% 
& 

' 

( 
) 
δ 2

M1

+
0 0
0 1
$ 

% 
& 

' 

( 
) 

1
M2

              ≈
1 1
1 1
$ 

% 
& 

' 

( 
) 
δ 2

M1

      for  M1

M2

<< δ 2

The (out-of equilibrium, CP-violating) decay of heavy right-handed neutrinos 
in the early universe might generate a net asymmetry between leptons and 
anti-leptons. Subsequent SM interactions can partially convert it into the 
observed baryon asymmetry  

€ 

mν = − yν
T M−1yν[ ]v 2

no mixing 

€ 

η =
(nB − nB )

s
≈ 6 ×10−10

2 additional virtues of the see-saw 



Sakharov conditions met by the see-saw theory 
1. (B-L) violation at high-temperature and (B+L) violation by pure SM interactions 
2. C and CP violation by additional phases in see-saw Lagrangian (more on this later) 
3. out-of-equilibrium condition 

restrictions imposed by leptogenesis on neutrinos  

active neutrinos should be light 

out-of-equilibrium controlled 
by rate of RH neutrino decays 

here: thermal leptogenesis 
dominated by lightest νc 

no flavour effects ] 

M1

8π
(yν yν

+ )11 <
T 2

MPl T≈M1

(yν yν
+ )11v

2

M1

≡ m1 <10
−3 eV

mi < 0.15 eVmore accurate estimate 

RH neutrinos should be heavy 

Exercise 12; compute this 

€ 

ηB ≈10
−2ε1η

[efficiency factor ≤1 
washout effects] 

ε1 =
Γ(ν1

c → lΦ)−Γ(ν1
c → lΦ*)

Γ(ν1
c → lΦ)+Γ(ν1

c → lΦ*)
= −

3
16π

M1

M jj=2,3
∑

Im{[(yy+ )1 j ]
2}

(yy+ )11
≈ 0.1×

M1mi
v2

[Yukawas y in mass eigenstate basis for  νc
i ] 

M1 > 6×10
8 GeV



€ 

ε1
∞ ≤ ε1

DI =
3
16π

M1

v 2
(m3 −m1)

€ 

TR ≈ M1 > (4 ×108 ÷ 2 ×109)GeV

in conflict with the bound on TR in SUSY models  
to avoid overproduction of gravitinos 

€ 

TR
SUSY <107−9 GeV

[Davidson and Ibarra 0202239] more refined bound 

Exercise 13: reconstruct the flavour structure of ε1 

A(ν1
c → laΦ)∝ ya1

+ +W y1b ybk
+ yak

+

A(ν1
c → laΦ

*)∝ y1a +W yb1
+ ykb yka

ε1∝
ya1
+ +W y1b ybk

+ yak
+
2
− y1a +W yb1

+ ykb yka
2

ya1
+ +W y1b ybk

+ yak
+
2
+ y1a +W yb1

+ ykb yka
2
≈
Im(W ) Im{[(yy+ )1k ]

2}
(yy+ )11

[sums understood] Im(W ) ≈ M1

Mk

+ + … 

a 

a 

k 

b 
1 1 



Exercise 14: count the number of physical parameters in the type I see-saw model 
                distinguish between moduli and phases  

ye, yν and M depend on (18+18+12)=48 parameters, 24 moduli and 24 phases 

we are free to choose any basis leaving the kinetic terms canonical 
(and the gauge interactions unchange)  

ec →Ω
ec
ec ν c →Ω

ν c
vc l→Ωll [U (3)3]

so that we can remove 27 parameters from ye, yν and M   

we remain with 21 parameters: 15 moduli and 6 phases 
the moduli are 9 physical masses and 6 mixing angles 

these transformations contain 27 parameters (9 angles and 18 phases) 
and effectively modify ye, yν and M  

ye →Ω
ec
T yeΩl yν →Ω

ν c
T yνΩl M →Ω

ν c
T MΩ

ν c



weak point of the see-saw 

full high-energy theory is difficult to test 

€ 

L(ν c,l) = ν c yν ( ˜ Φ +l) +
1
2
ν cMν c + h.c.

depends on many physical parameters:  
3 (small) masses + 3 (large) masses 
3 (L) mixing angles + 3 (R) mixing angles 
6 physical phases = 18 parameters 

few observables to pin down the extra parameters: η,… 
[additional possibilities exist under special conditions, e.g. Lepton Flavor Violation at observable rates] 

the double of those 
describing (LSM)+L5: 
3 masses, 3 mixing angles 
and 3 phases, as in lecture 1 

easier to test the low-energy remnant L5 
[which however is “universal” and does not implies the specific see-saw mechanism of Example 2] 

look for a process where B-L is violated by 2 units. The best candidate is 
 
0νββ decay:                      (A,Z)->(A,Z+2)+2e- 

 
this would discriminate L5 from other possibilities, such as Example 1.  



