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OUTLINE

? Preamble: Motivation

? Lecture I
I Basic elements of Nuclear Theory
I The neutrino-nucleus cross section

? Detour: what we have learned from electron-nucleus scattering
experiments

? Lecture II
I Impulse approximation regime: reconstruction of neutrino energy

in accelerator-based searches of neutrino oscillations
I Emergence of collective excitation: mean free path of low-energy

neutrinos in nuclear matter
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MOTIVATION

? Nuclear weak interactions are the driving factor of a number of
important astrophysical processes, such as the evolution of
proto-neutron stars and neutron star cooling

? Atomic nuclei—e.g., carbon, oxygen and argon—are used as
detectors in experimental searches of neutrino oscillations

? Neutrino interactions can be exploited to study aspects of
nuclear dynamics that can not be probed by charged lepton
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Lecture I
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DISCLAIMER
? Bottom line: there is no such thing as an ab initio method to

describe the properties of atomic nuclei
? In the low-energy regime, the fundamental theory of strong

interactions (QCD) becomes nearly intractable already at the
level required for the description of isolated hadrons, let alone
nuclei

? Nuclei are described in terms
of effective degrees of freedom,
protons and neutrons, and
effective interactions, mainly
meson exchange processes

? As long as their size is small
compared to the relative
distance, treating nucleons as
individual particles appears
to be reasonable
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BINDING ENERGIES AND CHARGE-DENSITY DISTRIBUTIONS

? The observation that the
nuclear binding energy per
nucleon is roughly the same
for A> 20, its value being
∼ 8.5 MeV , suggests that the
range of the NN interaction is
short compared to the nuclear
radius.

? The observation that the
charge-density in the nuclear
interior is constant and
independent of A indicates
that the NN forces become
strongly repulsive at short
distance
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ISOTOPIC INVARIANCE

? The spectra of mirror nuclei,
e.g. 35

18Ar and 35
17Cl, are

identical up to small
electromagnetic corrections

? Nuclear forces exhibit charge
independence, which is a
manifestation of a more
general property: isotopic
invariance
? Neglecting the small mass difference, nucleons can be seen as

two states of the same particle, the nucleon, specified by their
isospin, τ3 = ±1/2

? The force acting between two nucleons depends on the total
isospin of the pair, T = 0 or 1, but not on its projection T3
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THE PARADIGM OF NUCLEAR MANY-BODY THEORY

? Nuclear matter is described as a collection of pointlike protons
and neutrons interacting through the hamiltonian

H =
∑

i

p2
i

2m
+
∑

j>i

vij +
∑

k>j>i

Vijk

? The mean field approximation, underlying the nuclear shell
model, amounts to replacing

∑

j>i

vij +
∑

k>j>i

Vijk →
∑

i

Ui ,

? While being able to explain a number of nuclear properties, the
mean field approximation fails to take into account correlations,
which have long being recognized to play a significant role.
More on this later.
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THE bottom up APPROACH

? Phenomenological potentials are determined by fitting the
properties of the exactly solvable two- and three-nucleon systems,
as well as the equilibrium density of isospin-symmetric matter

I vij is strongly constrained by deuteron properties and
nucleon-nucleon (NN) scattering data, and reduces to Yukawa’s
one-pion exchange potential at large distances.

vij =
∑
p

vp(rij)O
p
ij

Opij = [11, (σi · σj), Sij , (` · S), . . .]⊗ [11, (τ i · τ j)] , . . .

I The three-nucleon potential consists of an attractive part arising
from two-pion exchange and a purely phenomenological repulsive
component

Vijk = V 2π
ijk + V R

ijk

? Recently, consistent models of vij and Vijk have been also
derived within a formalism inspired by chiral perturbation
theory
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THE NN POTENTIAL IN THE 1S0 CHANNEL

? Phenomenological models2 S. Aoki et al. (HAL QCD Collaboration),

Fig. 1. Three examples of the modern NN potential in 1S0 (spin-singlet and S-wave) channel:

Bonn,6) Reid937) and Argonne v18.
8) Taken from Ref. 9).

The nuclear saturation, the nuclear shell structure, the nuclear superfluidity
and the structure of neutron stars are all related to the properties of the nuclear
force.13)–15) Furthermore, the hyperon-nucleon (Y N) and hyperon-hyperon (Y Y )
forces, whose information is still quite limited experimentally, are crucial to under-
stand the structure of hypernuclei and the core of the neutron stars. The three-
nucleon forces (and the three-baryon forces in general) are also important to under-
stand the binding energies of finite nuclei and the equation of state of dense hadronic
matter.

It has been a long-standing challenge in theoretical particle and nuclear physics
to extract the hadron-hadron interactions from first principle. A framework suitable
for such a purpose in lattice QCD was first proposed by Lüscher:16) For two hadrons
in a finite box with the size L × L × L under periodic boundary conditions, an
exact relation between the energy spectra in the box and the elastic scattering phase
shift at these energies has been derived. If the range of the hadron interaction R is
sufficiently smaller than the size of the box R < L/2, the behavior of the two-particle
Nambu-Bethe-Salpeter (NBS) wave function ϕ(r) in the interval R < |r| < L/2 is
sufficient to relate the phase shift and the two-particle spectrum. This Lüscher’s
finite volume method bypasses the difficulty to treat the real-time scattering process
on the Euclidean lattice. Furthermore, it utilizes the finiteness of the lattice box
effectively to extract the information of the on-shell scattering matrix and the phase
shift.

A closely related but a new approach to the hadron interactions from lattice QCD
has been proposed recently by three of the present authors9), 17), 18) and has been
developed extensively by the HAL QCD Collaboration. (Therefore the approach
is now called the HAL QCD method.) Its starting point is the same NBS wave
function ϕ(r) as discussed in Ref. 16). Instead of looking at the wave function
outside the range of the interaction, the authors consider the internal region |r| < R
and define an integral kernel (or the non-local “potential” in short) U(r, r′) from
ϕ(r) so that it obeys the Schrödinger type equation in a finite box. This potential
can be shown to be energy-independent by construction. Since U(r, r′) for strong

? Lattice QCD, mπ = 530 MeV
14 S. Aoki et al. (HAL QCD Collaboration),
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Fig. 2. (Left)The NN wave function for the spin-singlet and spin-triplet channels in the orbital A+
1

representation at mπ ! 529 MeV and a ! 0.137 fm in quenched QCD. The insert is a three-

dimensional plot of the spin-singlet wave function ϕW (x, y, z = 0). (Right) The NN (effective)

central potential for the spin-singlet (spin-triplet) channel determined from the orbital A+
1 wave

function. Both figures are taken from Ref. 18).

with λn(t) and vn(x, t) being the eigenvalues and corresponding eigenvectors of
R(x,y, t), respectively. Note that zero eigenvalues are removed in the above sum-
mation. Suppose we introduce a modified potential as

Û(x,y) = U(x,y) +
∑

λn=0

cnvn(x, t)v†
n(y, t). (3.29)

Then it satisfies the same Schrödinger equation for all possible values of cn, the
non-local potential is not unique as discussed before.

§4. NN potential from lattice QCD

.

4.1. Central potential in quenched QCD

Let us first show results in the quenched QCD, where creations and annihilations
of virtual quark-antiquark pairs are neglected: The standard plaquette gauge action
is employed on a 324 lattice at the bare gauge coupling constant β = 6/g2 = 5.7. This
corresponds to the lattice spacing a ! 0.137 fm (1/a = 1.44(2) GeV), determined
from the ρ meson mass in the chiral limit, and the physical size of the lattice L ! 4.4
fm.9) As for the quark action, the standard Wilson fermion action is used at three
different values of the quark mass corresponding to the pion mass mπ ! 731, 529, 380
MeV and the nucleon mass mN ! 1560, 1330, 1200 MeV, respectively.

Fig. 2(Left) shows the NBS wave functions for the spin-singlet and the spin-
triplet channels in the orbital A1 representation at mπ ! 529 MeV. These wave
functions are normalized to be 1 at the largest spatial point r ! 2.2 fm. The
central potential in the spin-singlet channel and the effective central potential in
the spin-triplet channel extracted from the wave functions at mπ ! 529 MeV are
shown in Fig. 2(Right). These potentials reproduce the qualitative features of the
phenomenological NN potentials, namely the repulsive core at short distance sur-
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MANY-BODY THEORY OF NUCLEAR MATTER

? Owing to the presence of a strong repulsive core, the matrix
elements of the nuclear Hamiltonian between eigenstates of the
Hamiltonian describing the non-interacting system are large.
Perturbation theory in this basis is not applicable.

? Alternate avenues
I Replace the bare NN potential with a well behaved effective

interaction, that can be used in perturbation theory using the Fermi
gas basis

I G-matrix perturbation theory

G-MATRIX

I The problem has been studied by several authors using different
methods and employing the usual diagrammatic techniques

I The systematic treatment in many-body perturbation theory of short
range repulsion is based on the replacement of the bare interaction
potential with the reaction matrix

hp0|v|pi ! hp0|G|pi .

G = + + + . . . �

Figure 2: Diagrammatic representation of the ladder diagrams, describing two-body multiple
scattering processes. The bare interaction and the reaction matrix are represented by dashed
and wavy lines, respectively.

multiple scattering processes, usually referred to in diagrammatic language as ladder series,
makes the resulting reaction matrix a well-behaved operator, best suited for perturbative calcu-
lations in different schemes, such as scattering theory to in free space, time-ordered perturbation
theory and the Green’s function method. The main difference between the three cases is the
form of the free particle propagators, which determines the explicit form of the integral equation
defining for the reaction matrix. Summing up ladder diagrams in free space – the t-matrix
method – is equivalent to solving the Lippman-Schwinger equation, while when the presence of
the filled Fermi sea is taken into account – the G-matrix method – the same procedure leads to
the Bethe-Goldstone equation or to the Bethe-Salpeter equation, respectively, depending on the
use of time-ordered (Goldstone) or standard (Feynman) perturbation theory [4].

Variational approaches, originally developed to describe classical and quantum liquids, have
been also successfully used to study strongly interacting fermion systems in the high density
regime, relevant to the understanding of the properties of astrophysical compact objects.

In this Thesis, we will adopt Correlated Basis Functions (CBF) perturbation theory and
the cluster expansion technique [5, 6]. This formalism has been recently employed to obtain an
effective interaction suitable for use in perturbation theory in the basis of the non interacting
Fermi gas [7, 8].

