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A few basic facts I assume you are familiar with:

• The relativistic version of Quantum Mechanics is Quantum
Field Theory (non-conservation of the particle number in
reactions)

• QFT’s are completely determined by symmetry properties
(hinted by experiments)

• Gauge invariance plays a special role.



1. Construction of the standard model: phenomenological inputs

• Fundamental matter particles are spin- 1
2 fermions: charged

leptons, neutrinos, quarks.

• Parity invariance is respected by electromagnetic and strong
interactions, but (maximally) violated by weak interactions:
positive- and negative-chirality fermions behave differently
wrt weak interactions.

• Weak interactions are short-range interactions.

• Color confinement (more on this later).



Theoretical constraints

• Renormalizability: consistent perturbation theory with no
restrictions on the energy scale. In practice, a restriction on
the mass dimension of parameters: d ≥ 0

• A necessary, but not sufficient, condition for unitarity
(conservation of probability): if the theory contains vector
bosons, a gauge invariance is also needed.

Our attitude towards renormalizability has changed in time.



2. Electromagnetic interactions

The lagrangian density of a collection of non-interacting fermions
(labelled by an index i) with masses mi:

L0 =
∑

i

ψ̄i(i∂/−mi)ψi

is invariant under constant phase multiplication (U(1))

ψi → eieQiαψi

As a consequence

∂µJµ = 0; Jµ = −e
∑

i

Qiψ̄iγµψi

which can be interpreted as the em current if Qi is the electric
charges of fermion i in units of −e.



Electromagnetic interactions can be taken into account by
analogy with classical physics:

Hem =
∫
d3xJµ(x)Aµ(x)

where Aµ is the 4-potential. It follows that

Lem = −Jµ(x)Aµ(x) = eAµ
∑

i

Qiψ̄iγµψi

or

L = L0 + Lem

=
∑

i

ψ̄i [iγµ(∂µ − ieQiA
µ)−mi]ψi



The lagrangian density has now a local invariance under the
transformations

ψi → eieQiα(x)ψi

provided Aµ is also transformed:

Aµ → Aµ + ∂µα

(the usual gauge invariance of classical electrodynamics). Indeed

(∂µ − ieQiA
µ)ψi → eieQiα(∂µ − ieQiA

µ)ψi

The operator

Dµ = ∂µ − ieQiAµ

is called a covariant derivative.



In order to describe the dynamics of the electromagnetic fields,
we need a term in the lagrangian which contains derivatives of
Aµ, with the following requirements:

• no more than first derivatives;

• Lorentz and partity invariant;

• gauge invariant;

• dimension 4

Only candidate:

−1
4
FµνF

µν

with

Fµν = ∂µAν − ∂νAµ



Two important facts:

1.

Fµν → Fµν

under a gauge transformation

2. a mass term m2AµA
µ not compatible with gauge invariance.

So finally

LQED =
∑

i

ψ̄i(iD/−m)ψi −
1
4
FµνF

µν

Field equations:

∂µF
µν = −Jν

Maxwell equations involving sources.

The two Maxwell equations without sources

εµνρσ∂
νF ρσ = 0

are automatically solved by Fµν = ∂µAν − ∂νAµ.



The argument can be reversed: require local gauge invariance
(with given fermion charges) and renormalizability. The field
theory is uniquely fixed.

In a sense, gauge invariance is the origin of interactions.



Quantization

Quantization of gauge field theories is a difficult subject. Just to
give you some ideas:

The gauge vector propagator does not exist:

(gνµ∂
2 − ∂ν∂µ)∆µρ(x) = −δρ

νδ(x)

(k2gνµ − kνkµ)∆̃µρ(k) = δρ
ν

but

k2gνµ − kνkµ

has no inverse: kµ is an eigenvector with zero eigenvalue!

A consequence of gauge invariance. A gauge choice is needed.



• A gauge choice can be performed by adding a suitable
gauge-fixing term to the lagrangian density;

• Lorentz invariance and renormalizability restrict the possible
choices to −(∂µA

µ)2/(2ξ); no harm: ∂µA
µ is a free field.

• with ξ = 1 (Feynman gauge) the photon propagator is

∆̃µν =
gµν

k2 − iε
which respects power counting, and the theory is
renormalizable and unitary.

