

K ロ K K @ K K 동 K K 동 K (동

 OQ

Varius, Multiplex, Multiformis The Neutrino-Nucleus Cross Section

Omar Benhar

INFN and Department of Physics, "Sapienza" University I-00185 Roma, Italy

International School on Astroparticle Physics Arenzano (GE), June 13-24, 2017

OUTLINE

- \star Preamble: Motivation
- \star Lecture I
	- **Basic elements of Nuclear Theory**
	- \blacktriangleright The neutrino-nucleus cross section
- \star Detour: what we have learned from electron-nucleus scattering experiments

\star Lecture II

- \blacktriangleright Impulse approximation regime: reconstruction of neutrino energy in accelerator-based searches of neutrino oscillations
- \blacktriangleright Emergence of collective excitation: mean free path of low-energy neutrinos in nuclear matter

MOTIVATION

- \star Nuclear weak interactions are the driving factor of a number of important astrophysical processes, such as the evolution of proto-neutron stars and neutron star cooling
- \star Atomic nuclei—e.g., carbon, oxygen and argon—are used as detectors in experimental searches of neutrino oscillations
- \star Neutrino interactions can be exploited to study aspects of nuclear dynamics that can not be probed by charged lepton

Lecture I

DISCLAIMER

- ? Bottom line: there is no such thing as an *ab initio* method to describe the properties of atomic nuclei
- \star In the low-energy regime, the fundamental theory of strong interactions (QCD) becomes nearly intractable already at the level required for the description of isolated hadrons, let alone nuclei
- \star Nuclei are described in terms of *effective degrees of freedom*, protons and neutrons, and *effective interactions*, mainly meson exchange processes
- \star As long as their size is small compared to the relative distance, treating nucleons as individual particles appears to be reasonable

4 / 77

BINDING ENERGIES AND CHARGE-DENSITY DISTRIBUTIONS

- \star The observation that the nuclear binding energy per nucleon is roughly the same for $A > 20$, its value being ∼ 8.5 MeV , suggests that the range of the NN interaction is short compared to the nuclear radius.
- \star The observation that the charge-density in the nuclear interior is constant and independent of A indicates that the NN forces become strongly repulsive at short distance

ISOTOPIC INVARIANCE

- \star The spectra of mirror nuclei, e.g. $\frac{35}{18} \text{Ar}$ and $\frac{35}{17} \text{Cl}$, are identical up to small electromagnetic corrections
- ? Nuclear forces exhibit *charge independence*, which is a manifestation of a more general property: *isotopic invariance*

- \star Neglecting the small mass difference, nucleons can be seen as two states of the same particle, the nucleon, specified by their *isospin*, $\tau_3 = \pm 1/2$
- \star The force acting between two nucleons depends on the total isospin of the pair, $T = 0$ or 1, but not on its projection T_3

THE PARADIGM OF NUCLEAR MANY-BODY THEORY

 \star Nuclear matter is described as a collection of pointlike protons and neutrons interacting through the hamiltonian

$$
H = \sum_{i} \frac{p_i^2}{2m} + \sum_{j>i} \mathbf{v}_{ij} + \sum_{k>j>i} \mathbf{V}_{ijk}
$$

 \star The mean field approximation, underlying the nuclear shell model, amounts to replacing

$$
\sum_{j>i} \mathbf{v}_{ij} + \sum_{k>j>i} \mathbf{V}_{ijk} \rightarrow \sum_i U_i ,
$$

 \star While being able to explain a number of nuclear properties, the mean field approximation fails to take into account correlations, which have long being recognized to play a significant role. More on this later.

THE *bottom up* APPROACH

- \star Phenomenological potentials are determined by fitting the properties of the *exactly solvable* two- and three-nucleon systems, as well as the equilibrium density of isospin-symmetric matter
	- \blacktriangleright \mathbf{v}_{ij} is strongly constrained by deuteron properties and nucleon-nucleon (NN) scattering data, and reduces to Yukawa's one-pion exchange potential at large distances.

$$
v_{ij} = \sum_{p} v^{p}(r_{ij}) O_{ij}^{p}
$$

$$
O_{ij}^{p} = [\mathbf{1}, (\sigma_{i} \cdot \sigma_{j}), S_{ij}, (\boldsymbol{\ell} \cdot \mathbf{S}), \ldots] \otimes [\mathbf{1}, (\boldsymbol{\tau}_{i} \cdot \boldsymbol{\tau}_{j})], \ldots
$$

 \blacktriangleright The three-nucleon potential consists of an attractive part arising from two-pion exchange and a purely phenomenological repulsive component

$$
V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^{\rm R}
$$

 \star Recently, consistent models of v_{ij} and V_{ijk} have been also derived within a formalism inspired by chiral perturbation theory K ロ H K (图) K (문) K (문) () 문 ... THE NN POTENTIAL IN THE ${}^{1}S_{0}$ Channel

 \star Phenomenological models \star Lattice QCI

MANY-BODY THEORY OF NUCLEAR MATTER

- \star Owing to the presence of a strong repulsive core, the matrix Example to the presence of a strong repulsive core, the matrix
elements of the nuclear Hamiltonian between eigenstates of the Hamiltonian describing the non-interacting system are large.
Problem has been studied by the problem in the problem in the problem in the problem in the problem. Perturbation theory *in this basis* is not applicable.
- \star Alternate avenues V the systematic treatment in many-body perturbation theory of short P
	- **Replace the bare NN potential with a well behaved** *effective interaction,* that can be used in perturbation theory using the Fermi gas basis
		- \blacktriangleright G-matrix perturbation theory

- **Exercise Multiple Sum all 2** Renormalization group evolution of the bare interaction to low
momentum momentum
- $\frac{1}{2}$ ify the basis states in such a way as to mitigate the effects of scattering processes. The bare interaction and the representation matrix are represented by dashed by the repulsive core between free particles (*t*-matrix) or in presence of the Fermi sea • Modify the basis states in such a way as to mitigate the effects of