Motivated by the universality of the repulsive nature of the interaction at short distance,
we will investigate the accuracy of the CBF effective interaction approach studying a variety of
properties of the fermion hard sphere system. Within this model, the potentials shown in Fig. 1
are replaced by

v(r) =

�
� r < a
0 r > a

, (1)

where r denotes the distance between the two interacting particles. Note that neglecting the
long-range attractive interaction prevents the possible formation of Cooper pairs, leading to the
transition to a superconducting or superfluid phase.

It is long known that the hard sphere model provides an accurate description of several
properties of dilute Fermi systems. Algebraic expressions of the ground state energy, the single-
particle energy and the momentum distribution can be written as power series in the parameter
(kF a), where kF is the Fermi momentum [9]. We will use the results obtained from these
expansions in low density limit as benchmarks to assess the accuracy of the effective interaction
approach, thus providing the basis for its generalisation to neutron matter.

2

I The sum all (infinite) multiple scattering processes (ladder series)
between free particles (t-matrix) or in presence of the Fermi sea
background (G-matrix) makes the resulting reaction matrix a
well-behaved operator, best suited for perturbative calculations

I t-matrix and G-matrix are distinguished by the different forms of the
internal line propagators and the integral equation which defines the
reaction matrix

6 / 1

I Renormalization group evolution of the bare interaction to low
momentum

I Modify the basis states in such a way as to mitigate the effects of
the repulsive core
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CORRELATED BASIS FUNCTION (CBF) FORMALISM

? The eigenstates of the nuclear hamiltonian are approximated by
the set of correlated states, obtained from the eigenstates of the
Fermi Gas (FG) model

|n〉 =
F |nFG〉

〈nFG|F †F |nFG〉1/2
=

1√Nn
F |nFG〉 , F = S

∏

j>i

fij

? the structure of the two-nucleon correlation operator reflects the
complexity of interaction

fij =
∑

p

fp(rij)O
p
ij

? the operators Onij are the same as those entering the definition of
the NN potential vij

? the radial shape of the fp(r) is determined through functional
minimization of the ground-state energy
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NN POTENTIAL AND CORRELATION FUNCTIONS
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RESULTS OF NUCLEAR MANY-BODY THEORY

? Quantum Monte Carlo and variational calculations performed
using phenomenological nuclear Hamiltonians explain the
energies of the ground- and low-lying excited states of nuclei
with mass A ≤ 12, as well as saturation of the equation of state of
cold isospin-symmetric nuclear matter

17
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FIG. 3 GFMC energies of light nuclear ground and excited states for the AV18 and AV18+IL7 Hamiltonians compared to
experiment. See Table I for references.

TABLE I AV18+IL7 GFMC results for A  12 nuclear ground states (Brida et al., 2011; Lovato et al., 2013; McCutchan et al.,
2012; Pastore et al., 2013, 2014; Pieper and Carlson, 2015; Wiringa et al., 2013), compared to experimental values (Amroun
et al., 1994; NNDC, 2014; Nörtershäuser and et al., 2009; Nörtershäuser et al., 2011; Purcell et al., 2010; Shiner et al., 1994;
Tilley et al., 2002, 2004). Numbers in parentheses are statistical errors for the GFMC calculations or experimental errors;
errors of less than one in the last decimal place are not shown.

AZ(J⇡; T ) E (MeV) rp [rn] (fm) µ (µN ) Q (fm2)
GFMC Expt. GFMC Expt. GFMC Expt. GFMC Expt.

2H(1+; 0) �2.225 �2.2246 1.98 1.96 0.8604 0.8574 0.270 0.286
3H( 1

2

+
; 1

2
) �8.47(1) �8.482 1.59 [1.73] 1.58 2.960(1) 2.979

3He( 1
2

+
; 1

2
) �7.72(1) �7.718 1.76 [1.60] 1.76 �2.100(1) �2.127

4He(0+; 0) �28.42(3) �28.30 1.43 1.462(6)
6He(0+; 1) �29.23(2) �29.27 1.95(3) [2.88] 1.93(1)
6Li(1+; 0) �31.93(3) �31.99 2.39 2.45(4) 0.835(1) 0.822 0.1(2) �0.082(2)
7He( 3

2

�
; 3

2
) �28.74(3) �28.86 1.97 [3.32(1)]

7Li( 3
2

�
; 1

2
) �39.15(3) �39.25 2.25 [2.44] 2.31(5) 3.24(1) 3.256 �3.9(2) �4.06(8)

7Be( 3
2

�
; 1

2
) �37.54(3) �37.60 2.51 [2.32] 2.51(2) �1.42(1) �1.398(15) �6.6(2)

8He(0+; 2) �31.42(3) �31.40 1.83(2) [2.73] 1.88(2)
8Li(2+; 1) �41.14(6) �41.28 2.10 [2.46] 2.20(5) 1.48(2) 1.654 2.5(2) 3.27(6)
8Be(0+; 0) �56.5(1) �56.50 2.40(1)
8B(2+, 1) �37.51(6) �37.74 2.48 [2.10] 1.11(2) 1.036 5.9(4) 6.83(21)
8C(0+; 2) �24.53(3) �24.81 2.94 [1.85]
9Li( 3

2

�
, 3

2
) �45.42(4) �45.34 1.96 [2.33] 2.11(5) 3.39(4) 3.439 �2.3(1) �2.74(10)

9Be( 3
2

�
, 1

2
) �57.9(2) �58.16 2.31 [2.46] 2.38(1) �1.29(1) �1.178 5.1(1) 5.29(4)

9C( 3
2

�
, 3

2
) �38.88(4) �39.04 2.44 [1.99] �1.35(4) �1.391 �4.1(4)

10Be(0+; 1) �64.4(2) �64.98 2.20 [2.44] 2.22(2)
10B(3+; 0) �64.7(3) �64.75 2.28 2.31(1) 1.76(1) 1.801 7.3(3) 8.47(6)
10C(0+; 1) �60.2(2) �60.32 2.51 [2.25]
12C(0+; 0) �93.3(4) �92.16 2.32 2.33
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WARM-UP: NEUTRINO-NUCLEON X-SECTION

? In the regime of momentum transfer
(q) discussed in this Lectures, Fermi
theory of weak interaction works just
fine

W,Z0

? Consider, for example, the x-section of the charged-current
process ν` + n→ `− +X

dσ ∝ LλµWλµ

I Lλµ is determined by the lepton kinematical variables (more on
this later)

I under very general assumptions Wλµ can be written in the form

Wλµ = −gλµW1 + pλ pµ
W2

m2
N

+ i ελµαβ qα pβ +
W3

m2
N

+ qλ qµ
W4

m2
N

+(pλ qµ + pµ qλ)
W5

m2
N
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? In principle, the structure functions Wi can be extracted from the
measured cross sections

? In the elastic sector ν` + n→ `− + p they can be expressed in
terms of vector (F1(q2) and F2(q2)), axial (FA(q2)) and
pseudoscalar (FP (q2)) form factors

W1 = 2

[
−q

2

2
(F1 + F2)

2
+

(
2m2

N −
q2

2

)
FA

2

]

W2 = 4

[
F1

2 −
(

q2

4m2
N

)
F2

2 + FA
2

]
= 2W5

W3 = −4 (F1 + F2) FA

W4 = −2

[
F1 F2 +

(
2m2

N +
q2

2

)
F2

2

4m2
N

+
q2

2
FP

2 − 2mN FP FA

]

? according to the CVC hypothesis, F1 and F2 can be related to the
electromagnetic form factors, measured by electron-nucleon
scattering, while PCAC allows one to express FP in terms of the
axial form factor
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VECTOR FORM FACTORS

? Proton data

? Neutron
(deuteron) data

2.2.1 Proton form factor measurements

Figure 4 shows Rosenbluth separation results performed in the 1970’s as the ratio GEp/GD, where GD is the
dipole FF given below by Eq. 14; it is noteworthy that these results strongly suggest a decrease of GEp with
increasing Q2, a fact noted in all four references [Ber71, Pri71, Bar73, Han73]. As will be seen in section
3.4, the slope of this decrease is about half the one found in recent recoil polarization experiments. Left
out of this figure are the data of Litt et al. [Lit70], the first of a series of SLAC experiments which were
going to lead to the concept of “scaling” based on Rosenbluth separation results, namely the empirical relation
µpGEp/GMp ∼ 1. Predictions of the proton FF GEp made in the same period and shown in Fig. 4 are from
Refs. [Iac73, Hoh76, Gar85], all three are based on a dispersion relation description of the FFs, and related to
the vector meson dominance model (VMD).

Figure 5: Data base for GEp obtained by the Rosen-
bluth method; the references are [Han63, Lit70, Pri71,
Ber71, Bar73, Han73, Bor75, Sim80, And94, Wal94,
Chr04, Qat05].

Figure 6: Data base for GMp obtained by the
Rosenbluth method; the references are [Han63, Jan66,
Cow68, Lit70, Pri71, Ber71, Han73, Bar73, Bor75,
Sil93, And94, Wal94, Chr04, Qat05].

A compilation of all GEp and GMp data obtained by the the Rosenbluth separation technique is shown in
Figs. 5 and 6; in these two figures both GEp and GMp have been divided by the dipole FF GD given by:

GD =
1

(1 + Q2/0.71GeV 2)2
with GEp = GD, GMp = µpGD, and GMn = µnGD. (14)

It is apparent from Fig. 5 that the cross section data have lost track of GEp above Q2 ∼ 1 GeV2. It is difficult
to obtainG2

E for large Q2 values by Rosenbluth separation from ep cross section data for several reasons; first,

10
Figure 20: GEn data as in Fig. 18, compared to the
fits [Kel04] (thick line) and [Gal71] (thin solid line).
Platchkov’s fits [Pla90] with 3 differentNN potentials
shown as dotted [Rei68], dot-dashed [Lac81] and long
dashes [Wir84] lines, respectively.

Figure 21: The complete data base for GMn, from
cross section and polarization measurements. Shown
as a solid curve is the polynomial fit by Kelly [Kel04];
note that the recent data of [Bro05] are not included
in this fit.

corrections, and the ratio GE/GM even less being a ratio of ratios. Nevertheless polarization data ultimately
will require radiative corrections, particularly as experiments continue into the domain of yet larger Q2. So is
the discrepancy between Rosenbluth and polarization data entirely due to inaccuracy or incompleteness in the
radiative correction? An immediate consequence of the previous statements is that radiative corrections for
elastic ep scattering in general have to be reexamined, as in their presently practiced form they are unable to
reconcile the cross section results with polarization results.