• A useful tool in this context: the generating functional
formalism.



3. Weak interactions

The Fermi theory of weak interactions is non-renormalizable
(GF ∼ m−2) and non-unitary (cross sections grow as s2).

The idea of interpreting the Fermi four-fermion interaction vertex
as originated by vector boson exchange (in order to have a
dimensionless coupling constant) dates back to Fermi himself.

There is only one way to build a unitary and renormalizable field
theory of vectors: a gauge theory.

An endless list of experimental confirmations of this fact. The
most striking one: the pattern of vector couplings.



Non abelian gauge theories:

ψ(x) → U(x)ψ(x); U(x) ∈ G; U(x) = eigαA(x)tA

Then

L = ψ̄γµiD
µψ − 1

4
FA

µνF
µν A

is invariant, provided

Dµ = ∂µ − igAµ = ∂µ − igAµ
AtA

Aµ → UAµU
−1 +

i

g
U∂µU

−1

FA
µν = ∂µA

A
ν − ∂νA

A
µ + gfABCAB

µA
C
ν

with

[tA, tB ] = ifABCtC

The structure constants fABC are completely antisymmetric, if

Tr tAtB = TδAB



Conserved currents:

JA
µ = −gψ̄γµtAψ; ∂µJA

µ = 0

which imply
dQA

dt
= 0; QA =

∫
d3xJA

0 (t, ~x)

with [
QA, QB

]
= ifABCQ

C

Also note that

Fµν = FA
µνtA → UFµνU

−1

Warning: quantization much less trivial than in the abelian case.



Which gauge theory for weak interactions? Specifically,

• Which gauge group?

• Which assignments of matter fields to representations?

• Which realization of symmetries?



The first indication of early data (β decays of nuclei, muon decay)
is that weak interactions distinguish left helicity from right
helicity states. Only left-handed fermions are involved in the
Fermi Lagrangian.

The structure of the interaction suggests a symmetry based on
the group SU(2).

Unification with electromagnetism requires an extension of the
gauge group. The minimal extension is

SU(2)L ⊗ U(1)Y

which requires four gauge vector bosons:

W a
µ , a = 1, 2, 3 for SU(2)L

Bµ for U(1)Y



Next, we must assign fermion matter fields to representations of
the gauge group.

Six flavours of quarks:

u d s c b t

Three charged leptons:

e µ τ

and three neutrinos:

νe νµ ντ

(I’m making a long story VERY short!)



Data are consistent with the following scheme:

Qi
L =

 ui
L

di
L

 ui
R di

R Li
L =

 νi
L

`iL

 `iR

ψi
1 ψi

2 ψi
3 ψi

4 ψi
5

A family structure emerges:

ψr
i

The index i labels fermion generations: i = 1, . . . , 3 (as far as we
know).

The index r labels group representations.



Comments:

• Fermion fields with different chiralities transform differently:

ψR =
1 + γ5

2
ψ ψL =

1− γ5

2
ψ

Parity is not conserved by weak interacions.

• Left-handed quarks QL and leptons LL transform as SU(2)
doublets (r = 1 and r = 4), right-handed fermions as SU(2)
singlets (r = 2, 3, 5). Right-handed fermion do not participate
in charged-current interactions.

• Different representations have different values of the
hypercharge quantum number (more on this later).

• neutrinos are massless: no right-handed neutrinos around.
Much more on this later.



A unique gauge-invariant lagrangian density can now be written:

LSM = LYang−Mills +
N∑

i=1

5∑
r=1

ψ̄i
r iD/r ψ

i
r

with

Dµ
r = ∂µ − igT a

r W
µ
a − ig′

Yr

2
Bµ

T a
r =

τa

2
for SU(2) doublets (r = 1, 4)

T a
r = 0 for SU(2) singlets (r = 2, 3, 5)

• Hypercharge values undetermined so far

• Axial anomaly cancelled if nq = n` = N (a prediction of the
standard model.)