CORRELATED BASIS FUNCTION (CBF) FORMALISM

 \star The eigenstates of the nuclear hamiltonian are approximated by the set of correlated states, obtained from the eigenstates of the Fermi Gas (FG) model

$$
|n\rangle = \frac{F|n_{FG}\rangle}{\langle n_{FG}|F^{\dagger}F|n_{FG}\rangle^{1/2}} = \frac{1}{\sqrt{\mathcal{N}_n}} F|n_{FG}\rangle \quad , \quad F = \mathcal{S} \prod_{j>i} f_{ij}
$$

 \star the structure of the two-nucleon correlation operator reflects the complexity of interaction

$$
f_{ij} = \sum_p f_p(r_{ij}) O_{ij}^p
$$

- \star the operators O_{ij}^n are the same as those entering the definition of the NN potential v_{ij}
- \star the radial shape of the $f_p(r)$ is determined through functional minimization of the ground-state energy

NN POTENTIAL AND CORRELATION FUNCTIONS

RESULTS OF NUCLEAR MANY-BODY THEORY

 \star Quantum Monte Carlo and variational calculations performed using phenomenological nuclear Hamiltonians explain the energies of the ground- and low-lying excited states of nuclei with mass $A \leq 12$, as well as saturation of the equation of state of cold isospin-symmetric nuclear matter

WARM-UP: NEUTRINO-NUCLEON X-SECTION

 \star In the regime of momentum transfer (q) discussed in this Lectures, Fermi theory of weak interaction works just fine

 \star Consider, for example, the x-section of the charged-current process $\nu_{\ell} + n \to \ell^- + X$

$$
d\sigma \propto L_{\lambda\mu} W^{\lambda\mu}
$$

- \blacktriangleright $L_{\lambda\mu}$ is determined by the lepton kinematical variables (more on this later)
- ightharpoonup under very general assumptions $W^{\lambda\mu}$ can be written in the form

$$
W^{\lambda\mu} = -g^{\lambda\mu} W_1 + p^{\lambda} p^{\mu} \frac{W_2}{m_N^2} + i \varepsilon^{\lambda\mu\alpha\beta} q_{\alpha} p_{\beta} + \frac{W_3}{m_N^2} + q^{\lambda} q^{\mu} \frac{W_4}{m_N^2}
$$

$$
+ (p^{\lambda} q^{\mu} + p^{\mu} q^{\lambda}) \frac{W_5}{m_N^2}
$$

 $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{B}$ 14 / 77

- \star In principle, the structure functions W_i can be extracted from the measured cross sections
- \star In the elastic sector $\nu_{\ell} + n \rightarrow \ell^- + p$ they can be expressed in terms of vector $(F_1(q^2)$ and $F_2(q^2))$, axial $(F_A(q^2))$ and pseudoscalar ($F_P(q^2)$) *form factors*

$$
W_1 = 2 \left[-\frac{q^2}{2} (F_1 + F_2)^2 + \left(2 m_N^2 - \frac{q^2}{2} \right) F_A^2 \right]
$$

\n
$$
W_2 = 4 \left[F_1^2 - \left(\frac{q^2}{4 m_N^2} \right) F_2^2 + F_A^2 \right] = 2W_5
$$

\n
$$
W_3 = -4 (F_1 + F_2) F_A
$$

\n
$$
W_4 = -2 \left[F_1 F_2 + \left(2 m_N^2 + \frac{q^2}{2} \right) \frac{F_2^2}{4 m_N^2} + \frac{q^2}{2} F_P^2 - 2 m_N F_P F_A \right]
$$

 \star according to the CVC hypothesis, F_1 and F_2 can be related to the electromagnetic form factors, measured by electron-nucleon scattering, while PCAC allows one to express F_P in terms of the axial form factor

VECTOR FORM FACTORS out of this figure are the data of Litt *et al.* [Lit70], the first of a series of SLAC experiments which were \mathfrak{so} scaling \mathfrak{so} scaling separation results, namely the empirical relation results, namely the empirical relation relati

dipole FF given below by Eq. 14; it is noteworthy that these results strongly suggest a decrease of GEp with increasing \overline{B} factor \overline{B} four references \overline{B} and \overline{B} are seen in section in section in section

> Figure 21: The complete data base for GMn, from [cross](#page-17-0) [se](#page-15-0)[ction](#page-16-0) [an](#page-17-0)[d pol](#page-0-0)[arizati](#page-85-0)[on m](#page-0-0)[easur](#page-85-0)[emen](#page-0-0)[ts. Sho](#page-85-0)wn as a solid curve is the polynomial fit by \mathbb{R}^n 16 / 77

AXIAL FORM FACTOR

 \star Dipole parametrization

$$
F_A(Q^2) = \frac{g_A}{\left[1 + (Q^2/M_A^2)\right]^2}
$$

- \triangleright g_A from neutron β -decay
- \triangleright axial mass M_A from (quasi) elastic ν and $\bar{\nu}$ -deuteron experiment 0.021) GeV. Right panel: From charged pion electroproduction experiments. The

NEUTRINO-NUCLEUS X-SECTION

 \star Consider again a charged current process

 $\nu_{\ell} + A \rightarrow \ell^{-} + X$

 \star Nuclear response tensor

$$
W_{\lambda\mu} = \sum_{N} \langle 0|J_{\lambda}^{\dagger}|n\rangle \langle n|J_{\mu}|0\rangle \delta^{(4)}(p+k-p_N-k')
$$

 \star To take into account all relevant reaction processes one needs to:

- \blacktriangleright Model nuclear dynamics
- \triangleright Solve the many-body Schrödinger equation $H|n\rangle = E_n|n\rangle$
- \triangleright Determine the nuclear weak current (Are the nucleon weak structure functions modified by the nuclear medium? Are there additional contributions to the current?)