Encouraging progress has been made including the one process certainly neglected in all previous ra-
diative corrections, the exchange of two photons, neither one of them “soft” (this will be further discussed
in section 3.5). Several calculations [Gui03, Afa05a, Blu03] suggest that this one diagram may contribute
significantly to the ε-dependence of the cross section; other considerations lead to the conclusion that the con-
tribution from the two-photon term is too small at the Q2-values of interest [Bys06], and/or leads to a definite
non-linearity in the Rosenbluth plot which has not been seen in the data so far [Tom05].

Following the publication of the JLab recoil polarizationGEp/GMp ratios up to 5.54 GeV2, the entire cross
section data base for the proton has been reanalyzed by Brash et al. [Bra02], leaving all data above Q2 = 1
GeV2 out, using the data from [Jon00, Gay02] above this value ofQ2, and allowing for relative renormalization
of all cross section data so as to minimize the χ2 of a global fit forGMp. The fitting function is the inverse of a
polynomial of order 5. The renormalized values of GMp show less scatter than the original data base, and the
net effect of imposing the recoil polarization results is to re-normalize all GMp data upward by 1.5-3% when
compared with the older Bosted parametrization [Bos95], as shown in Fig. 23.

Another useful fit to the nucleon FFs which gives a good representation of the data is the one by Kelly
[Kel04]. This fit uses ratios of polynomials with maximum powers chosen such that GEp, GMp and GMn

have the asymptotic 1/Q4 behavior required by pQCD; in [Kel04] GEn was also re-fitted with a Galster FF, as

24
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AXIAL FORM FACTOR

? Dipole
parametrization

FA(Q2) =
gA

[1 + (Q2/M2
A)]

2

Axial structure of the nucleon 4

(anti)neutrino scattering off protons [8, 9, 10], off deuterons [11]-[16] and other nuclei (Al,

Fe) [17, 18] or composite targets like freon [19]-[22] and propane [22, 23]. In the left panel

of figure 1 we show the available values for the axial mass MA obtained from neutrino

scattering experiments. As pointed out in [24], references [17, 19, 20, 23] reported
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BNL (1980)
BNL (1981)
Argonne (1982)
Fermilab (1983)
BNL (1986)
BNL (1987)
BNL (1990)

Argonne (1973)

0.85 0.95 1.05 1.15 1.25
MA  [GeV]

Frascati (1970)
Frascati (1970) GEn=0
Frascati (1972)
DESY (1973)
Daresbury (1975)  SP
Daresbury (1975)  DR
Daresbury (1975)  FPV
Daresbury (1975)  BNR

Average
MAMI (1999)
Saclay (1993)
Olsson (1978)
Kharkov (1978)
DESY (1976)

Daresbury (1976)  SP

Daresbury (1976)  BNR
Daresbury (1976)  DR

Figure 1. Axial mass MA extractions. Left panel: From (quasi)elastic neutrino

and antineutrino scattering experiments. The weighted average is MA = (1.026 ±
0.021)GeV. Right panel: From charged pion electroproduction experiments. The

weighted average is MA = (1.069 ± 0.016)GeV. Note that value for the MAMI

experiment contains both the statistical and systematical uncertainty; for other values

the systematical errors were not explicitly given. The labels SP, DR, FPV and BNR

refer to different methods evaluating the corrections beyond the soft pion limit as

explained in the text.

severe uncertainties in either knowledge of the incident neutrino flux or reliability of the

theoretical input needed to subtract the background from genuine elastic events (both

of which gradually improved in subsequent experiments). The values derived in these

papers fall well outside the most probable range of values known today and exhibit

very large statistical and systematical errors. Following the data selection criteria of

the Particle Data Group [4], they were excluded from this compilation. In all cases,

the axial form factor data were parameterized in terms of a dipole, the resulting world

average is

MA = (1.026 ± 0.021) GeV (neutrino scattering) . (9)

The other determinations of the axial form factor are based on the analysis of charged

pion electroproduction off protons, see references [24][25]-[34], slightly above the pion

production threshold (note that the MAMI measurement is presently extended [35] to

lower momentum transfer and to check the cross section at the highest Q2 point reported

in [24]). Such type of analysis is more involved. It starts from the low–energy theorem of

Nambu, Lurié and Shrauner [36, 37] for the electric dipole amplitude E
(−)
0+ at threshold,

. gA from neutron β-decay

. axial mass MA from (quasi) elastic ν- and ν̄-deuteron experiment

17 / 77



NEUTRINO-NUCLEUS X-SECTION

? Consider again a charged current process

ν` +A→ `− +X

? Nuclear response tensor

Wλµ =
∑

N

〈0|J†λ|n〉〈n|Jµ|0〉δ(4)(p+ k − pN − k′)

? To take into account all relevant reaction processes one needs to:

I Model nuclear dynamics
I Solve the many-body Schrödinger equation H|n〉 = En|n〉
I Determine the nuclear weak current (Are the nucleon weak

structure functions modified by the nuclear medium? Are there
additional contributions to the current?)
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THE ONE-PARTICLE–ONE-HOLE (1p1h) SECTOR

I Consider a 12C target as an example

|N〉 = |p, 11C〉 , |n, 11B〉
I The infamous Relativistic Fermi Gas Model (RFGM): the nucleus is

described as a degenerate system at constant density ρ

LµνW
µν
A ∝ k k + q

q

q

No nucleon-nucleon interaction, mean field described by a constant
binding energy ε. Oriented lines represent the Green’s functions

Gh(k,E) =
θ(k − kF )

E − e0(k) + iη
, Gp =

θ(kF − k)

E − e0(k)− iη
where η = 0+, kF = (3π2ρ/2)1/3 is the Fermi momentum and

e0(k) =
√
k2 +m2 + ε
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INTERACTING NUCLEONS

? In the presence of interactions

e0
k =

k2

2m
→ e0

k + Σ(k, E) = e0
k + ReΣ(k, E) + iImΣ(k, E)

? Green’s function

Gh(k, E) =
1

E − e0
k − Σ(k, E)

? Self energy: Σ(k, E)

ΣHF (k)

(a)

Σp(k, E)

(b)

q q′
k′

Σh(k, E)

(c)

q q′
k′

? Σ(k, E) can be computed using eithr CFB or G-matrix
perturbation theory
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QUASIPARTICLES AND SPECTRAL REPRESENTATION

? The identification of single particle properties in interacting
many-body systems is a non trivial issue, addressed by Landau’s
theory of normal Fermi liquids

? According to Landau, there is a one-to-one correspondence
between the elementary excitations of a Fermi liquid, dubbed
quasiparticles, and those of the non interacting Fermi gas.
Quasiparticle states of momentum k are specified by their
energy, ek and lifetime τk

Gh(k, E) =
Zk

E − ek − iτ−1
k

+GBh (k, E)

ek = e0
k+Σ(k, ek), τ−1

k = ZkImΣ(k, ek), Zk =

[
1− ∂

∂E
Re Σ(k,E)

]−1

E=ek

? GBh (k, E) is a smooth contribution associated with
multiparticle-multihole excitations
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I Including nucleon-nucleon interactions in the initial state

Wµν
A = k k + q

q

q

Gh(k,E) = = + + + . . .

I the bare nucleon-nucleon interaction cannot be used for
perturbation theory in the basis of eigenstates of the
non-interacting system. Eiher the interaction or the basis states
need to be “renormalized” using G-matrix or Correlated Basis
Function (CBF) perturbation theory.
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HOLE STATES IN ISOSPIN-SYMMETRIC NUCLEAR MATTER
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I In principle, the effects of nucleon-nucleon interactions in the
final state may be taken into account in a consistent fashion,
using

Wµν
A =

k k + q

q

q

However, the propagation of the outgoing nucleon, described by
the Green’s function Gp(k + q, E) , requires either a relativistic
model of nuclear dynamics or an approximation scheme based
on nucleon-nucleon and nucleon-nucleus scattering data
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THE TWO-PARTICLE–TWO-HOLE (2P2H) SECTOR

I Interactions couple the 1h (1p) states of the residual nucleon to
2h1p (2p1h) states, in which one of the spectator nucleons is
excited to the continuum. This mechanism leads to the
appearance of 2p2h final states

|N〉 = |pp, 10B〉 , |np10C〉 . . .
I In addition, 2p2h states appear through their couplig to the

ground state

Wµν
A =

q

q

I These contributions exhibit a specific energy dependence, and
give rise to a characteristic event geometry

I Note: in interacting many body systems the excitation of 2p2h
states does not require a two-nucleon current
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MESON-EXCHANGE CURRENTS (MEC)

I Two-nucleon currents naturally couple the nuclear ground state
to 2p2h final states, e.g. through the processes

Wµν
A =

q

q

q

q

as well as through similar processes involving the excitation of a
∆-resonance

I Note: amplitudes involving one- and two-body currents and the
same 2p2h state give rise to interference
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LONG-RANGE CORRELATIONS

I At low momentum transfer, processes involving many nucleons
may become important. Within the Tamm-Dancoff (ring)
approximation the nuclear final state is written in the form

|N〉 =
∑

i

Ci|pihi〉

Wµν
A =

+ + + . . .

Note: the Random-Phase-Approximation (RPA) is a
generalization of the above scheme
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SUMMARY OF LECTURE I

? In spite of the severe difficulties associated with both the nature
of nuclear interactions and the complexity of the nuclear
many-body problem, nearly exact calculations of many
properties of nuclei with mass number A ≤ 12 are now possible.