The interaction lagrangian density includes a charged-current
term which can be written as

Lcc =
g√
2

[
LLγ

µτ+LLW
+
µ + LLγ

µτ−LLW
−
µ

+ QLγ
µτ+QLW

+
µ +QLγ

µτ−QLW
−
µ

]
with the definitions

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ); τ± =

1
2
(τ1 ± iτ2)

This interaction term accounts for all processes described by the
Fermi theory. For example

Lcc =
g

2
√

2
ūγµ(1− γ5)dW−

µ +
g

2
√

2
ēγµ(1− γ5)νeW

−
µ + . . .



Electro-weak unification

The neutral-current interaction term is

Lnc = g ψ̄ γµ T3 ψW
µ
3 + g′ ψ̄ γµ

Y

2
ψBµ

where

ψ = ψi
r, r = 1, . . . , 5

T3 = (T3)r

(T3)r =
τ3
2

for doublets (r = 1, 4)

(T3)r = 0 for singlets (r = 2, 3, 5)

Y = Yr (r = 1, . . . , 5)

Neither W 3
µ nor Bµ can be identified with Aµ.



Reparametrization of the neutral sector:

Wµ
3 = Aµ sin θW + Zµ cos θW

Bµ = Aµ cos θW − Zµ sin θW

(an orthogonal transformation, in order to keep kinetic terms
diagonal in the vector fields).

Lnc = ψ̄ γµ

[
g sin θW T3 + g′ cos θW

Y

2

]
ψAµ

+ ψ̄ γµ

[
g cos θW T3 − g′ sin θW

Y

2

]
ψ Zµ

We may identify Aµ with the photon field provided

g sin θW T3 + g′ cos θW
Y

2
= eQ



Choosing g and g′ so that

g sin θW = g′ cos θW = e

we obtain

Q = T3 +
Y

2
for all fermions:

Y (uL) = 2
(

2
3
− 1

2

)
=

1
3

Y (dL) = 2
(
−1

3
+

1
2

)
=

1
3

Y (eL) = 2
(
−1 +

1
2

)
= −1

. . .



[Alternatively: choose e.g. Y = −1 for the lepton doublets, and
solve

+ 1
2g sin θW − 1

2g
′ cos θW = 0

− 1
2g sin θW − 1

2g
′ cos θW = −e

with respect to g sin θW , g′ cos θW . You get g sin θW = g′ cos θW = e,
and Q = T3 + Y/2 follows.]



The value of sin θW can only be extracted from the observation of
weak neutral-current phenomena, induced by interactions with
the Z0 boson:

Lnc = eψ̄ γµQψA
µ

+ eψ̄ γµ

[
cos θW

sin θW
T3 −

sin θW

cos θW

Y

2

]
ψ Zµ

Historical example: neutral-current deep inelastic scattering.

NC : νµ +H → νµ +X

CC : νµ +H → µ− +X

R =
σ

(NC)
ν̄ − σ(NC)

ν

σ
(CC)
ν̄ − σ(CC)

ν

' 1− 2 sin2 θW

2



The most precise determinations of sin θW come from
forward-backward asymmetries measured in e+e− collisions:

AFB(f) =

∫
cos θ>0

dσ(e+e− → ff̄)−
∫
cos θ<0

dσ(e+e− → ff̄)
σ(e+e− → ff̄)

where f is any charged fermion. Present result:

sin2 θW = 0.23116(13)

It follows that g, g′ are of the same order of magnitude as e:

g =
e

sin θW
' 2.1 e; g′ =

e

cos θW
' 1.1 e

g2

4π
' 4αem;

g′
2

4π
' αem



Not yet a realistic theory

• The gauge symmetry must be (spontaneously) broken,

SU(2)L ⊗ U(1)Y → U(1)em

because weak vector bosons are observed to be massive (short
range of weak interactions).

• The fermionic sector has a large global symmetry which is not
observed. An explicit breaking

[U(N)]5 → U(1)B ⊗ U(1)e ⊗ U(1)µ ⊗ U(1)τ

or

[U(N)]5 → U(1)B ⊗ U(1)L

is needed.