THE ONE-PARTICLE–ONE-HOLE (1p1h) SECTOR

 \triangleright Consider a ¹²C target as an example

 $|N\rangle = |p, {}^{11}\mathrm{C}\rangle$, $|n, {}^{11}\mathrm{B}\rangle$

 \triangleright The infamous Relativistic Fermi Gas Model (RFGM): the nucleus is described as a degenerate system at constant density ρ

No nucleon-nucleon interaction, mean field described by a constant binding energy ϵ . Oriented lines represent the Green's functions

$$
G_h(k, E) = \frac{\theta(k - k_F)}{E - e_0(k) + i\eta} , G_p = \frac{\theta(k_F - k)}{E - e_0(k) - i\eta}
$$

where $\eta = 0^+$, $k_F = (3\pi^2\rho/2)^{1/3}$ is the Fermi momentum and $e_0(k)=\sqrt{k^2+m^2}+\epsilon$ $e_0(k)=\sqrt{k^2+m^2}+\epsilon$ $e_0(k)=\sqrt{k^2+m^2}+\epsilon$

19 / 77

INTERACTING NUCLEONS

 \star In the presence of interactions

$$
e_k^0 = \frac{k^2}{2m} \rightarrow e_k^0 + \Sigma(\mathbf{k}, E) = e_k^0 + \text{Re}\Sigma(\mathbf{k}, E) + i\text{Im}\Sigma(\mathbf{k}, E)
$$

 $\star \Sigma(k, E)$ can be computed using eithr CFB or G-matrix perturbation theory イロト イ母 トイミト イミトー 毛

QUASIPARTICLES AND SPECTRAL REPRESENTATION

- \star The identification of single particle properties in interacting many-body systems is a non trivial issue, addressed by Landau's theory of normal Fermi liquids
- \star According to Landau, there is a one-to-one correspondence between the elementary excitations of a Fermi liquid, dubbed quasiparticles, and those of the non interacting Fermi gas. Quasiparticle states of momentum k are specified by their energy, e_k and lifetime τ_k

$$
G_h(\mathbf{k}, E) = \frac{Z_k}{E - e_k - i\tau_k^{-1}} + G_h^B(\mathbf{k}, E)
$$

 $e_k = e_k^0 + \Sigma(\mathbf{k}, e_k), \tau_k^{-1} = Z_k \mathrm{Im}\Sigma(\mathbf{k}, e_k), Z_k =$ $\sqrt{ }$ $1-\frac{\partial}{\partial E} \text{Re }\Sigma(k,E)$ 1^{-1} $E{=}e_k$

 \star $G_h^B(\mathbf{k}, E)$ is a smooth contribution associated with multiparticle-multihole excitations

Including nucleon-nucleon interactions in the initial state

► the *bare* nucleon-nucleon interaction cannot be used for perturbation theory in the basis of eigenstates of the non-interacting system. Eiher the interaction or the basis states need to be "renormalized" using G-matrix or Correlated Basis Function (CBF) perturbation theory.

 $\mathcal{A} \hspace{.1cm} \Box \hspace{.1cm} \mathcal{V} \hspace{.1cm} \mathcal{A} \hspace{.1cm} \overline{\bigoplus} \hspace{.1cm} \mathcal{V} \hspace{.1cm} \mathcal{A}$ 22 / 77

HOLE STATES IN ISOSPIN-SYMMETRIC NUCLEAR MATTER

 \leftarrow \Box \rightarrow \rightarrow 23 / 77 \blacktriangleright In principle, the effects of nucleon-nucleon interactions in the final state may be taken into account in a consistent fashion, using

However, the propagation of the outgoing nucleon, described by the Green's function $G_p(\mathbf{k} + \mathbf{q}, E)$, requires either a relativistic model of nuclear dynamics or an approximation scheme based on nucleon-nucleon and nucleon-nucleus scattering data

THE TWO-PARTICLE–TWO-HOLE (2P2H) SECTOR

Interactions couple the 1h $(1p)$ states of the residual nucleon to 2h1p (2p1h) states, in which one of the spectator nucleons is excited to the continuum. This mechanism leads to the appearance of 2p2h final states

 $|N\rangle = |pp, {}^{10}B\rangle$, $|np^{10}C\rangle$...

In addition, 2p2h states appear through their couplig to the ground state

- \triangleright These contributions exhibit a specific energy dependence, and give rise to a characteristic event geometry
- \triangleright Note: in interacting many body systems the excitation of 2p2h states *does not* require a two-nucleon current

MESON-EXCHANGE CURRENTS (MEC)

 \triangleright Two-nucleon currents naturally couple the nuclear ground state to 2p2h final states, e.g. through the processes

as well as through similar processes involving the excitation of a ∆-resonance

In Note: amplitudes involving one- and two-body currents and the same 2p2h state give rise to interference

LONG-RANGE CORRELATIONS

 \triangleright At low momentum transfer, processes involving many nucleons may become important. Within the Tamm-Dancoff (ring) approximation the nuclear final state is written in the form

$$
|N\rangle=\sum_i C_i|p_i h_i\rangle
$$

Note: the Random-Phase-Approximation (RPA) is a generalization of the above scheme

SUMMARY OF LECTURE I

- \star In spite of the severe difficulties associated with both the nature of nuclear interactions and the complexity of the nuclear many-body problem, nearly exact calculations of many properties of nuclei with mass number $A \leq 12$ are now possible.
- \star Extended modeling is still needed to describe the reaction mechanisms contributing to the neutrino-nucleus cross sections, and clarify the role of different dynamical effects (mean field effects, short- and long-range correlations, . . .)
- \star The proposed model must be validated through comparison to external data set. In this context, a critical role is played by the large database of precisely measured electron-nucleus cross section.

Detour

What we have learned from electron-nucleus scattering experiments

Kロト K個 K K モト K E K ニー ラ の Q (V 29 / 77

INFORMATION FROM ELECTRON SCATTERING

 \triangleright Vast supply of precise data available

 \triangleright Different rection mechanisms contributimg to the mesured cross sections can be readily identified

 $e + A \rightarrow e' + X$

イロト イ押ト イラト イラト

30 / 77

THE MEAN-FIELD APPROXIMATION

 \triangleright Nuclear systematics offers ample evidence supporting the further assumption, underlying the nuclear shell model, that the potentials appearing in the Hamiltonian can be eliminated in favour of a mean field

$$
H \to H_{MF} = \sum_{i} \left[\frac{\mathbf{p}_i^2}{2m} + U_i \right]
$$

$$
\left[\frac{\mathbf{p}_i^2}{2m} + U_i\right] \phi_{\alpha_i} = \epsilon_{\alpha_i} \phi_{\alpha_i} , \quad \alpha \equiv \{n, \ell, j\}
$$