? Extended modeling is still needed to describe the reaction
mechanisms contributing to the neutrino-nucleus cross sections,
and clarify the role of different dynamical effects (mean field
effects, short- and long-range correlations, . . . )

? The proposed model must be validated through comparison to
external data set. In this context, a critical role is played by the
large database of precisely measured electron-nucleus cross
section.
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Detour

What we have learned from electron-nucleus scattering experiments
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INFORMATION FROM ELECTRON SCATTERING

I Vast supply of precise data
available

Q2 = 4EeEe′ sin
2 θe

2
, x =

Q2

2Mω
I Carbon target

I Different rection mechanisms
contributimg to the mesured
cross sections can be readily
identified

e+A→ e′ +X

Ee ∼ 1 GeV
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THE MEAN-FIELD APPROXIMATION

I Nuclear systematics offers ample evidence supporting the
further assumption, underlying the nuclear shell model, that the
potentials appearing in the Hamiltonian can be eliminated in
favour of a mean field

H → HMF =
∑

i

[
p2
i

2m
+ Ui

]

[
p2
i

2m
+ Ui

]
φαi

= εαi
φαi

, α ≡ {n, `, j}

I For proposing and developing the nuclear shell model, E.
Wigner, M. Goeppert Mayer and J.H.D. Jensen have been
awarded the 1963 Nobel Prize in Physics

I A warning from Blatt & Weiskopf (AD 1952): “The limitation of
any independent particle model lies in its inability to encompass
the correlation between the positions and spins of the various
particles in the system”
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THE SHELL-MODEL GROUND STATE

I According to the shell model, in the nuclear groud state protons
and neutrons occupy the A lowest energy eigenstates of the
mean field Hamiltonian

HMFΨ0 = E0Ψ0 , Ψ0 =
1

A!
det{φα} , E0 =

∑

α∈{F}
εα

I Ground state of 16O: Z = N = 8

(1S1/2)2 , (1P3/2)4 , (1P1/2)2

Bottom line: the shell model is not the whole story !

Emiss
12.1

18.3

40.0
(MeV)

1p1/2

3/21p

1s1/2

O16

Spectral lines corresponding to
shell model orbitals clearly
seen in high resolution
experiments
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Wroclaw, November 23rd, 2007 – p.4/37
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THE (e, e′p) REACTION

I Consider the process e+A→ e′ + p+ (A− 1) in which both the
outgoing electron and the proton, carrying momentum p′, are
detected in coincidence

e e′

p′

q, ω

I Assuming that there are no final state interactions (FSI), the
initial energy and momentum of the knocked out nucleon can be
identified with the measured missing momentum and energy,
respectively

pm = p′ − q , Em = ω − Tp′ − TA−1 ≈ ω − Tp′
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PROTON KNOCKOUT FROM SHELL-MODEL STATES

? The spectral lines corresponding to the shell model states clearly
seen in the missing energy spectra of measured by

e+ A→ e′ + p+X

Emiss
12.1

18.3

40.0
(MeV)

1p1/2

3/21p

1s1/2

O16
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EXPOSING THE LIMITS OF THE INDEPENDENT PARTICLE MODEL

I The measured missing energy spectra, while exhibiting the lines
predicted by the nuclear shell model, provide unambiguous
evidence of its limitations

482 J. MOUGEY et al. 

4’Ta by which the average kinetic energy 

CT,> = s & l@i,U’)12d3p, (5.7) 

appears lowered when calculated with a distorted momentum distribution instead 
of the plane wave distribution, i.e. the “true” wave function in momentum space, 
and (ii) the average reduction factor 

qa = I@$‘, d)12d3p s i ~@#‘)~2d3P. (5.8) 

These quantities have been tabulated in table 5. One finds that AT, is of the order 
of 2 MeV and not very sensitive to the nucleus and orbit considered. The reduction 
factor varies slowly from 0.7 for the outer (lp) shell of 12C to about 0.2 for the inner 
(Is) shell of 58Ni in a fairly systematic way. These values will be used (sect. 6) as 
correction factors in a model independent analysis of the experimentally determined 
distorted spectral function in connection with a sum rule, On the other hand, calcu- 
lated distorted momentum distributions will enter directly into a shell-model 
expansion of the experimental spectral function S(E, P), which becomes thus much 
more model dependent. 

TABLE 5 

Results of the analysis 

w 1P 0.66 2.1 2.5 17.5&0,4 18.3 
IS 0.52 1.9 1.0 38.lil.O 12.7 

28Si 2s 0.44 3.2 
Id 0.46 2.2 
1P 0.39 2.0 
1s 0.28 1.1 

13.8+0.5 
16.1 L-O.8 

::, 

18.6 
19.5 
14.1 
8.5 

40Ca 2s 0.38 3.2 
Id 0.38‘ 2.1 
1P 0.32 2.4 
IS 0.23 1.2 

58X If 0.32 2.4 
2s 0.31 3.2 
Id 0.32 2.2 
1P 0.27 2.0 
1s 0.19 1.1 

0.4 
5.5 
2.9 
0.9 

1.3 
1.1 
5.1 
1.5 

7.6 
1.9 
8.9 
6.8 
1.0 

11.2kO.3 
14.9FO.8 

(Z) 

19.7 
19.6 
14.0 
8.0 

23.4 
18.6 
19.4 
14.4 
9.1 

The attenuation coefficients qa and the corrections AT, to the kinetic energies when calculated in DWIA 
instead of PWIA. The occupation numbers N, = n,/q. and mean removal energies -(I$, after 
distortion corrections (numbers without error bars must be considered as tentative, due to the 
experimental energy cut off at 80 MeV and the strong model dependence of the fitting procedure). 
The mean kinetic energies (n3,, including distortion corrections, computed from the model single 
particle momentum density. 

I The systematic deviation of the spectroscopic factors from the
shell model prediction Zα = 2jα + 1 is a clear signature of strong
correlation effects
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SPECTROSCOPIC FACTORS OF VALENCE STATES
I The quenching of the spectroscopic factor of valence states has

been confirmed by a number of high-resolution (e, e′p)
experiments carried out at NIKHEF-K using a 700 MeV high
duty factor electron beam

Nuclear Structure: a wide angle view 8

Removal probability forRemoval probability for
valence protonsvalence protons

fromfrom
NIKHEF dataNIKHEF data

L. L. LapikLapikááss, , NuclNucl. Phys. A553,297c (1993). Phys. A553,297c (1993)

Note:

We have seen mostly

data for removal of

valence protons

S ≈ 0.65 for valence protons
Reduction ⇒ both SRC and LRC

I quenching is large and
independent of target mass

I both short- and long-range
correlations contribute
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GAUGING FSI: NUCLEAR TRANSPARENCY FROM (e, e′p)

I Nuclear transparency, measured by the ratio σexp/σPWIANUCLEAR TRANSPARENCY FROM QUASIELASTIC 12C(e, e′p) PHYSICAL REVIEW C 72, 054602 (2005)
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FIG. 4. Nuclear transparency TA for C, Fe, and Au as a function
of the proton kinetic energy Tp compared to the correlated Glauber
calculations (solid lines). The data indicated by circles are from the
NE18 experiment at SLAC [22], squares and diamonds are Jlab data
of Refs. [23] and [1] and from Bates [3] (triangle down). The result
indicated by stars is obtained with the correlated spectral function of
Ref. [8].

(circles) and Jlab [1,23] (squares and diamonds). The error
bars shown in the figure contain the statistical and systematic
uncertainty but not the model-dependent error. This applies
also to the data points of the previous works. Since the previous
experiments were analyzed using the same assumption and
ingredients the model-dependent error is the same for them,

while it is somewhat lower in the case of using the CBF spectral
function.

The solid lines drawn in Fig. 4 are the result of the theory
presented in this paper. For comparision also results from
previous experiments [1,22,23] for iron and gold are shown.
For all three nuclei and large proton kinetic energy (>1.5 GeV)
the theory describes the data well within the error bars. At
low energy there is remarkable agreement between theory
and the experimental results obtained using the CBF spectral
function. The two data points at the lowest Tp for 12C could
indicate a deviation from the prediction, but considering the
model-dependent error bar no firm conclusion can be drawn.
With the standard analysis the experimental results are ≈5%
too low but in agreement with previous analyses using the same
ingredients. On the other hand the data points for gold seem
to exceed the theory. For these analyses a correction factor
1/ϵSRC = 0.78 was used [22,23]. If one would have used the
CBF spectral function the results would be lowered by ≈7%
and thus closer to the theory.
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Lecture II
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DETERMINATION OF THE OSCILLATION PARAMETERS

? The oscillation parameters
∆m2 and sin2 2θ are extracted
from the energy-dependence
of the oscillation probability

Pα→β = sin2 2θ sin2

(
∆m2L

4Eν

)

1.  disappearance measurement 
2 goals for T2K and NOvA experiments

(1) precision measurement for m2
 and sin2223 through  events

- Accurate neutrino energy reconstruction
(2) e appearance measurement
- Careful rejection of background reactions

Teppei Katori, Indiana University03/05/08 7

mis-reconstruction of neutrino 
energy spoils   disappearance 
signals  

sin2223

m2


Reconstructed neutrino energy (GeV)

T2K collabo.

background

Reconstructed 
neutrino energy 
at far detector

T2K collabo.

fa
r/n

ea
r  

ra
tio

? The incoming neutrino
energy Eν is not
known, its value being
distributed according
to a broad flux
(MiniBeeNE as an
example)
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NEUTRINO ENERGY RECONSTRUCTION

? Consider the charged current quasi elastic (CCQE) process

νµ + (A,Z)→ µ− + p+ (A− 1, Z)?