Addendum n. 1

LYang−Mills = −1
4
BµνB

µν − 1
4
W a

µνW
µν
a

Bµν = ∂µBν − ∂νBµ

Wµν
i = ∂µW ν

i − ∂νWµ
i + gεijkW

µ
j W

ν
k

The corresponding expressions in terms of W±
µ , Zµ and Aµ can be

easily worked out:

W 1
µ =

1√
2
(W+

µ +W−
µ )

W 2
µ =

i√
2
(W+

µ −W−
µ )

W 3
µ = Aµ sin θW + Zµ cos θW

Bµ = Aµ cos θW − Zµ sin θW



We get

W 1
µν =

1√
2

[
W+

µν + ig sin θW (W+
µ Aν −W+

ν Aµ)

+ ig cos θW (W+
µ Zν −W+

ν Zµ)
]
+ h.c.

W 2
µν =

i√
2

[
W+

µν + ig sin θW (W+
µ Aν −W+

ν Aµ)

+ ig cos θW (W+
µ Zν −W+

ν Zµ)
]
+ h.c.

W 3
µν = Fµν sin θW + Zµν cos θW − ig(W+

µ W
−
ν −W−

µ W
+
ν )

Bµν = Fµν cos θW − Zµν sin θW

where

Fµν = ∂µAν − ∂νAµ

Zµν = ∂µZν − ∂νZµ

Wµν
± = ∂µW ν

± − ∂νWµ
±



It follows that

LYang−Mills = −1
4
FµνF

µν − 1
4
ZµνZ

µν − 1
2
W+

µνW
µν
−

+ig sin θW (W+
µνW

µ
−A

ν −W−
µνW

µ
+A

ν + FµνW
µ
+W

ν
−)

+ig cos θW (W+
µνW

µ
−Z

ν −W−
µνW

µ
+Z

ν + ZµνW
µ
+W

ν
−)

+
g2

2
(2gµνgρσ − gµρgνσ − gµσgνρ)

[
1
2
W+

µ W
+
ν W

−
ρ W

−
σ

−W+
µ W

−
ν (AρAσ sin2 θW + ZρZσ cos2 θW + 2AρZσ sin θW cos θW )

]



Addendum n. 2

Why did I say that

LSM = LYang−Mills +
N∑

i=1

5∑
r=1

ψ̄i
r iD/r ψ

i
r

has a global [U(N)]5 invariance?

For each r = 1, . . . , 5 consider the transformation

ψi
r

′
=

N∑
j=1

U ij
r ψ

j
r

where Ur is a constant unitary N ×N matrix. This
transformation leaves LSM unchanged. There are 5 symmetries of
this kind, one for each representation r. The full global symmetry
is therefore [U(N)]5, as announced.



3. Spontaneous breaking of the gauge symmetry

A simple argument shows that the W boson must be massive.
The amplitude for β decay in the Fermi theory is given by

M = −GF√
2
uγµ(1− γ5)d eγµ(1− γ5)νe

In the standard model, the same process is induced by the
exchange of a W boson:

MSM =
(
g√
2
uLγ

µdL

)
1

q2 −m2
W

(
g√
2
eLγµνeL

)



We have

q2 ≤ (mN −mP )2 ∼ (1.3 MeV)2

Hence, the two amplitudes coincide in the limit m2
W � q2 if

GF√
2

=
(

g

2
√

2

)2 1
m2

W

.

A lower bound on the W mass can be set: since

g =
e

sin θW

we obtain

m2
W =

√
2

GF

g2

8
≥
√

2
GF

e2

8
∼ (40 GeV)2

quite a large value, compared to the nucleon mass, and an
enormous number, compared to the present upper bound on the
photon mass

mγ ≤ 2 · 10−16 eV.



Breaking gauge invariance explicitly with a mass term

m2
WW+

µ W
−µ +

1
2
m2

ZZµZ
µ

leads to a non-renormalizable and non-unitary theory.

The gauge symmetry of the standard model must be
spontaneously broken, in order to introduce masses for the W and
Z vector bosons without spoiling unitarity and renormalizability.



A flavour of the argument: a mass term inserted by hand
(explicit breaking) leads to a massive gauge boson propagator

∆µν(k) =
i

k2 −m2

(
−gµν +

kµkν

m2

)
For large k, the term proportional to kµkν dominates, and
∆(k) ∼ k0 rather than k−2: the behaviour of this propagator at
large k is much worse than that of the scalar propagator. This
suggests a worse UV behaviour of the Feynman integrals, which
leads to a non-renormalizable theory.