- \triangleright For proposing and developing the nuclear shell model, E. Wigner, M. Goeppert Mayer and J.H.D. Jensen have been awarded the 1963 Nobel Prize in Physics
- A warning from Blatt & Weiskopf (AD 1952): "The limitation of any independent particle model lies in its inability to encompass the correlation between the positions and spins of the various particles in the system"

THE SHELL-MODEL GROUND STATE

 \triangleright According to the shell model, in the nuclear groud state protons and neutrons occupy the A lowest energy eigenstates of the mean field Hamiltonian

$$
H_{MF}\Psi_0 = E_0\Psi_0 \quad , \quad \Psi_0 = \frac{1}{A!} \det \{ \phi_\alpha \} \quad , \quad E_0 = \sum_{\alpha \in \{F\}} \epsilon_\alpha
$$

Ground state of ¹⁶O: $Z = N = 8$

 $(1S_{1/2})^2$, $(1P_{3/2})^4$, $(1P_{1/2})^2$

THE $(e, e\nu)$ REACTION

► Consider the process $e + A \rightarrow e' + p + (A - 1)$ in which both the outgoing electron and the proton, carrying momentum p' , are detected in coincidence

 \triangleright Assuming that there are no final state interactions (FSI), the initial energy and momentum of the knocked out nucleon can be identified with the *measured* missing momentum and energy, respectively

$$
\mathbf{p}_m = \mathbf{p}' - \mathbf{q} \quad , \quad E_m = \omega - T_{\mathbf{p}'} - T_{A-1} \approx \omega - T_{\mathbf{p}'}
$$

33 / 77

PROTON KNOCKOUT FROM SHELL-MODEL STATES

 \star The spectral lines corresponding to the shell model states clearly seen in the missing energy spectra of measured by

34 / 77

 $e + A \rightarrow e' + p + X$

Exposing the Limits of the Independent Particle Model $\mathcal{L}(\mathcal{L})$ is a fairly systematic way. These values will be used (sect. 6) as $\mathcal{L}(\mathcal{L})$ as assumed (sect. 6) as $\mathcal{L}(\mathcal{L})$ distorted in connection in connection in connection in the connection α and α

 \blacktriangleright The measured missing energy spectra, while exhibiting the lines predicted by the nuclear shell model, provide unambiguous evidence of its limitations e measured missing energy spectra, while exhibiting th

 \blacktriangleright The systematic deviation of the spectroscopic factors from the shell model prediction $Z_{\alpha} = 2j_{\alpha} + 1$ is a clear signature of strong correlation effects イロト イ母 トイミト イミトー 毛
SPECTROSCOPIC FACTORS OF VALENCE STATES

 \blacktriangleright The quenching of the spectroscopic factor of valence states has been confirmed by a number of high-resolution $(e, e'p)$ experiments carried out at NIKHEF-K using a 700 MeV high duty factor electron beam

- \blacktriangleright quenching is large and independent of target mass
- both short- and long-range correlations contribute

GAUGING FSI: NUCLEAR TRANSPARENCY FROM $(e, e'p)$

 \blacktriangleright Nuclear transparency, measured by the ratio $\sigma_{\exp}/\sigma_{\rm PWA}$

 $\mathcal{A} \Box \rightarrow \mathcal{A} \bigoplus \mathcal{A} \rightarrow \mathcal{A} \subseteq \mathcal{A}$ $\mathcal{A} \Box \rightarrow \mathcal{A} \bigoplus \mathcal{A} \rightarrow \mathcal{A} \subseteq \mathcal{A}$ $\mathcal{A} \Box \rightarrow \mathcal{A} \bigoplus \mathcal{A} \rightarrow \mathcal{A} \subseteq \mathcal{A}$ $\begin{array}{c} \ast \end{array}$ y q (\ast
37 / 77

37 / 77

Lecture II

DETERMINATION OF THE OSCILLATION PARAMETERS

 \star The oscillation parameters Δm^2 and $\sin^2 2\theta$ are extracted from the energy-dependence of the oscillation probability

$$
P_{\alpha \to \beta} = \sin^2 2\theta \, \sin^2 \left(\frac{\Delta m^2 L}{4E_{\nu}}\right)
$$

 \star The incoming neutrino energy E_{ν} is not known, its value being distributed according to a broad flux (MiniBeeNE as an example)

39 / 77

NEUTRINO ENERGY RECONSTRUCTION

 \star Consider the charged current quasi elastic (CCQE) process

 $\nu_{\mu} + (A, Z) \rightarrow \mu^{-} + p + (A - 1, Z)^{*}$

 \star Assuming single-nucleon knock out, the incoming neutrino energy can be *recosntructed* from

$$
E_{\nu} = \frac{m_p^2 - m_\mu^2 - E_n^2 + 2E_\mu E_n - 2\mathbf{k}_\mu \cdot \mathbf{p}_n + |\mathbf{p}_n|^2}{2(E_n - E_\mu + |\mathbf{k}_\mu| \cos \theta_\mu - |\mathbf{p}_n| \cos \theta_n)},
$$

where $|\mathbf{k}_u|$ and θ_u are measured, while \mathbf{p}_n and E_n are the *unknown* momentum and energy of the interacting neutron

 \star Existing simulation codes routinely use $\mathbf{p}_n = 0$, $E_n = m_n - \epsilon$, with $\epsilon \sim 20$ MeV for carbon and oxygen, or the Fermi gas (FG) model with $p_F \sim 220$ MeV

RECONSTRUCTED NEUTRINO ENERGY IN $\nu_\mu + ^{16}O \rightarrow \mu^- + X$

- \blacktriangleright Neutrino energy reconstructed using 2×10^4 pairs of $\{|{\bf p}|, E\}$ values sampled from the nucleon energy-momentum distribution in the oxygen ground state, obtained from a realistic dynamical model (SF) and the Fermi Gas model (FG)
- **I** The average value $\langle E_{\nu} \rangle$ obtained from the realistic model turns out to be shifted towards larger energy by ∼ 70 MeV