Feynman diagram for 0νββ decay 

Uei 

Uei 
mi = mi

i
∑ Uei

2 =mee

€ 

mee = cos2ϑ13(cos
2ϑ12 m1 + sin2ϑ12e

2iα m2)+ sin
2ϑ13e

2iβ m3

the decay in 0νββ rates depend on the combination  

[notice the two phases α and β, not entering neutrino oscillations] 
€ 

mee = Uei
2mi

i
∑

€ 

−
g
2

Wµ
−e σ µUPMNSν + h.c.

[see Valle’s lectures] 



eem
),( 2
ijijm ϑΔ

eem
meV 10

future expected sensitivity 
on 

from the current knowledge of   
                      we can estimate 
the expected range of  
 

a positive signal would test 
both L5 and the absolute 
mass spectrum at the same 
time! 



Neutrinos and the Hierarchy Problem 



 e.w. scale    <<    …, MPl    ? 

any new particle threshold: MGUT,… 

sensitivity of mh to UV physics 

quantum effects 

M MPl 0 e.w. scale 

Why 

often discussed in terms of quadratic divergences 

δmh
2 ∝

yt
2

16π 2
Λ2

but 
-- what represents exactly Λ ? Any evidence from experiment? 
-- can we get rid of Λ in some suitable scheme ? 
-- technical aspect obscure physics 

t



hierarchy problem can be formulated entirely in terms of renormalized 
quantities with no reference to regulators 

assumption: coupling y of Higgs particle to an heavy state of mass M 

running Higgs mass δmh
2 (Q) ≈ y2

16π 2
M 2 log Q

M
Q >M

M 

mh
2(Q) 

Q Q* 

* 

fine-tune the initial conditions  
at Q* such that mh

2 (v) ≈ mh
2 (Q*)− y2

16π 2
M 2 logQ

*

M

δ mh
2(Q) 

mh
2(v) 



consider type I see-saw 

heavy state νc                    mass M       

Yukawa coupling                yν    

δmh
2 (Q) ≈ −

yν
2

4π 2
M 2 log Q

M
Q >M

by using mν ≈
yν
2v2

M
to eliminate the y2 dependence 

δmh
2 (Q) ≈ 1

4π 2
mνM

3

v2
log Q
M

< v2

log Q
M

≈1

mν ≈ 0.05eV

"

#

$
$
$

%

&

'
'
'M <1.4×107 GeV

yν ≈
mνM
v2

<10−4 too small for thermal leptogenesis ? 



the threshold correction at the scale M is almost cancelled by an 
other contribution, as e.g. in supersymmetry with a splitting between  
neutrinos and sneutrinos of order 4π x (e.w. scale) 

type III 

ways out 

the initial conditions at the scale Q* are fine-tuned to an accuracy 
of order (e.w. scale)/M 

the Higgs is not an elementary particle and dissolves above a  
compositness scale ~ TeV  

δmh
2 (Q) ≈ − 72g

4

(4π )4
M 2 log Q

M
Q >M

similar conclusions in type II and type III see-saw where threshold corrections 
are dominated by 2-loop gauge interactions 

M < 940 GeV

M < 200 GeVtype II 



Neutrinos  
and  

Lepton Flavour Violation 



LFV expected at some level 
neutrino masses 
and UPMNS ≠ 1  Li    violated (i=e,μ,τ) 

evidence for lepton flavor conversion 

€ 

ν e →ν µ,ντ

€ 

ν µ →ντ
sol, LBL exp 
atm 

direct 
indirect 

should show up in processes with charged leptons 

 
 
 