A related problem: unitarity of the scattering matrix. The
amplitude for a generic physical process with the emission or the
absorption of a vector boson with four-momentum k and
polarization vector ε(k) has the form

M = Mµεµ(k).

A massive vector (contrary to a massless one) may be polarized
longitudinally. In this case, choosing the z axis along the
direction of the 3-momentum of the vector boson, the
polarization is given by

εL =

(
|~k|
m
, 0, 0,

E

m

)
=

k

m
+O

(
m2

E2

)
,

(because k · ε = 0 and ε2 = −1).

The amplitude M grows indefinitely with the energy E, and
eventually violates the unitarity bound.



Both sources of power-counting violation are rendered harmless if
the vector particles are coupled to conserved currents, so that

kµMµ = 0

Gauge invariance provides such conservation relations.



Spontaneous symmetry breaking is not really a way of breaking a
symmetry: rather, it is a different realization of the symmetry
itself.

More precisely, SSB takes place whenever the ground state is not
invariant under symmetry transformations. As a consequence,
the lagrangian density is symmetric, but the spectrum of physical
states is not.

The prototype: ferromagnetism.



In quantum field theory, SSB takes place when some operator
with non-trivial transformation properties under the gauge group
has non-vanishing vacuum expectation value:

〈0|φj |0〉 = vj 6= 0

Easy to prove: after an infinitesimal transformation

φi → φi + iαa taijφj = φi + iαa [Qa, φi]

taij〈0|φj |0〉 = 〈0| [Qa, φi] |0〉 6= 0 ⇔ Qa|0〉 6= 0

which is the condition for spontaneous symmetry breaking, i.e.
non-invariance of the vacuum state.



Observations:

• 〈0|φi|0〉 is constant over space-time if the vacuum is invariant
under translations:

〈0|φi(x)|0〉 = 〈0|eiPxφi(0)e−iPx|0〉 = 〈0|φi(0)|0〉

• φ must be a scalar, otherwise its vacuum expectation value is
frame-dependent.

• φ is not necessarily an elementary field



The simplest realization: the Higgs mechanism

LSM = LYang−Mills +
N∑

i=1

5∑
r=1

ψ̄i
r iD/r ψ

i
r+LHiggs

LHiggs = (Dµφ)†Dµφ− V (φ)

where φ is a set of one or more fundamental scalar fields.

The simplest among simplest: φ is an SU(2)L doublet:

Dµφ = ∂µφ−
ig

2
W a

µ τ
aφ− ig′

2
YφBµφ; V (φ) = m2 |φ|2 + λ |φ|4

If m2 < 0 the scalar potential has a minimum at

〈0|φ|0〉 =
1√
2

 v1

v2

 ; v2
1 + v2

2 = −m
2

λ
≡ v2.



The value of the hypercharge Yφ is dictated by the requirement
that Uem(1) remains unbroken:

eieQ

 v1

v2

 =

 v1

v2


This amounts to

Q

 v1

v2

 = 0

with

Q =
1
2
(
τ3 + Yφ I2

)
=

1
2

 1 + Yφ 0

0 −1 + Yφ


which has nonzero solutions only if

(Yφ + 1)(Yφ − 1) = 0



Two solutions:

Yφ = 1, v1 = 0, v2 = v Yφ = −1, v1 = v, v2 = 0

(related to each other by charge conjugation). We choose Yφ = 1,
so that

φ =

 φ+

φ0





The |Dφ|2 term contains a term

LφφV V =
1
4
(g2Wµ

a W
a
µ + g′

2
BµBµ)φ†φ+

1
2
gg′BµW i

µφ
†τ iφ

=
1
4
g2v2W+µ

1 W−
µ +

1
4
v2(Wµ

3 Bµ)

 g2 −gg′

−gg′ g′
2

 W3µ

Bµ


+ . . .