THE NEUTRINO-NUCLEUS CROSS SECTION

 \star Double differential cross section of the process

$$
\nu_{\ell}(k) + A \rightarrow \ell^{-}(k') + X
$$

$$
\frac{d^{2}\sigma}{d\Omega_{\ell}dE_{\ell}} = \frac{G_{F}^{2} V_{ud}^{2}}{16 \pi^{2}} \frac{|\mathbf{k}'|}{|\mathbf{k}|} L_{\mu\nu} W_{A}^{\mu\nu},
$$

$$
L_{\mu\nu} = 8 \left[k_{\mu}^{'} k_{\nu} + k_{\nu}^{'} k_{\mu} - g_{\mu\nu}(k \cdot k') - i \epsilon_{\mu\nu\alpha\beta} k^{'\beta} k^{\alpha} \right]
$$

 \triangleright The determination of the nuclear response tensor

$$
W_A^{\mu\nu} = \sum_N \langle 0|J_A^{\mu\dagger}|N\rangle \langle N|J_A^{\nu}|0\rangle \delta^{(4)}(P_0 + k - P_N - k')
$$

requires a *consistent* description of the target initial and final states and the nuclear current operator

$$
J^\mu_A = \sum_i j^\mu_i + \sum_{j>i} j^\mu_{ij}
$$

▶ Accurate Quantum Monte Carlo calculations are feasible for light nuclear targets ($A \leq 4$) in the non relativistic regime $(|{\bf q}| \stackrel{<}{_{\sim}} 500\ {\rm MeV})$ イロト イ団 トイモト イモト・モー

42 / 77

GREEN'S FUNCTION MONTE CARLO (GFMC)

▶ Longitudinal (left) and transverse (right) electromagnetic responses of ¹²C at $|\mathbf{q}| = 570 \text{ MeV}$

 $\mathcal{L}_{\mathcal{A}}$

 \blacktriangleright Full "Exact" calculation based on a realistic nuclear Hamiltonian

WHY WORRY ABOUT RELATIVITY

- \star |q|-dependence of the CCQE cross section averaged with the Minerva (left) and MiniBooNE (right) fluxes
- \star In the kinematical regime in which relativistic effects become important, approximations—involving both the reaction mechanism and the underlying dynamics—are required

IMPULSE APPROXIMATION (IA) & FACTORIZATION

 \star At $\lambda = \pi/|{\bf q}| \ll d_{NN}$, the average NN distance in the target nucleus

- \star Basic assumptions
	- $\triangleright |N\rangle \approx |\mathbf{p}\rangle \otimes |n_{(A-1)}, \mathbf{p}_{\mathbf{n}}\rangle$
	- $\triangleright J_A^{\mu}(q) = \sum_i j_i^{\mu}(q) + \sum_{j>i} j_{ij}^{\mu}(q) \approx \sum_i j_i^{\mu}(q)$
- \star As a zero-th order approximation, Final State Interactions (FSI) and processes involving two-nucleon Meson-Exchange Currents (MEC) are neglected (will be added as corrections)

FACTORIZATION (CONTINUED)

? Within the factorization *ansatz* the target tensor reduces to

$$
W_A^{\mu\nu} = \int d^3k \, dE \, \frac{m}{E_k} P_h(\mathbf{k}, E) w^{\mu\nu}(k, k + \tilde{q}) ,
$$

 $\star w^{\mu\nu}$ is the tensor describing the interaction of a free nucleon of momentum k at four momentum transfer

$$
\tilde{q} \equiv (\tilde{\omega}, \mathbf{q})
$$
, $\tilde{\omega} = E_x - E_k = \omega + m - E - E_k$

- \star The substitution $\omega \rightarrow \tilde{\omega} < \omega$ is needed to take into account the fact that an amount $\delta \omega = \omega - \tilde{\omega}$ of the energy transfer goes into excitation energy of the spectator system.
- \star The probability distribution is given by the spectral function describing hole states, $P_h(\mathbf{k}, E)$

 $P_h(\mathbf{k}, E)$ WITHIN THE LOCAL DENSITY APPROXIMATION

 $n(k) =$ $dE P(\mathbf{k}, E)$

 \star Bottom line: the tail of the momentum distribution, arising from the continuum contribution to the spectral function, turns out to be largely A-independent for $A > 2$

 \star Spectral functions of complex (isospin symmetric) nuclei have been obtained within the local density approximation (LDA)

$$
P_{\text{LDA}}(\mathbf{k}, E) = P_{\text{MF}}(\mathbf{k}, E) + \int d^3r \, \rho_A(r) \, P_{corr}^{NM}(\mathbf{k}, E; \rho = \rho_A(r))
$$

using the MF contributions extracted from $(e, e/p)$ data

 \star The continuum contribution $P_{corr}^{NM}(\mathbf{k}, E)$ can be accurately computed in uniform nuclear matter at di[ffe](#page-46-0)r[en](#page-48-0)[t](#page-46-0) [d](#page-47-0)[e](#page-48-0)[nsi](#page-0-0)[tie](#page-85-0)[s](#page-0-0)

OXYGEN SPECTRAL FUNCTION

- ► FG model: $P(\mathbf{p}, E) \propto \theta(p_F |\mathbf{p}|) \delta(E \sqrt{|\mathbf{p}|^2 + m^2} + \epsilon)$
- \triangleright shell model states account for \sim 80% of the strenght
- \triangleright the remaining \sim 20%, arising from NN correlations, is located at high momentum *and* large removal energy $(|{\bf p}|\gg p_F\sim 220{\rm ~MeV}, E\gg \epsilon)$

CORRECTIONE TO THE IA: FINAL STATE INTERACTIONS (FSI)

 \blacktriangleright The measured $(e, e/p)$ x-sections provide overwhelming evidence of the importance of FSI

$$
d\sigma_A = \int d^3k dE \, d\sigma_N \, P_h(\mathbf{k}, E) P_p(|\mathbf{k} + \mathbf{q}|, \omega - E)
$$

- \triangleright the particle-state spectral function $P_p(|{\bf k} + {\bf q}|, \omega E)$ describes the propagation of the struck particle in the final state
- \blacktriangleright the IA is recovered replacing the particle spectral function with the one of the non interacting systemai, i.e. setting

$$
P_p(|\mathbf{k} + \mathbf{q}|, \omega - E) \sim \delta(\omega - E - e_{|\mathbf{k} + \mathbf{q}|})
$$