Process Relative probability Present Limit Experiment Year
µ ! e� 1 5.7⇥ 10�13 MEG 2012
µ�Ti ! e�Ti Z↵/⇡ 4.3⇥ 10�12 SINDRUM II 2006
µ�Au ! e�Au Z↵/⇡ 7⇥ 10�13 SINDRUM II 2006
µ ! eee ↵/⇡ 4.3⇥ 10�12 SINDRUM 1988
⌧ ! µ� (m⌧/mµ)2÷4 3.3⇥ 10�8 B-factories 2011
⌧ ! e� (m⌧/mµ)2÷4 4.5⇥ 10�8 B-factories 2011

Table 1: Relative sensitivities and experimental limits of the main CLFV processes.

are generally theory-limited. In some cases such processes can be searched for by
multi purpose experiments (as in the case of the B-factories) but sometimes dedicated
experiments are mandatory, due to the extreme specialization of the detector and to
the performance requirements.

3 The classical searches

In this paper I will concentrate on the three “classical” searches of CLFV decays
involving muons, which fall in the cathegory of dedicated experiments for exotic
searches. They are µ ! e�, µ ! 3e and µ ! e conversion on nuclei. In Figure 1 we
show the evolution of the limits set on this processes along the last 65 years, where
we can see the three groups of experiments done with cosmic-ray muons (1940s)
stopped pion beams (until mid-60s) and stopped muon beams (1970s onward). Each
experiment proved to be an improvement over the previous one in either beam or
detector technology.

3.1 Kinematic and backgrounds

The three processes involving muons share common characteristics, but each one
shows a peculiarity that makes it impossible to have a common experiment to search
for all three simultaneously.

The µ ! e� decay is a two body decay where the daughter particles are monoen-
ergetic (52.8 MeV) and emitted simultaneously back-to-back in the muon rest frame.
It is natural therefore to stop the muons in a thin target and for this reason a beam of
positive muons is necessary, since negative muons would undergo nuclear capture be-
fore decaying. Two background processes can mimic a signal event: a muon radiative
decay µ+ ! e+⌫⌫̄� in which the two neutino carry little energy and both positron
and photon are close to their kinematic edge, and an accidental coincidence between
a positron from a normal muon decay (“Michel positron”) and a high energy photon
coming from a radiative decay, bremsstrahlung or positron annihilation in flight. It is

2

 
 
 
 

here: focus on radiative decays of charged leptons 

prospects 
6 x 10-14 

10-15 ÷ 10-16 



in the SM, minimally extended to accommodate e.g. Dirac neutrinos 

BR(µ→ eγ ) ≈ 3α
32π

Uµi
*Uei

mi
2

mW
2

2

≈10−53 Exercise 15: 
reproduce this 

[unobservable also within type I see-saw]  

depleted by 
-- weak interactions 
-- loop factor 
-- GIM mechanism (mixing angle large, but  
                               neutrino masses tiny) 

a good place to look for BSM physics 

GIM suppression  
for quarks: 
small mixing angles 
large top mass 

mi ≈ 0.05 eV U fi ≈O(1)

<-> 

[solution in  
Cheng and Li] 

LFV probes physics beyond the νSM [=SM minimally extended  
to accommodate ν masses] 
observable rates for LFV require new physics at a scale ΛLFV 
well below the GUT or the L-violation scales 

can ΛLFV be close to the TeV scale <-> explorable at the LHC?   



L = LSM + i
e
Λ2
ec σ µνFµν( )Z (Φ+l) + 1

Λ2
[4-fermion] + h.c.+ ...

low-energy effective Lagrangian in the lepton sector 

 in the basis where charged leptons are diagonal 

[relation between the scale Λ and new particle masses M’ can be non-trivial in a weakly interacting theory g Λ/4π≈M’] 

Z ij a matrix in flavour space 

BR(µ→ eγ )< 4.2×10−13

either the scale of new physics is very 
large or flavour violation from  
New Physics is highly non-generic 
Λ > 2×104 Zµe

#
$%

&
'(TeV

 
 
 
 
 
 
 
 

Z µe

Λ2
< 2×10−9 TeV−2

LY = −e
c ye (Φ

+l) + h.c.+ ...