The first term is a mass term for the W :

m2
W =

1
4
g2 v2



The matrix

1
4
v2

 g2 −gg′

−gg′ g′
2


has zero determinant and trace 1

4 (g2 + g′
2) v2. Hence the two

neutral mass eigenvectors

A3
µ = W 3

µ sin θW +Bµ cos θW

Zµ = W 3
µ cos θW −Bµ sin θW

have masses

m2
Z =

1
4

(g2 + g′
2) v2 m2

γ = 0

respectively.



The value of the order parameter v2 is obtained from matching
with the Fermi theory of β decay: from

GF√
2

=
g2

8m2
W

; m2
W =

1
4
g2v2

we get

v = (
√

2GF )−1/2 ∼ (247 GeV)2

where we have used the measured value GF ∼ 1.1× 10−5 GeV−2.

Weak interactions have a characteristic energy scale of the order
of a few hundred GeV.



Three of the four scalar degrees of freedom in φ are unphysical:
they can be eliminated from the spectrum by a gauge choice.

An easy (but slightly deceptive) way to see it: parametrize φ by

φ =
1√
2
e

iτiθi(x)
v

 0

v +H(x)

→ 1√
2

 0

v +H(x)


after a suitable gauge transformation. The massive gauge boson
propagators take the form

∆µν(k) =
i

k2 −m2

(
−gµν +

kµkν

m2

)
It looks like we are in troubles again with renormalization!



This is not true: we are working with a renormalizable theory, so
renormalizability must arise in calculations, even though it is not
manifest (the propagator does not respect the usual
power-counting rule).

This is called the unitary gauge: unitarity is manifest, in the
sense that unphysical degrees of freedom are removed from the
spectrum, but manifest renormalizability is lost.

Useful in tree-level calculations.



When loop corrections become relevant, it is advisable to adopt a
renormalizable gauge. The starting point is a linear
parametrization of the scalar field:

φ = φ1 + φ2,

φ1 =
1√
2

 0

v

 φ2 =
1√
2

 G1(x) + iG2(x)

H(x) + iG3(x)


A convenient gauge-fixing term (suggested by ’t Hooft) is

LGF = − 1
2ξ
[
∂µW i

µ − ξf i(φ)
]2 − 1

2ξ
[∂µBµ − ξf(φ)]2

with

f i(φ) =
ig

2
(φ†1τ

iφ2 − φ†2τ iφ1) f(φ) =
ig′

2
(φ†1φ2 − φ†2φ1)



Two main advantages:

• No mixing between vector fields and derivative of the scalar
field

• Manifest renormalizability:

∆µν
ξ (k) =

i

k2 −m2

[
−gµν +

(1− ξ)kµkν

k2 − ξm2

]

(the unitary gauge is formally recovered in the limit ξ →∞).

Draw-back: the unphysical scalars G1, G2, G3 are in the game.
They cannot appear as asymptotic states (external lines in
Feynman diagrams), and their contributions as internal lines is
cancelled by the unphysical singularity in the vector boson
propagators (not easy to prove).



This is an additional difficulty in spontaneously broken non
abelian gauge theories.

The usual ones (cancellation of unphysical longitudinal vector
degrees of freedom by Faddeev-Popov ghosts) are there as usual.

A difficult subject; functional methods are most effective in
proving the renormalizability of spontaneously broken gauge
theories.



Physical interpretation: massless vector bosons have two physical
degrees of freedom: the two helicity states (no longitudinal
polarization).

After SSB, vector bosons become massive: the longitudinal
modes are provided by the three would-be Goldstone bosons,
which disappear from the spectrum.

The existence of longitudinally polarized W and Z is the most
striking evidence of spontaneous gauge symmetry breaking.



The scalar potential simplifies considerably in the unitary gauge:

V (φ) = m2 |φ|2 + λ |φ|4

=
m2

2
(v +H)2 +

λ

4
(v +H)4

= H(m2v + λv3) +
1
2
H2(m2 + 3λv2) + λvH3 +

λ

4
H4

Since m2 = −λv2, the linear term vanishes, and the quadratic term
has a coefficient

1
2
2λv2

and can be interpreted as a true mass term for the scalar field H.



The Higgs boson has been observed at the LHC on July 4th, 2012

• The simplest realization of SSB is the one which is realized in
nature: not obvious.