? Assuming single-nucleon knock out, the incoming neutrino
energy can be recosntructed from

Eν =
m2
p −m2

µ − En2 + 2EµEn − 2kµ · pn + |pn2|
2(En − Eµ + |kµ| cos θµ − |pn| cos θn)

,

where |kµ| and θµ are measured, while pn and En are the
unknown momentum and energy of the interacting neutron

? Existing simulation codes routinely use pn = 0, En = mn − ε,
with ε ∼ 20 MeV for carbon and oxygen, or the Fermi gas (FG)
model with pF ∼ 220 MeV
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RECONSTRUCTED NEUTRINO ENERGY IN νµ +
16 O→ µ− +X

I Neutrino energy
reconstructed using 2 × 104

pairs of {|p|, E} values
sampled from the nucleon
energy-momentum
distribution in the oxygen
ground state, obtained from
a realistic dynamical model
(SF) and the Fermi Gas
model (FG)

I The average value 〈Eν〉
obtained from the realistic
model turns out to be
shifted towards larger
energy by ∼ 70 MeV
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THE NEUTRINO-NUCLEUS CROSS SECTION

? Double differential cross section of the process

ν`(k) +A→ `−(k
′
) +X

d2σ

dΩ`dE`
=
G2
F V

2
ud

16π2

|k′ |
|k| LµνW

µν
A ,

Lµν = 8
[
k
′
µ kν + k

′
ν kµ − gµν(k · k′)− i εµναβ k

′β kα
]

I The determination of the nuclear response tensor

Wµν
A =

∑
N

〈0|JµA†|N〉〈N |JνA|0〉δ(4)(P0 + k − PN − k′)

requires a consistent description of the target initial and final states
and the nuclear current operator

JµA =
∑
i

jµi +
∑
j>i

jµij

I Accurate Quantum Monte Carlo calculations are feasible for light
nuclear targets (A ≤ 4) in the non relativistic regime
(|q| <∼ 500 MeV)

42 / 77



GREEN’S FUNCTION MONTE CARLO (GFMC)

I Longitudinal (left) and transverse (right) electromagnetic
responses of 12C at |q| = 570 MeV
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Ê
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x
x
C
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I Full “Exact” calculation based on a realistic nuclear Hamiltonian
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WHY WORRY ABOUT RELATIVITY

MINERνA

0.683

0.876

ν̄µ

νµνµ

|q| (GeV)

d
σ
/d

|q
|

(1
0−

38
cm

2
/G

eV
2
)

3210

1.2

0.8

0.4

0

MiniBooNE

0.439

0.642
ν̄µ

νµνµ

|q| (GeV)

d
σ
/d

|q
|

(1
0−

38
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2
/G
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2
)

3210

1.2

0.8

0.4

0

? |q|-dependence of the CCQE cross section averaged with the
Minerνa (left) and MiniBooNE (right) fluxes

? In the kinematical regime in which relativistic effects become
important, approximations—involving both the reaction
mechanism and the underlying dynamics—are required
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IMPULSE APPROXIMATION (IA) & FACTORIZATION

? At λ = π/|q| � dNN , the average NN distance in the target
nucleus

Σ
i

2 2
q,ω q,ω

i
x

? Basic assumptions

. |N〉 ≈ |p〉 ⊗ |n(A−1),pn〉

. JµA(q) =
∑
i j
µ
i (q) +

∑
j>i j

µ
ij(q) ≈

∑
i j
µ
i (q)

? As a zero-th order approximation, Final State Interactions (FSI)
and processes involving two-nucleon Meson-Exchange Currents
(MEC) are neglected (will be added as corrections)
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FACTORIZATION (CONTINUED)

? Within the factorization ansatz the target tensor reduces to

Wµν
A =

∫
d3k dE

m

Ek
Ph(k, E)wµν(k, k + q̃) ,

? wµν is the tensor describing the interaction of a free nucleon of
momentum k at four momentum transfer

q̃ ≡ (ω̃,q) , ω̃ = Ex − Ek = ω +m− E − Ek

? The substitution ω → ω̃ < ω is needed to take into account the
fact that an amount δω = ω − ω̃ of the energy transfer goes into
excitation energy of the spectator system.

? The probability distribution is given by the spectral function
describing hole states, Ph(k, E)
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Ph(k, E) WITHIN THE LOCAL DENSITY APPROXIMATION

? Bottom line: the tail of the
momentum distribution, arising
from the continuum contribution
to the spectral function, turns out
to be largely A-independent for
A > 2

n(k) =

∫
dE P (k, E)

? Spectral functions of complex (isospin symmetric) nuclei have
been obtained within the local density approximation (LDA)

PLDA(k, E) = PMF(k, E) +

∫
d3r ρA(r) PNMcorr (k, E; ρ = ρA(r))

using the MF contributions extracted from (e, e′p) data
? The continuum contribution PNMcorr (k, E) can be accurately

computed in uniform nuclear matter at different densities
47 / 77



OXYGEN SPECTRAL FUNCTION

I FG model: P (p, E) ∝ θ(pF − |p|) δ(E −
√
|p|2 +m2 + ε)

I shell model states account for ∼ 80% of the strenght
I the remaining ∼ 20%, arising from NN correlations, is located at

high momentum and large removal energy
(|p| � pF ∼ 220 MeV, E � ε)
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CORRECTIONE TO THE IA: FINAL STATE INTERACTIONS (FSI)
I The measured (e, e′p) x-sections provide overwhelming evidence

of the importance of FSI

q,ν q,ν

+

dσA =

∫
d3kdE dσN Ph(k, E)Pp(|k + q|, ω − E)

I the particle-state spectral function Pp(|k + q|, ω − E) describes
the propagation of the struck particle in the final state

I the IA is recovered replacing the particle spectral function with
the one of the non interacting systemai, i.e. setting

Pp(|k + q|, ω − E) ∼ δ(ω − E − e|k+q|)
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I effects of FSI on the inclusive cross section
(i) shift in energy transfer, ω → ω + U(k + q) , arising from

interactions with the mean field of the spectators
(ii) redistributions of the strenght, arising from the coupling of 1p1h

final state to 2p2h final states

I high-energy approximation
(i) the struck nucleon moves along a straight trajectory with constant

velocity
(ii) the fast struck nucleon “sees” the spectator system as a collection

of fixed scattering centers.

δ(ω − E −
√
|k + q|2 +m2)→

√
Tδ(ω − E −

√
|k + q|2 +m2)

+(1−
√
T )f(ω − E −

√
|k + q|2 +m2))

I the nuclear transparency T and the folding function f can be
computed within nuclear many-body theory using the measured
nucleon-nucleon scattering amplitude
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e+12 C→ e′ +X IN THE QUASI ELASTIC CHANNEL (IA+FSI)
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e- AND νµ-CARBON X-SECTIONS IN QE CHANNEL

? Double differential CCQE neutrino x-section (MiniBooNE)

dσA
dTµd cos θµ

=
1

NΦ

∫
dEνΦ(Eν)

dσA
dEνdTµd cos θµ

? Note that the neutrino x-section is given as a function of muon
kinetic energy, not energy transfer
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THE AXIAL MASS “PUZZLE”

? The “excess” cross section in the CCQE channel observed by the
MiniBooNE and K2K Collaborations has been initially ascribed
to an increased value of the nucleon axial mass in the nuclear
medium. However, this explanation is not supported by
NOMAD data

can be added to form the total error matrix. For the neutrino
flux and background cross section uncertainties, a re-
weighting method is employed which removes the diffi-
culty of requiring hundreds of simulations with adequate
statistics. In this method, each neutrino interaction event is
given a new weight calculated with a particular parameter
excursion. This is performed considering correlations be-
tween parameters and allows each generated event to be
reused many times saving significant CPU time. The nature
of the detector uncertainties does not allow for this method
of error evaluation as parameter uncertainties can only be
applied as each particle or optical photon propagates
through the detector. Approximately 100 different simu-
lated data sets are generated with the detector parameters
varied according to the estimated 1! errors including
correlations. Equation (4) is then used to calculate the
detector error matrix. The error on the unfolding procedure
is calculated from the difference in final results when using
different input model assumptions (Sec. IVD). The statis-
tical error on data is not added explicitly but is included via
the statistical fluctuations of the simulated data sets (which
have the same number of events as the data).

The final uncertainties are reported in the following
sections. The breakdown among the various contributions
are summarized and discussed in Sec. VD. For simplicity,
the full error matrices are not reported for all distributions.
Instead, the errors are separated into a total normalization
error, which is an error on the overall scale of the cross
section, and a ‘‘shape error’’ which contains the uncer-
tainty that does not factor out into a scale error. This allows
for a distribution of data to be used (e.g. in a model fit) with
an overall scale error for uncertainties that are completely
correlated between bins, together with the remaining bin-
dependent shape error.

V. RESULTS AND DISCUSSION

A. CCQE flux-integrated double differential
cross section

The flux-integrated, double differential cross section per
neutron, d2!

dT"d cos#"
, for the $" CCQE process is extracted as

described in Sec. IVD and is shown in Fig. 13 for the
kinematic range, !1< cos#" <þ1, 0:2< T"ðGeVÞ<
2:0. The errors, for T" outside of this range, are too large
to allow a measurement. Also, bins with low event popu-
lation near or outside of the kinematic edge of the distri-
bution (corresponding to large E$) do not allow for a
measurement and are shown as zero in the plot. The
numerical values for this double differential cross section
are provided in Table VI in the appendix.

The flux-integrated CCQE total cross section, obtained
by integrating the double differential cross section (over
!1< cos#" <þ1, 0< T"ðGeVÞ<1), is measured to be
9:429% 10!39 cm2. The total normalization error on this
measurement is 10.7%.

The kinematic quantities, T" and cos#", have been
corrected for detector resolution effects only (Sec. IVD).
Thus, this result is the most model-independent measure-
ment of this process possible with the MiniBooNE detec-
tor. No requirements on the nucleonic final state are used to
define this process. The neutrino flux is an absolute pre-
diction [19] and has not been adjusted based on measured
processes in the MiniBooNE detector.
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FIG. 13 (color online). Flux-integrated double differential
cross section per target neutron for the $" CCQE process. The

dark bars indicate the measured values and the surrounding
lighter bands show the shape error. The overall normalization
(scale) error is 10.7%. Numerical values are provided in Table VI
in the Appendix.
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FIG. 14 (color online). Flux-integrated single differential cross
section per target neutron for the $" CCQE process. The

measured values are shown as points with the shape error as
shaded bars. Calculations from the NUANCE RFG model with
different assumptions for the model parameters are shown as
histograms. Numerical values are provided in Table IX in the
appendix.
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B. Flux-integrated single differential cross section

The flux-integrated, single differential cross section per
neutron, d!

dQ2
QE
, has also been measured and is shown in

Fig. 14. The quantityQ2
QE is defined in Eq. (2) and depends

only on the (unfolded) quantities T" and cos#". It should
be noted that the efficiency for events with T" < 200 MeV
is not zero because of difference between reconstructed
and unfolded T". The calculation of efficiency for these

(low-Q2
QE) events depends only on the model of the detec-

tor response, not on an interaction model and the associ-
ated uncertainty is propagated to the reported results.

In addition to the experimental result, Fig. 14 also
shows the prediction for the CCQE process from the
NUANCE simulation with three different sets of parameters
in the underlying RFG model. The predictions are abso-
lutely normalized and have been integrated over the
MiniBooNE flux. The RFG model is plotted assuming
both the world-averaged CCQE parameters (MA ¼
1:03 GeV, $ ¼ 1:000) [9] and the CCQE parameters ex-
tracted from this analysis (MA ¼ 1:35 GeV, $ ¼ 1:007) in
a shape-only fit. The model using the world-averaged
CCQE parameters underpredicts the measured differential
cross section values by 20%–30%, while the model using
the CCQE parameters extracted from this shape analysis
are within" 8% of the data, consistent within the normal-
ization error ( " 10%). To further illustrate this, the model
calculation with the CCQE parameters from this analysis
scaled by 1.08 is also plotted and shown to be in good
agreement with the data.