Im Z!" #$ii

Re Z!" #$ii

Z!" #$ij

2

(i ≠ j) € 

di

€ 

ai =
(g − 2)i
2

€ 

Rij =
BR(li → l jγ)

BR(li → l jν iν j )

electric dipole 
moments 
anomalous magnetic 
moments 
radiative decays 

€ 

µ → eγ τ → µγ τ → eγ

€ 

µ → eee τ → µµµ τ → eee ...[4-fermion operators] other LFV transitions 

[MEG 1605.05081] 



Back up slides 



eem
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from the current  
knowledge of   
 we can estimate 
the expected range  
of  
 

gA=gnucleon 

a positive signal would test 
both L5 and the absolute 
mass spectrum at the same 
time! 



largest theoretical uncertainty  
is from gA 

limits from 136Xe 



neutrinos and the stability of the electroweak vacuum 
for the current values 

mh = (125.66±0.34) GeV
mt = (173.2±0.9) GeV
αs (mZ ) = 0.1184±0.0007

the Higgs potential develops  
an instability at 

109GeV < Λ <1015GeV

assumption: only SM all the way up to the scale Λ  

for large values of the field h 

V (h) ≈ λ
4
h4

(4π )2 dλ
dt

= −6yt
4 +
3
8
[2g 4 + (g 2 + g '2 )]

+12λ yt
2 −3λ(g 2 +3g '2 )+ 24λ 2 + ...

O(λ) O(λ2) 
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Mt = 173.1 ± 0.6 GeV HgrayL
a3HMZL = 0.1184 ± 0.0007HredL
Mh = 125.7 ± 0.3 GeV HblueL

Mt = 171.3 GeV

asHMZL = 0.1163

asHMZL = 0.1205

Mt = 174.9 GeV



above the scale M a new contribution to βλ arises from neutrino Yukawa couplings 

ν

ν c

hh

h hν

ν c
δβλ = −2tr(yν yν

+ yν yν
+ ) < 0

0.1 10.2 0.3 0.4 0.50.06 0.60.08 0.8
1012

1013

1014

1015

Neutrino mass in eV

Ri
gh
t-
ha
nd
ed
n
m
as
si
n
G
eV

mh = 115 HlowerL, 120, 125, 130 GeV HupperLMeta-stable

Unstable

Non-perturbative

contributes to instability above M 

the larger M,  
the larger the contribution  

yν ≈
mνM
v2

the bound applies only to the 
portion of SM parameter space 
that guarantees a stable vacuum 
in the limit yν=0 
(mt on the lower side 
αS on the higher side) 

M < 1014 GeV 



how can a wave function renormalization (effectively) arise? 
several possibilities 
here (Exercise 5 ): bulk fermions in a compact extra dimension S1/Z2 

L = iΨ1Γ
M∂MΨ1 + iΨ2Γ

M∂MΨ2 −m1ε(y)Ψ1Ψ1 +m2ε(y)Ψ2Ψ2 − δ(y) y
Λ
f1(h+ v) f2 + h.c.

&

'
(

)

*
+

Ψ2 =
f2
E2

"

#

$
$

%

&

'
'

Ψ1 =
E1
f1

"

#

$
$

%

&

'
'

Ψ1(−y) = +γ5Ψ1(y)

Ψ2 (−y) = −γ5Ψ2 (y)
−γ5∂yΨ1,2

0 ±m1,2 ε(y)Ψ1,2
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solve the e.o.m. for the fermion  
zero modes with the b.c. 

vanishing zero-modes 
for 

Y≈O(1) 



Flavor symmetries I (the hierarchy puzzle) 
hierarchies in fermion spectrum 
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call ξi the generic small parameter. A modern approach to understand why ξi<<1 
consists in regarding ξi as small breaking terms of an approximate flavour 
symmetry. When ξi=0 the theory becomes invariant under a flavour symmetry F  

Example: why ye<<ytop? Assume F=U(1)F  

€ 

ytop (h + v)t ctF(t)=F(tc)=F(h)=0 

F(ec)=p>0 F(e)=q>0  

€ 

ye (h + v)ece
allowed 
breaks U(1)F by (p+q) units 

if ξ=<ϕ>/Λ<1 breaks U(1) by one negative unit  

€ 

ye ≈O(ξ
p+q ) << ytop ≈O(1)

provides a qualitative picture of the existing hierarchies in the fermion spectrum 