- \triangleright effects of FSI on the inclusive cross section
	- (i) shift in energy transfer, $\omega \rightarrow \omega + U(\mathbf{k} + \mathbf{q})$, arising from interactions with the mean field of the spectators
	- (ii) redistributions of the strenght, arising from the coupling of $1p1h$ final state to $2p2h$ final states
- \blacktriangleright high-energy approximation
	- (i) the struck nucleon moves along a straight trajectory with constant velocity
	- (ii) the fast struck nucleon "sees" the spectator system as a collection of fixed scattering centers.

$$
\delta(\omega - E - \sqrt{|\mathbf{k} + \mathbf{q}|^2 + m^2}) \rightarrow \sqrt{T}\delta(\omega - E - \sqrt{|\mathbf{k} + \mathbf{q}|^2 + m^2})
$$

$$
+ (1 - \sqrt{T})f(\omega - E - \sqrt{|\mathbf{k} + \mathbf{q}|^2 + m^2}))
$$

 \blacktriangleright the nuclear transparency T and the folding function f can be computed within nuclear many-body theory using the *measured* nucleon-nucleon scattering amplitude

 $e + {}^{12}C \rightarrow e' + X$ in the Quasi Elastic Channel (IA+FSI)

 QQ 51 / 77

 e - AND ν _u-Carbon x-Sections in QE channel

 \star Double differential CCOE neutrino x-section (MiniBooNE)

 \star Note that the neutrino x-section is given as a function of muon kinetic energy, not energy transfer

K ロ ▶ K @ ▶ K 동 ▶ K 동 ▶ │ 동 │ 52 / 77

THE AXIAL MASS "PUZZLE"

dark bars indicate the measured values and the surrounding

correlations. Equation (4) is then used to calculate the

 \star The "excess" cross section in the CCQE channel observed by the MiniBooNE and K2K Collaborations has been initially ascribed to an increased value of the nucleon axial mass in the nuclear medium. However, this explanation is not supported by NOMAD data

CONTRIBUTION OF DIFFERENT REACTION MECHANISMS

? In neutrino interactions the lepton kinematics is *not* determined. The flux-averaged cross sections at fixed T_{μ} and $\cos \theta_{\mu}$ picks up contributions at different beam energies, corresponding to a variety of kinematical regimes in which different reaction mechanisms dominate

 $\star x = 1 \to E_{\nu}$ 0.788 GeV, $x = 0.5 \to E_{\nu}$ 0.975 GeV $\star \Phi(0.975)/\Phi(0.788) = 0.83$

"FLUX AVERAGED" ELECTRON-NUCLEUS X-SECTION

 \star The electron scattering x-section off Carbon at θ_e = 37 deg has been measured for a number of beam energies

 \star electron-carbon data at different energies, plotted as a function of the energy of the scattered electron

WHERE DOES THE "EXCESS" STRENGTH COME FROM?

- \star It has been suggested that 2p2h (CCQE like) final states provide a large contribution to the measured neutrino cross section
- \star Two particle-two hole final states may be produced through different mechanisms
	- \blacktriangleright Initial state correlations lead to the tail extending to large energy loss, clearly visible in the calculated QE cross section. The corresponding strength is consistent with the measurements of the coincidence $(e,e^\prime p)$ x-section carried out by the JLAB E97-006 Collaboration.
	- \blacktriangleright Final state interactions lead to a redistribution of the inclusive strength, mainly affecting the region of i.e. low energy loss, where the cross section is small
	- \triangleright Coupling to the two-body current leads to the appearance of strength at $x < 1$, in the *dip* region between the OE and ∆-excitation peaks
- \triangleright the description of the measured neutrino cross sections requires that all the above mechanism be taken into account in a consistent fashion

CORRELATION EFFECTS ON THE QE CROSS SECTION

 \star At IA level, correlations move strenght from the 1p1h sector (bound state left in a residual system) to the 2p2h sector (one spectator nucleon excited to the continuum), leading to a quenching of the peak and to the appearance of a tail extending to large energy loss

CIRCUMSTANTIAL EVIDENCE OF A TRANSVERSE MECHANISM $\star \theta_{\mu}$ -dependence of the CCQE excess strength

TWO-NUCLEON MESON-EXCHANGE CURRENTS

 \equiv $\mathcal{A} \Box \rightarrow \mathcal{A} \overline{\Box} \rightarrow \mathcal{A}$ $\mathcal{A} \Box \rightarrow \mathcal{A} \overline{\Box} \rightarrow \mathcal{A}$ $\mathcal{A} \Box \rightarrow \mathcal{A} \overline{\Box} \rightarrow \mathcal{A}$ 59 / 77

THE EXTENDED FACTORIZATION *ansatz*

- \star Highly accurate and consistent calculations of processes involving MEC can be carried out in the non relativistic regime
- \star Fully relativistic MEC used within the Fermi gas model
- \star Using relativistic MEC and a realistic description of the nuclear ground state requires the extension of the IA scheme to two-nucleon emission amplitudes
	- Rewrite the hadronic final state $|n\rangle$ in the factorized form

$$
|n\rangle\rightarrow|{\bf p},{\bf p}^{\prime}\rangle\otimes|n_{(A-2)}\rangle=|n_{(A-2)},{\bf p},{\bf p}^{\prime}\rangle
$$

 $\langle X|j^\mu_{ij}|0\rangle \rightarrow \int d^3k d^3k' M_n({\bf k},{\bf k}') \, \langle {\bf p}{\bf p}'|j^\mu_{ij}|{\bf k}{\bf k}'\rangle \, \delta({\bf k}+{\bf k}'+{\bf q}-{\bf p}-{\bf p}')$

The amplitude

$$
M_n(\mathbf{k},\mathbf{k}')=\langle n_{(A-2)},\mathbf{k},\mathbf{k}'|0\rangle
$$

is independent of q and can be obtained from non relativistic many-body theory

(ロ) (@) (경) (경) (경) 1명 (9) (0) 60 / 77 $|0\rangle \rightarrow |2p2h\rangle$ Transition Probability

 \star In interacting many body systems 2p2h states can be excited through the action of both one- and two-body transition operators

> $|\langle 2p2h| J |0\rangle|^2 = |\langle 2p2h| J_1 |0\rangle|^2 + |\langle 2p2h| J_2 |0\rangle|^2$ + 2 Re $\langle 2p2h| J_1 |0\rangle^{\star}\langle 2p2h| J_2 |0\rangle$