C. Flux-unfolded CCQE cross section as a function of
neutrino energy

The flux-unfolded CCQE cross section per neutron

!½EQE;RFG
% $, as a function of the true neutrino energy

EQE;RFG
% , is shown in Fig. 15. These numerical values are

tabulated in Table X in the appendix. The quantity EQE;RFG
%

is a (model-dependent) estimate of the neutrino energy
obtained after correcting for both detector and nuclear
model resolution effects. These results depend on the de-
tails of the nuclear model used for the calculation. The
dependence is only weak in the peak of the flux distribution
but becomes strong for E% < 0:5 GeV and E% > 1:2 GeV,
i.e., in the ‘‘tails’’ of the flux distribution.

In Fig. 15, the data are compared with the NUANCE

implementation of the RFG model with the world average
parameter values, (Meff

A ¼ 1:03 GeV, $ ¼ 1:000) and with
the parameters extracted from this work (Meff

A ¼
1:35 GeV, $ ¼ 1:007). These are absolute predictions
from the model (not scaled or renormalized). At the aver-
age energy of the MiniBooNE flux ( " 800 MeV), the
extracted cross section is " 30% larger than the RFG
model prediction with world average parameter values.
The RFG model, with parameter values extracted from

the shape-only fit to this data better reproduces the data
over the entire measured energy range.
Figure 15(b) shows these CCQE results together with

those from the LSND [56] and NOMAD [10] experiments.
It is interesting to note that the NOMAD results are better
described with the world average Meff

A and $ values. Also
shown for comparison in Fig. 15(b) is the predicted cross
section assuming the CCQE interaction occurs on free
nucleons with the world average MA value. The cross
sections reported here exceed the free nucleon value for
E% above 0.7 GeV.

D. Error summary

As described in Sec. IVE, (correlated) systematic and
statistical errors are propagated to the final results. These
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FIG. 15 (color online). Flux-unfolded MiniBooNE %" CCQE
cross section per neutron as a function of neutrino energy. In (a),
shape errors are shown as shaded boxes along with the total
errors as bars. In (b), a larger energy range is shown along with
results from the LSND [56] and NOMAD [10] experiments.
Also shown are predictions from the NUANCE simulation for an
RFG model with two different parameter variations and for
scattering from free nucleons with the world-average MA value.
Numerical values are provided in Table X in the appendix.

TABLE IV. Contribution to the total normalization uncertainty
from each of the various systematic error categories.

source normalization error (%)

neutrino flux prediction 8.66
background cross sections 4.32
detector model 4.60
kinematic unfolding procedure 0.60
statistics 0.26
total 10.7

A. A. AGUILAR-AREVALO et al. PHYSICAL REVIEW D 81, 092005 (2010)

092005-16
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CONTRIBUTION OF DIFFERENT REACTION MECHANISMS

? In neutrino interactions the lepton kinematics is not determined.
The flux-averaged cross sections at fixed Tµ and cos θµ picks up
contributions at different beam energies, corresponding to a
variety of kinematical regimes in which different reaction
mechanisms dominate

? x = 1→ Eν 0.788 GeV , x = 0.5→ Eν 0.975 GeV
? Φ(0.975)/Φ(0.788) = 0.83
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“FLUX AVERAGED” ELECTRON-NUCLEUS X-SECTION

? The electron scattering x-section off Carbon at θe= 37 deg has
been measured for a number of beam energies

? electron-carbon data at different energies, plotted as a function of
the energy of the scattered electron
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WHERE DOES THE “EXCESS” STRENGTH COME FROM?

? It has been suggested that 2p2h (CCQE like) final states provide
a large contribution to the measured neutrino cross section

? Two particle-two hole final states may be produced through
different mechanisms

I Initial state correlations lead to the tail extending to large energy
loss, clearly visible in the calculated QE cross section. The
corresponding strength is consistent with the measurements of the
coincidence (e, e′p) x-section carried out by the JLAB E97-006
Collaboration.

I Final state interactions lead to a redistribution of the inclusive
strength, mainly affecting the region of i.e. low energy loss, where
the cross section is small

I Coupling to the two-body current leads to the appearance of
strength at x < 1 , in the dip region between the QE and
∆-excitation peaks

I the description of the measured neutrino cross sections requires
that all the above mechanism be taken into account in a
consistent fashion
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CORRELATION EFFECTS ON THE QE CROSS SECTION

? At IA level, correlations move strenght from the 1p1h sector
(bound state left in a residual system) to the 2p2h sector (one
spectator nucleon excited to the continuum), leading to a
quenching of the peak and to the appearance of a tail extending
to large energy loss
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CIRCUMSTANTIAL EVIDENCE OF A TRANSVERSE MECHANISM
? θµ-dependence of the CCQE excess strength
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TWO-NUCLEON MESON-EXCHANGE CURRENTS
MEC: Pion exchange
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Noemi Rocco (INFN) MEC in electron-nucleus interactions October 23, 2015 16 / 33

MEC: �-isobar exchange
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The Rarita-Schwinger (RS) expression for the � propagator reads

S��(p, M�) =
/p + M�

k2 � M2
�

 
g�� � ����

3
� 2p�p�

3M2
�

� ��p� � ��p�

3M�

⌘

WARNING
If the condition p2

� > (mN + m⇡)2 the real resonance mass has to be
replaced by M� �! M� � i�(s)/2 where �(s) = (4f⇡N�)2

12⇡m2
⇡

k3p
s (mN + Ek).
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THE EXTENDED FACTORIZATION ansatz
? Highly accurate and consistent calculations of processes

involving MEC can be carried out in the non relativistic regime
? Fully relativistic MEC used within the Fermi gas model
? Using relativistic MEC and a realistic description of the nuclear

ground state requires the extension of the IA scheme to
two-nucleon emission amplitudes

I Rewrite the hadronic final state |n〉 in the factorized form

|n〉 → |p,p′〉 ⊗ |n(A−2)〉 = |n(A−2),p,p
′〉

〈X|jµij |0〉 →
∫
d3kd3k′Mn(k,k′) 〈pp′|jµij |kk′〉 δ(k+k′+q−p−p′)

The amplitude

Mn(k,k′) = 〈n(A−2),k,k
′|0〉

is independent of q and can be obtained from non relativistic
many-body theory
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|0〉 → |2p2h〉 TRANSITION PROBABILITY

? In interacting many body systems 2p2h states can be excited
through the action of both one- and two-body transition
operators

|〈2p2h| J |0〉|2 = |〈2p2h| J1 |0〉|2 + |〈2p2h| J2 |0〉|2
+ 2 Re 〈2p2h| J1 |0〉?〈2p2h| J2 |0〉

? Within the independent particle model (either FG or shell model)

〈2p2h| J1 |0〉 = 0

? Strong nucleon-nucleon correations lead to the appearance of
sizable interference contributions to the |0〉 → |2p2h〉 transition
probability

? 2p2h excitations can be consistently described within a
generalization of the spectral function formalism
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e+12 C→ e′ +X (IA+FSI+MEC), QUASI ELASTIC + INELASTIC

? e-carbon x-section obtained within the extended spectral
function formalism
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TOWARDS A SOLUTION OF THE AXIAL MASS PUZZLE

I Calculation of the Valencia group: single and multinucleon
emission included. Long range correlations included within the
Random Phase Approximation (RPA)

I Flux intergated double differential neutrino-carbon cross section
in the CCQE channel
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FIG. 9. Some 2p2h contributions to the polarization propagators. Solid (dashed) lines denote nucleon (pion) propagators.
Double lines represent ∆(1232) propagators. Solid lines pointing to the right (left) denote particle (hole) states.

been found [100] with the RGF model with empirical OP briefly covered in the previous section. This has been
achieved with a model that takes into account those multinucleon contributions that can be ascribed to the particle
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FIG. 10. ν-12C double differential cross section averaged over the MiniBooNE flux [128] as a function of the muon kinetic
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The dashed, dotted and dash-dotted lines show partial results for only RlFG, RlFG+RPA and only 2p2h, respectively. All
these curves are obtained with MA = 1.049 GeV while the thin solid line is calculated with the RlFG and MA = 1.32 GeV.
The data of Ref. [23] have been rescaled by a factor 0.9 (compatible with flux uncertainties).
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INELASTIC X-SECTION WITHIN THE FACTORIZATION SCHEME

? No conceptual problems involved: replace nucleon form factors
with inelastic structure functions

? νµ +12 C→ µ− +X . Factorization ansatz and LDA spectral
function (NOMAD data)
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LOW-ENERGY NEUTRINO-NUCLEON INTERACTIONS

? Neutrino interactions are mediated by the gauge bosons W± and
Z0, whose masses are in the range ≈ 80− 90 GeV

? In the regime of momentum transfer discussed in this talk,
q ∼ 10 MeV, Fermi theory of weak interactions works just fine

W,Z0

LF =
G√

2
JNµJ`

µ

J`
µ =

{
ū`−γ

µ(1− γ5)uν (CC)
ūν′γ

µ(1− γ5)uν (NC)

? The nucleon current can be cast in the non relativistic limit

JNµ =

{
ūpγµ(1− gAγ5)un → χ†sp(g0

µ + gAg
µ
i σi)χsn (CC)

ūn′γµ(1− cAγ5)un → χ†s′n(g0
µ + cAg

µ
i σi)χsn (NC)
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NUCLEAR RESPONSE TENSOR

? Consider a neutral current process

ν +A→ ν′ +X

? The nuclear response tensor reads

Wλµ =
∑

n

〈0|Jλ|n〉〈n|Jµ|0〉δ(4)(P0 + q − Pn)

? Interaction rate

W (q, ω) ∝ GF
4π2

LλµW
λµ =

GF
4π2

[
(1 + cos θ)Sρ +

cA
2

3
(3− cos θ)Sσ

]

where cos θ = (k · k′)/(|k||k′|), while Sρ and Sρ are the nuclear
responses in the density and spin-density channels, respectively.
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NUCLEAR WEAK RESPONSE FUNCTIONS AT LOW ENERGY