• The tree-level relation m2
H = 2λv2, together with the measured

value mH = 125 GeV, imply λ ∼ 0.13. The Standard Model is
weakly coupled even in the Higgs sector. Also not obvious.

• mH much smaller than the unitarity upper bound of about ∼ 1
TeV (perturbative unitarity of WLWL →WLWL, similar to the
upper bound on mW in the Fermi theory).



A word on perturbation theory beyond leading order:

• An expansion in powers of some small dimensionless
parameter, typically a coupling constant;

• Perturbative coefficients usually display powers of log E
M ,

which may spoil convergence at large energies;

• Large logarithms resummed by changing the espansion
parameter

λ→ λ(E)

the running coupling constant;

• The so-called beta functions

β(E) = E
dλ(E)
dE

are computable in perturbation theory.



Many important consequences:

1) The present Universe may not be in a stable quantum state.

A sketch of the argument: the tree-level scalar potential of the
standard model

V (h) =
1
2
m2h2 +

1
4
λh4; |φ|2 =

1
2
h2

has a minimum at

h2 = v2 = −m
2

λ
; v ' 246 GeV,

the present ground state. However, beyond tree level

V (h) → Veff(h) ∼ 1
4
λ(h)h4

and λ(µ) < 0 for µ sufficiently large [ + mHiggs sufficiently small],
because of top quark loops.
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Two relevant parameters: the Higgs boson mass, which sets the
initial condition through

m2
Higgs ∼ 2λ(v)v2

and the top quark mass, which determines the slope at µ ∼ v.

Historically, a tool to set a lower bound mHiggs: λ(µ) is
positive-definite if λ(v) (and therefore mHiggs) is large enough.



Today, mHiggs and mtop are measured to less that 1% accuracy.
The same argument can be used to answer different questions:

• Do we need non-standard physics to restore stability?

• At what energy scale?

Furthermore, it is not necessary to require absolute stability: an
unstable vacuum with lifetime τ > τuniverse ∼ 1.3× 1010 y also
acceptable.

The decay rate of the unstable vacuum state can be computed as
a function of ew parameters.
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With present values of the relevant parameters (mtop and mHiggs)
and no new physics the ground state turns out to be in the
metastability region:

τU < τ < +∞

No need for new physics to stabilize the ew ground state
(which doesn’t mean there isn’t any...)



2) Gauge running couplings:
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A question arises:

Does a large value of λ generate large radiative corrections on
observables?

The answer is no: the typical example is the ratio

ρ =
m2

W

m2
Z cos2 θW

which is 1 at tree level, and receives a one-loop correction

∆ρ = − 11g2

48π3
tan2 θW log

m2
H

m2
W

which grows only logarithmically with m2
H .

This arises from a symmetry property of the scalar potential,
called the custodial symmetry.



A different way to state the problem: after the inclusion of
radiative corrections,

Lmass =
1
2
m2

W (W 1µ
W 1

µ+W 2µ
W 2

µ)+
1
2
(Wµ

3 Bµ)

 M2 M ′2

M ′2 M ′′2

 W3µ

Bµ

 .

with M ′2 = MM ′′, M2 +M ′′2 = m2
Z . Hence

tan θW =

√
m2

Z −M2

M
.

and

ρ =
m2

W

m2
Z cos2 θW

=
m2

W

M2
,

that is, ρ = 1 only if M2 = m2
W .



The reason is that the scalar potential posesses an O(4) invariance,
larger than the gauge symmetry. Indeed, the scalar field

φ̃ =

 φ∗0

−φ−

 = εφ∗

can be shown to be an SU(2)L doublet with Yφ̃ = −1. Hence the
matrix

H =
[
φ̃ φ

]
=

 φ0∗ φ+

−φ− φ0


transforms as

H(x) → exp
[
ig

2
τaαa(x)

]
H(x)

H(x) → H(x) exp
[
− ig

′

2
β(x)τ3

]
.

under gauge transformations.



The scalar potential can be written

V (φ) =
1
2
m2 Tr

(
H†H

)
+

1
4
λ
[
Tr
(
H†H

)]2
which is invariant under the SU(2)L × SUR(2) transformations

H → UHV †

where V ∈ SU(2).