 \star Within the independent particle model (either FG or shell model)

 $\langle 2p2h| J_1 |0 \rangle = 0$

- \star Strong nucleon-nucleon correations lead to the appearance of sizable interference contributions to the $|0\rangle \rightarrow |2p2h\rangle$ transition probability
- \star 2p2h excitations can be consistently described within a generalization of the spectral function formalism

 $e + {}^{12}C \rightarrow e' + X$ (IA+FSI+MEC), QUASI ELASTIC + INELASTIC

 \star e-carbon x-section obtained within the extended spectral function formalism

TOWARDS A SOLUTION OF THE AXIAL MASS PUZZLE

- Calculation of the Valencia group: single and multinucleon emission included. Long range correlations included within the Random Phase Approximation (RPA)
- \blacktriangleright Flux intergated double differential neutrino-carbon cross section in the CCQE channel \mathbf{r} and \mathbf{v} account those multinucleon contributions that can be assumed to the particle to the par

INELASTIC X-SECTION WITHIN THE FACTORIZATION SCHEME

- \star No conceptual problems involved: replace nucleon form factors with inelastic structure functions
- $\star \nu_{\mu} + ^{12}C \rightarrow \mu^- + X$. Factorization ansatz and LDA spectral function (NOMAD data)

LOW-ENERGY NEUTRINO-NUCLEON INTERACTIONS

- \star Neutrino interactions are mediated by the gauge bosons W^{\pm} and Z_0 , whose masses are in the range $\approx 80 - 90 \text{ GeV}$
- \star In the regime of momentum transfer discussed in this talk, $q \sim 10$ MeV, Fermi theory of weak interactions works just fine

$$
\sum_{W,Z_0} \mathcal{L}_F = \frac{G}{\sqrt{2}} J_{N\mu} J_\ell^{\mu}
$$

$$
J_\ell^{\mu} = \begin{cases} \bar{u}_{\ell} - \gamma^{\mu} (1 - \gamma_5) u_{\nu} & (CC) \\ \bar{u}_{\nu} \gamma^{\mu} (1 - \gamma_5) u_{\nu} & (NC) \end{cases}
$$

 \star The nucleon current can be cast in the non relativistic limit

$$
J_{N\mu} = \begin{cases} \bar{u}_p \gamma_\mu (1 - g_A \gamma_5) u_n & \to & \chi^{\dagger}_{s_p} (g^0_\mu + g_A g^\mu_i \sigma_i) \chi_{s_n} \quad (CC) \\ \bar{u}_{n'} \gamma_\mu (1 - c_A \gamma_5) u_n & \to & \chi^{\dagger}_{s'_n} (g^0_\mu + c_A g^\mu_i \sigma_i) \chi_{s_n} \quad (NC) \end{cases}
$$

NUCLEAR RESPONSE TENSOR

 \star Consider a neutral current process

 $\nu + A \rightarrow \nu' + X$

 \star The nuclear response tensor reads

$$
W^{\lambda\mu} = \sum_{n} \langle 0|J^{\lambda}|n\rangle \langle n|J^{\mu}|0\rangle \delta^{(4)}(P_0 + q - P_n)
$$

 \star Interaction rate

$$
W(\mathbf{q},\omega) \propto \frac{G_F}{4\pi^2} L_{\lambda\mu} W^{\lambda\mu} = \frac{G_F}{4\pi^2} \left[(1 + \cos\theta) S^{\rho} + \frac{c_A^2}{3} (3 - \cos\theta) S^{\sigma} \right]
$$

where $\cos \theta = (\mathbf{k} \cdot \mathbf{k}') / (|\mathbf{k}||\mathbf{k}'|)$, while S^{ρ} and S^{ρ} are the nuclear responses in the density and spin-density channels, respectively.

NUCLEAR WEAK RESPONSE FUNCTIONS AT LOW ENERGY

 \star density response

$$
S^{\rho} = \frac{1}{N} \sum_{n} |\langle 0|J_0|n \rangle \langle n|J_0|0 \rangle \delta^{(4)}(P_0 + q - P_n)
$$

 \star spin-density response (α , β = 1, . . . 3)

$$
\mathcal{S}^{\sigma} = \sum_{\alpha} \mathcal{S}^{\sigma}_{\alpha\alpha}
$$

$$
\mathcal{S}^{\sigma}_{\alpha\beta} = \frac{1}{N} \sum_{n} |\langle 0| J_{\alpha} | n \rangle \langle n | J_{\beta} | 0 \rangle \delta^{(4)} (P_0 + q - P_n)
$$

 \star Neutral weak current

$$
J_0 = \sum_i j_i^0 = \sum_i e^{i\mathbf{q} \cdot \mathbf{x}_i} \quad , \quad J_\alpha = \sum_i j_i^\mu = \sum_i e^{i\mathbf{q} \cdot \mathbf{x}_i} \sigma_\alpha
$$

イロト イ団 トイミト イミト・ミ 67 / 77

EFFECTS OF NN INTERACTIONS

- \star Mean field effects
	- \triangleright Change of nucleon energy spectrum

$$
e_k = \frac{k^2}{2m} + \sum_{\mathbf{k}'} \langle \mathbf{k}\mathbf{k}' | V_{\text{eff}} | \mathbf{k}\mathbf{k}' \rangle_a
$$

 \triangleright Effective mass

$$
\frac{1}{m_k^{\star}} = \frac{1}{|\mathbf{k}|} \frac{de_k}{d|\mathbf{k}|}
$$

 \star Correlation effects

 \triangleright Effective operators couple the ground state to two-particle–two-hole (2p2h) final states, thus removing strength from the 1p1h sector

 $M_{2p2h} = \langle 2p2h|J_{\text{eff}}^{\mu}|0\rangle \neq 0 \rightarrow M_{1p1h} = \langle 1p1h|J_{\text{eff}}^{\mu}|0\rangle < \langle 1p1h|J^{\mu}|0\rangle$

 \star Nucleon energy spectrum and Effective mass in isospin-symmetric matter at

 \star Quenching of Fermi transition strength in isospin-symmetric matter at equilibrium density