? density response

Sρ =
1

N

∑

n

|〈0|J0|n〉〈n|J0|0〉δ(4)(P0 + q − Pn)

? spin-density response (α, β = 1, . . . 3)

Sσ =
∑

α

Sσαα

Sσαβ =
1

N

∑

n

|〈0|Jα|n〉〈n|Jβ |0〉δ(4)(P0 + q − Pn)

? Neutral weak current

J0 =
∑

i

j0
i =

∑

i

eiq·xi , Jα =
∑

i

jµi =
∑

i

eiq·xiσα
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EFFECTS OF NN INTERACTIONS

? Mean field effects
. Change of nucleon energy spectrum

ek =
k2

2m
+

∑
k′
〈kk′|Veff |kk′〉a

. Effective mass
1

m?
k

=
1

|k|
dek
d|k|

? Correlation effects
. Effective operators couple the ground state to

two-particle–two-hole (2p2h) final states, thus removing strength
from the 1p1h sector

M2p2h = 〈2p2h|Jµeff |0〉 6= 0→M1p1h = 〈1p1h|Jµeff |0〉 < 〈1p1h|Jµ|0〉
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? Nucleon energy spectrum and
Effective mass in
isospin-symmetric matter at
equilibrium density ? Quenching of Fermi transition

strength in isospin-symmetric
matter at equilibrium density
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q-EVOLUTION OF INTERACTION EFFECTS
? Density response of isospin-symmetric matter at equilibrium

density

|q| = 3.0 fm−1

|q| = 1.8 fm−1

|q| = 0.3 fm−1
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LONG-RANGE CORRELATIONS

? At low momentum transfer the space resolusion of the neutrino
becomes much larger than the average NN separation distance
(∼ 1.5 fm), and the interaction involves many nucleons

← λ ∼ q−1 →

d

? Write the nuclear final state as
a superposition of 1p1h states
(RPA scheme)

|n〉 =

N∑

i=1

Ci |pihi)

+ + + . . .
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TAMM-DANCOFF (RING) APPROXIMATION

? Propagation of the particle-hole pair produced at the interaction
vertex gives rise to a collective excitation. Replace

|ph〉 → |n〉 =

N∑

i=1

Ci |pihi)

? The energy of the state |n〉 and the coefficients Ci are obtained
diagonalizing the hamiltonian matrix

Hij = (E0 + epi − ehi
)δij + (hipi|Veff |hjpj)

ek =
k2

2m
+
∑

k′

〈kk′|Veff |kk′〉a

? The appearance of an eigenvalue, ωn, lying outside the
particle-hole continuum signals the excitation of a collective
mode
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EFFECTS OF LONG-RANGE CORRELATIONS

? Density response of isospin-symmetric nuclear matter at
equilibrium density

|q| ≈ 480 MeV

|q| ≈ 300 MeV

|q| ≈ 60 MeV

308 O. Benhar, N. Farina / Physics Letters B 680 (2009) 305–309

The FG ph states, while being eigenstates of the HF Hamiltonian

HHF =
∑

k

ek, (12)

with ek given by Eq. (10), are not eigenstates of the full nuclear
Hamiltonian. As a consequence, there is a residual interaction V res
that can induce transitions between different ph states, as long as
their total momentum, q, spin and isospin are conserved.

We have included the effects of these transitions, using the
Tamm Dancoff (TD) approximation, which amounts to expanding
the final state in the basis of one 1p1h states according to [27]

| f ) = |q, T S M) =
∑

i

cT S M
i |pihi, T S M), (13)

where pi = hi +q, S and T denote the total spin and isospin of the
particle–hole pair and M is the spin projection along the quantiza-
tion axis.

At fixed q, the excitation energy of the state | f ), ω f , as well as
the coefficients cT SM

i , are determined solving the eigenvalue equa-
tion

H| f ) = (HHF + V res)| f ) = (E0 + ω f )| f ), (14)

where E0 is the ground state energy. Within our approach this
amounts to diagonalizing a Nh × Nh matrix whose elements are

H T S M
ij = (E0 + epi − ehi )δi j + (hi pi, T S M|V eff|h j p j, T S M). (15)

In TD approximation, the response can be written as

S(q,ω) =
∑

T S M

Nh∑

n=1

∣∣∣∣∣

Nh∑

i=1

(
cT S M

n
)

i(hi pi, T S M|O eff(q)|0)

∣∣∣∣∣

2

× δ
(
ω − ωT S M

n
)
, (16)

where (cT SM
n )i denotes the i-th component of the eigenvector be-

longing to the eigenvalue ωT SM
n .

The diagonalization has been performed using a basis of Nh ∼
3000 ph states for each spin–isospin channel. The appearance of an
eigenvalue lying outside the particle hole continuum, correspond-
ing to a collective excitation reminiscent of the plasmon mode of
the electron gas, is clearly visible in panel (A) of Fig. 3, showing the
TD response at |q| = 0.3 fm−1 for the case of Fermi transitions. For
comparison, the result of the correlated HF approximation is also
displayed. Note that the sharp peak arises from the contributions
of particle–hole pairs with S = 1, T = 0.

In order to identify the kinematical regime in which long range
correlations are important, we have studied the TD response in
the region 0.3 ! |q| ! 3.0 fm−1. The results show that at |q| "
1.2 fm−1 the peak corresponding to the collective mode in the
S = 1, T = 0 channel is still visible, although less prominent. How-
ever, it disappears if the exchange contribution to the matrix ele-
ment of the effective interaction appearing in the rhs of Eq. (15) is
neglected.

The transition to the regime in which short-range correlations
dominate is illustrated in panels (B) and (C) of Fig. 3, showing
the comparison between TD and HF responses at |q| = 1.5 and
2.4 fm−1, respectively.

At |q| = 1.5 fm−1 the peak no longer sticks out, but the effect
of the mixing of ph states with S = 1 and T = 0 is still detectable,
resulting in a significant enhancement of the strength at large ω.
At |q| = 2.4 fm−1 the role of long range correlations turns out to
be negligible, and the TD and correlated HF responses come very
close to one another. The calculation of the response associated
with Gamow–Teller transitions shows a similar pattern.

Fig. 3. Nuclear matter response calculated within the TD (squares) and correlated
HF (diamonds) approximations, for the case of Fermi transitions. Panels (A), (B) and
(C) correspond to |q| = 0.3, 1.5 and 2.4 fm−1, respectively.

5. Conclusions

The CBF formalism employed in our work is ideally suited to
construct an effective interaction starting from a realistic NN po-
tential. The resulting effective interaction, which has been shown
to provide a quite reasonable account of the equation of state of
cold nuclear matter [16], allows for a consistent description of the
weak response in the regions of both low and high momentum
transfer, where different interaction effects are important.

The results of our calculations, obtained including 1p1h final
states, suggest that in addition to the HF mean field, which moves
the kinematical limit of the transitions to 1p1h states well be-
yond the FG value, correlation effects play a major role, and must
be taken into account. While at |q| " 0.5 fm−1 long-range cor-
relations, leading to the appearance of a collective mode outside
the particle–hole continuum, dominate, at |q| # 2.0 fm−1 the most
prominent effect is the quenching due to short-range correlations.

In principle, the uncertainty associated with the truncation of
the space of final states at the 1p1h level can be estimated study-
ing the static structure function S(q) and the sum rules of the
responses [28]. We have verified that the S(q) goes linearly to zero
for vanishing |q|, as required by particle number conservation.

A more quantitative understanding of the role of two particle-
two hole (2p2h) final states can be gained comparing the response
resulting from the approach discussed in the present Letter and
that obtained using the spectral function formalism, applicable in
the impulse approximation regime [24]. The results of Ref. [24]
suggest that the main effect of 2p2h states, which are explicitely
taken into account in the spectral function, is the appearance of a
tail extending to large energy transfer.

As pointed out in Section 2, the differences between our work
and that of Ref. [8] arise from the definitions of both the ef-
fective interaction and the effective operators. Three- and many-
nucleon forces, taken into account in our approach, play a marginal
role at nuclear matter equilibrium density, their inclusion lead-
ing to changes that never exceed 15% in the Fermi TD response
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EXCITATION OF COLLECTIVE MODES

? Density (a) and spin-density (b) responses of isospin-symmetric
nuclear matter at equilibrium densityA. Lovato et al. / Nuclear Physics A 901 (2013) 22–50 45

Fig. 13. Fermi (a) and Gamow–Teller (b) response functions of SNM at ρ = 0.16 fm−3, evaluated at q = 0.10, 0.15,
0.20, 0.25, 0.30, 0.40, and 0.50 fm−1 using the v6′ + UIX potential and correlation functions.

distribution entering the VGS calculation at three-body cluster level, the result of which is de-
noted VGS3b.

The static structure functions corresponding to the Fermi and Gamow–Teller transitions are
displayed in panels (a) and (b) of Fig. 14, respectively. The CTD results have been obtained
with the effective interaction based on the Argonne v′

6 + UIX Hamiltonian and the correspond-
ing correlations (see Table 2) have been used in the calculation of the effective operators. The
Hamiltonian entering the variational estimates, VGS and VGS3b, has been consistently chosen
to be the Argonne v′

6 + UIX.
The curves corresponding to the Fermi transition are normalized in order for the sum rule of

the non-interacting FG to approach unity in the |q| → ∞ limit. On the other hand, the Gamow–
Teller results are normalized in such a way that both the transverse and longitudinal sum rules,
to be defined below, tend to the same limit.

A. Lovato et al. / Nuclear Physics A 901 (2013) 22–50 45

Fig. 13. Fermi (a) and Gamow–Teller (b) response functions of SNM at ρ = 0.16 fm−3, evaluated at q = 0.10, 0.15,
0.20, 0.25, 0.30, 0.40, and 0.50 fm−1 using the v6′ + UIX potential and correlation functions.

distribution entering the VGS calculation at three-body cluster level, the result of which is de-
noted VGS3b.