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B}$ \prec \Rightarrow \Rightarrow 69 / 77

q-EVOLUTION OF INTERACTION EFFECTS

 \star Density response of isospin-symmetric matter at equilibrium density

 $|{\bf q}| = 3.0$ fm⁻¹

 $|{\bf q}| = 1.8$ fm⁻¹

 $|{\bf q}| = 0.3$ fm⁻¹

 $+$ ロ $+$ $+$ $+$ $+$ 70 / 77

LONG-RANGE CORRELATIONS

 \star At low momentum transfer the space resolusion of the neutrino becomes much larger than the average NN separation distance (∼ 1.5 fm), and the interaction involves many nucleons

$$
\sum_{d=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n}
$$

 \star Write the nuclear final state as a superposition of 1p1h states (RPA scheme)

$$
|n\rangle = \sum_{i=1}^{N} C_i |p_i h_i\rangle
$$

TAMM-DANCOFF (RING) APPROXIMATION

 \star Propagation of the particle-hole pair produced at the interaction vertex gives rise to a collective excitation. Replace

$$
|ph\rangle \rightarrow |n\rangle = \sum_{i=1}^{N} C_i |p_i h_i\rangle
$$

 \star The energy of the state $|n\rangle$ and the coefficients C_i are obtained diagonalizing the hamiltonian matrix

$$
H_{ij} = (E_0 + e_{p_i} - e_{h_i})\delta_{ij} + (h_i p_i | V_{\text{eff}} | h_j p_j)
$$

$$
e_k = \frac{k^2}{2m} + \sum_{\mathbf{k'}} \langle \mathbf{k} \mathbf{k'} | V_{\text{eff}} | \mathbf{k} \mathbf{k'} \rangle_a
$$

 \star The appearance of an eigenvalue, ω_n , lying outside the particle-hole continuum signals the excitation of a collective mode

EFFECTS OF LONG-RANGE CORRELATIONS

 \star Density response of isospin-symmetric nuclear matter at equilibrium density

73 / 77

EXCITATION OF COLLECTIVE MODES

 \star Density (a) and spin-density (b) responses of isospin-symmetric nuclear matter at equilibrium density *A. Lovato et al. / Nuclear Physics A 901 (2013) 22–50* 45

 \star |q| = 0.1, 0.15, 0.20, 0.25, 0.30, 0.40 and 0.50 fm⁻¹

NEUTRINO MEAN FREE PATH IN NEUTRON MATTER

 \star The mean free path of non degenerate neutrinos at zero temperature is obtained from

$$
\frac{1}{\lambda} = \frac{G_F^2}{4} \rho \int \frac{d^3q}{(2\pi)^3} \left[(1 + \cos \theta) S(\mathbf{q}, \omega) + \mathbf{C_A^2} (\mathbf{3} - \cos \theta) \mathcal{S}(\mathbf{q}, \omega) \right]
$$

where S and S are the density (Fermi) and spin (Gamow Teller) response, respectively

 \star \star \star Both short and long range correlations im[po](#page-74-0)rta[n](#page-74-0)[t](#page-75-0)

75 / 77

 $\,$ $\,$

SUMMARY OF LECTURE II

- \star Thanks to the significant efforrts of the past two decades, a consistent framework suitable to describe neutrino-nucleus cross sections in the broad kinematical regime corresponding to beam energies from \sim 10 MeV to several GeV is emerging
- \star The main challenges to be faced in the near future are the description of exclusive channels, including those involving resonance production and deep-inelastic scattering, as well as of complex nuclear targets, such as argon
- \star The factorization formalism, involving non adjustable parameters, appears to be ideally suited to achieve theses goal, as long as the spectral function describing initial state dynamics is available. More electron scattering data needed.
- \star If, and to what extent, the theoretical progress will have a significant impact on the experiments remains to be seen...

The E12-14-012 Experiment at Jefferson Lab

Physics Motivation

- \star The reconstruction of neutrino and antineutrino energy in liquid argon detectors will require the understanding of the spectral functions describing both protons and neutrons
functions describing both protons and neutrons on the title and the PaC. The PaCE of the
	- \star The Ar $(e, e'p)$ cross section only provides information on proton interactions. The information on neutrons can be obtained from the $\text{Ti}(e, e'p)$, exploiting the pattern of shell model levels

 \overline{a}

Backup slides

THREE-NUCLEON INTERACTIONS

- \star Interactions involving more two nucleons arise as a consequence of the internal structure of the participating particles \overline{a}
- \star The main contribution to the three nucleon forces comes m from the Fujita-Miyazawa mechanism $\sum_{i=1}^{n}$
- \star Phenomenological r nenomenologicar
three-nucleon potentials, written in the form

 $V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^N$

are determined through a fit to the properties of the three-nucleon system

EVIDENCE OF NUCLEAR SHELL STRUCTURE

^I Energy spectra and emergence of *magic numbers*

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B}$ \rightarrow \equiv \rightarrow

80 / 77

SPECTROSCOPIC FACTORS OF ^{208}Pb

 \leftarrow \Box \rightarrow \rightarrow \Box \rightarrow \equiv OQ 81 / 77

MEASURED CORRELATION STRENGTH

- \star the correlation strength in the 2p2h sector has been measured by the JLAB E97-006 Collaboration using a carbon target
- \star strong energy-momentum correlation: $E \sim E_{thr} + \frac{A-2}{A-1} \frac{k^2}{2m}$ $2m$

 \star Measured correlation strength 0.61 \pm 0.06, to be compared with the theoretical predictions of *ab initio* approaches: 0.46 (GF), 0.61 (SCGF) and 0.64 (CBF)

CORRELATION EFFECTS ON THE QE CROSS SECTION

 \star At IA level, correlations move strenght from the 1p1h sector (bound state left in a residual system) to the 2p2h sector (one spectator nucleon excited to the continuum), leading to a quenching of the peak and to the appearance of a tail extending to large energy loss

 \star Mean free path of a non degenerate neutrino in neutron matter. Left: density-dependence at $k_0 = 1$ MeV and $T = 0$; Right: energy dependence at $\rho = 0.16~\mathrm{fm}^{-3}~$ and $T = 0, 2~\mathrm{MeV}$

 \star Density and temperature dependence of the mean free path of a non degenerate neutrino at $k_0 = 1$ MeV and $\rho = 0.16$ fm⁻³