The static structure functions corresponding to the Fermi and Gamow–Teller transitions are
displayed in panels (a) and (b) of Fig. 14, respectively. The CTD results have been obtained
with the effective interaction based on the Argonne v′

6 + UIX Hamiltonian and the correspond-
ing correlations (see Table 2) have been used in the calculation of the effective operators. The
Hamiltonian entering the variational estimates, VGS and VGS3b, has been consistently chosen
to be the Argonne v′

6 + UIX.
The curves corresponding to the Fermi transition are normalized in order for the sum rule of

the non-interacting FG to approach unity in the |q| → ∞ limit. On the other hand, the Gamow–
Teller results are normalized in such a way that both the transverse and longitudinal sum rules,
to be defined below, tend to the same limit.

? |q| = 0.1, 0.15, 0.20, 0.25, 0.30, 0.40 and 0.50 fm−1

74 / 77



NEUTRINO MEAN FREE PATH IN NEUTRON MATTER

? The mean free path of non degenerate neutrinos at zero
temperature is obtained from

1

λ
=
G2
F

4
ρ

∫
d3q

(2π)3

[
(1 + cos θ)S(q, ω) + C2

A(3− cos θ)S(q, ω)
]

where S and S are the density (Fermi) and spin (Gamow Teller)
response, respectively

A Lovato et al, arXiv 1310.0510 [nucl-th]
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CTD full expression
CTD simplified expression

CTD without collective mode

? Both short and long range correlations important
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SUMMARY OF LECTURE II

? Thanks to the significant efforrts of the past two decades, a
consistent framework suitable to describe neutrino-nucleus cross
sections in the broad kinematical regime corresponding to beam
energies from ∼ 10 MeV to several GeV is emerging

? The main challenges to be faced in the near future are the
description of exclusive channels, including those involving
resonance production and deep-inelastic scattering, as well as of
complex nuclear targets, such as argon

? The factorization formalism, involving non adjustable
parameters, appears to be ideally suited to achieve theses goal,
as long as the spectral function describing initial state dynamics
is available. More electron scattering data needed.

? If, and to what extent, the theoretical progress will have a
significant impact on the experiments remains to be seen. . .
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THE E12-14-012 EXPERIMENT AT JEFFERSON LAB

? The reconstruction of neutrino and antineutrino energy in liquid
argon detectors will require the understanding of the spectral
functions describing both protons and neutrons

? The Ar(e, e′p) cross section only provides information on proton
interactions. The information on neutrons can be obtained from
the Ti(e, e′p), exploiting the pattern of shell model levels

16

Physics Motivation
Experimental Goals

Experimental conditions
Titanium idea

Physics motivation

Use few hours of beam time investigating the feasibility of running
on a titanium target, as suggested by the PAC.
The neutron spectral function of argon is needed to model
quasielastic neutrino scattering. In pion production both neutrons
and protons take part in charged-current interactions.

40
18Ar

p’s n’s

48
22Ti

p’s n’s

C. Mariani for E12-14-012 Collaboration Spectral function of 40Ar through the (e, e0p) reaction
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THREE-NUCLEON INTERACTIONS

? Interactions involving more two nucleons arise as a consequence
of the internal structure of the participating particles

? The main contribution to the
three nucleon forces comes
from the Fujita-Miyazawa
mechanism

? Phenomenological
three-nucleon potentials,
written in the form

Vijk = V 2π
ijk + V Nijk

are determined through a fit
to the properties of the
three-nucleon system

3

∆

m

m′

m

∆ m′

m

m′

m

∆

(a) (b) (c)

m′ m

m m′

∆

m′ m

m

∆

m′

(d) (e)

(f) (g) (h)

FIG. 3: Processes involving 3N contributions. The external
lines are valence neutrons. The dashed and thick lines denote
pions and ∆ excitations, respectively. Nucleon-hole lines are
indicated by downward arrows. The leading chiral 3N forces
include the long-range two-pion-exchange parts, diagram (f),
which take into account the excitation to a ∆ and other res-
onances, plus shorter-range one-pion exchange, diagram (g),
and 3N contact interactions, diagram (h).

of the exchange diagram, Fig. 3 (d), where the neutrons
in the intermediate state have been exchanged and this
leads to the exchange of the final (or initial) orbital labels
j, m and j′, m′. Because this process reflects a cancella-
tion of the lowering of the SPE, the contribution from
Fig. 3 (d) has to be repulsive for two neutrons. Finally,
we can rewrite Fig. 3 (d) as the FM 3N force of Fig. 3 (e),
where the middle nucleon is summed over core nucleons.
The importance of the cancellation between Figs. 3 (a)
and (e) was recognized for nuclear matter in Ref. [22].

The process in Fig. 3 (d) corresponds to a two-valence-
neutron monopole interaction, schematically illustrated
in Fig. 4 (d). The resulting SPE evolution is shown in
Fig. 2 (c) for the G matrix formalism, where a standard
pion-N-∆ coupling [23] was used and all 3N diagrams of
the same order as Fig. 3 (d) are included. We observe
that the repulsive FM 3N contributions become signifi-
cant with increasing N and the resulting SPE structure
is similar to that of phenomenological forces, where the
d3/2 orbital remains high. Next, we calculate the SPE
from chiral low-momentum interactions Vlow k, including
the changes due to the leading (N2LO) 3N forces in chiral
EFT [24], see Figs. 3 (f)–(h). We consider also the SPE
where 3N-force contributions are only due to ∆ excita-
tions [25]. The leading chiral 3N forces include the long-
range two-pion-exchange part, Fig. 3 (f), which takes into
account the excitation to a ∆ and other resonances, plus
shorter-range 3N interactions, Figs. 3 (g) and (h), that
have been constrained in few-nucleon systems [26]. The
resulting SPE in Fig. 2 (d) demonstrate that the long-

range contributions due to ∆ excitations dominate the
changes in the SPE evolution and the effects of shorter-
range 3N interactions are smaller. We point out that
3N forces play a key role for the magic number N = 14
between d5/2 and s1/2 [27], and that they enlarge the
N = 16 gap between s1/2 and d3/2 [5].

The contributions from Figs. 3 (f)–(h) (plus all ex-
change terms) to the monopole components take into ac-
count the normal-ordered two-body parts of 3N forces,
where one of the nucleons is summed over all nucleons in
the core. This is also motivated by recent coupled-cluster
calculations [28], where residual 3N forces between three
valence states were found to be small. In addition, the
effects of 3N forces among three valence neutrons should
be generally weaker due to the Pauli principle.

Finally, we take into account many-body correlations
by diagonalization in the valence space. The resulting
ground-state energies of the oxygen isotopes are pre-
sented in Fig. 4. Figure 4 (a) (based on phenomeno-
logical forces) implies that many-body correlations do
not change our picture developed from the SPE: The en-
ergy decreases to N = 16, but the d3/2 neutrons added
out to N = 20 remain unbound. Figures 4 (b) and (c)
give the energies derived from NN forces, using a G ma-
trix or low-momentum interactions Vlow k, and including
two-valence-neutron interactions due to 3N forces at the
monopole level [29]. For all results based on NN forces,
the energy decreases to N = 20 and the neutron drip-
line is incorrectly located at 28O. The changes due to 3N
forces based on ∆ excitations are highlighted in Fig. 4 (b)
and (c). This leads to a better agreement with the ex-
perimental energies and to a kink at N = 16, which is
further strengthened by shorter-range 3N forces, and for
Fig. 4 (c) leads to the neutron drip-line at 24O.

The same 3N forces lead to repulsion in neutron mat-
ter [30]. Our results are also consistent with early shell-
model explorations with 3N forces up to 21O, where
a small repulsive effect as in Figs. 4 (b) and (c) was
found [31]. Because the formation of a halo is unre-
alistic for the d3/2 orbital and s1/2 is well bound (see
Fig. 2 (b)), it seems unlikely that the ground states be-
yond N = 16 become bound by including the coupling
to the continuum. This is consistent with Ref. [32]. We
plan to study 3N-force effects on unbound states in the
future using the methods of Refs. [32, 33]. Fluorine iso-
topes have one more proton than oxygen, and NN forces,
primarily the tensor part, with this proton provide more
binding to the valence neutrons [20, 34]. This valence
proton-neutron effect is absent in the oxygen isotopes,
making the repulsive 3N mechanism visible. Important
directions for future work are to include the presented 3N
contributions in coupled-cluster calculations [35] and in
density-functional calculations, to systematically explore
the effect over the full range of the nuclear chart.

In summary, we have presented a robust 3N mecha-
nism that provides repulsive monopole interactions be-
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EVIDENCE OF NUCLEAR SHELL STRUCTURE

I Energy spectra and emergence of magic numbers
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SPECTROSCOPIC FACTORS OF 208Pb
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NIKHEF results: 208Pb(e,e"p)207Tl 

for nucleons at surface:
binding energy ≈ excitation energy for nuclear vibrations
            fragmentation  especially at Fermi edge (surface)

nucleons in the interior: deep hole states
larger binding energies             more difficult to excite
           zα  approaches occupation number n of nuclear matter

theoretical curves:
nuclear matter calculation: Correlated Basis Function Theory
Benhar, Fabrocini, Fantoni: NPA 505 (1985) 267
modified for finite nuclei:PRC 41(1990) R24
Modification of Im Σ to reproduce exp. width of the hole states

n  = Σ zα + nc
α

If fragmentation occurs spectroscopic factors 
of different states have to be summed up:

SRC

LRC
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MEASURED CORRELATION STRENGTH

? the correlation strength in the 2p2h sector has been measured by
the JLAB E97-006 Collaboration using a carbon target

? strong energy-momentum correlation: E ∼ Ethr + A−2
A−1

k2

2m

0.2 0.3 0.4 0.5 0.6
pm [GeV/c]

10-3

10-2

10-1

n(
p m

) [
fm

3  sr
-1

]

? Measured correlation strength 0.61± 0.06, to be compared with
the theoretical predictions of ab initio approaches: 0.46 (GF), 0.61
(SCGF) and 0.64 (CBF)
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CORRELATION EFFECTS ON THE QE CROSS SECTION

? At IA level, correlations move strenght from the 1p1h sector
(bound state left in a residual system) to the 2p2h sector (one
spectator nucleon excited to the continuum), leading to a
quenching of the peak and to the appearance of a tail extending
to large energy loss
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? Mean free path of a non degenerate neutrino in neutron matter.
Left: density-dependence at k0 = 1 MeV and T = 0 ; Right:
energy dependence at ρ = 0.16 fm−3 and T = 0, 2 MeV
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? Density and temperature dependence of the mean free path of a
non degenerate neutrino at k0 = 1 MeV and ρ = 0.16 fm−3
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