We also have

(Dµφ)†Dµφ =
1
2
Tr
[
(DµH)†DµH

]
,

with

DµH = ∂µH−
ig

2
W a

µ τ
aH+

ig′

2
BµHτ3



Clearly

DµH → (UDµU
†)(UHV †)

= U(∂µH−
ig

2
W a

µ τ
aH)V † +

ig′

2
BµUHV †τ3

6= U(DµH)V †

because of the last term.

The full lagrangian has a custodial symmetry only for g′ = 0.



Due to spontaneous breaking of SU(2)L, the vacuum expectation
value

〈0|H|0〉 =
v√
2

 1 0

0 1


is not O(4) invariant. However, there is a residual O(3) ∼ SU(2)
symmetry

H → UHU†

which leaves the vacuum expectation value unchanged. The only
mass term for the W i

µ fields allowed by this residual symmetry is
proportional to W i

µW
µ
i , which in turn implies M2 = m2

w and ρ = 1.



4. Breaking of accidental symmetries

Consider nq = n` = 1 for simplicity. Then

LSM = LYang−Mills +
5∑

r=1

ψ̄r iD/r ψr+LHiggs

has a [U(1)]5 global invariance:

ψr → eiαr ψr

The corresponding conserved currents are

Jµ
1 = ūLγ

µuL + d̄Lγ
µdL

Jµ
2 = ūRγ

µuR

Jµ
3 = d̄Rγ

µdR

Jµ
4 = ν̄Lγ

µνL + ēLγ
µeL

Jµ
5 = ēRγ

µeR

→

Jµ
Y =

∑5
r=1

Yr

2 J
µ
r

Jµ
` = Jµ

4 + Jµ
5 ≡ ν̄γµν + ēγµe

Jµ
`5 = Jµ

5 − J
µ
4 ≡ ν̄γµγ5ν + ēγµγ5e

Jµ
b = 1

3 (Jµ
1 + Jµ

2 + Jµ
3 ) ≡ 1

3 (ūγµu+ d̄γµd)

Jµ
b5 = Jµ

2 + Jµ
3 − J

µ
1 ≡ ūγµγ5u+ d̄γµγ5d.



Conserved charges:

Y local symmetry

NL −NL̄ OK

NB −NB̄ OK

NL +NL̄ not observed

NB +NB̄ not observed

With N families, the symmetry is much larger: generation
mixings also allowed,

ψi
r → U ij

r ψj
r ; U†

rUr = I

A global [U(N)]5 symmetry which is not present in observed
phenomena. This is called an accidental symmetry.



Accidental symmetries are an accidental consequence of gauge
invariance and renormalizability. For example, fermion mass
terms would break accidental symmetries explicitly:

−mψ̄ψ = −m(ψ̄RψL + ψ̄LψR)

but they are forbidden by gauge invariance.



Accidental symmetries can be broken (while preserving gauge
invariance) by fermion couplings to φ:

LSM = LYang−Mills +
N∑

i=1

5∑
r=1

ψ̄i
r iD/r ψ

i
r+LHiggs+LYukawa

ψi
1 ≡ Qi

L =

 ui
L

di
L

 ; ψi
2 ≡ ui

R; ψi
3 ≡ di

R; ψi
4 ≡ Li

L =

 νi
L

`iL

 ; ψi
5 ≡ `iR

LYukawa = −Q̄i
L h

ij
u u

j
R φ̃− Q̄

i
L h

ij
d d

j
R φ− L̄

i
L h

ij
` `

j
R φ+ h.c.

φ =

 φ+

φ0

→ 1√
2

 0

v +H(x)

 φ̃ =

 φ∗0

−φ−

→ 1√
2

 v +H(x)

0





• LYukawa is allowed by Lorentz invariance, gauge symmetry and
renormalizability.

• Each term in LYukawa breaks part of the accidental symmetry
explicitly; for example, the first term is not invariant under
independent U(N) rotation of right-handed up quarks and
left-handed quark doublets

QL → U QL; uR → V uR

(although still invariant under the subgroup U = V ).

• Important remark: For the same reason, removing one or
more term from LYukawa increases the symmetry of the theory.
Yukawa couplings are protected from receiving large radiative
corrections.



In matrix notation

LYukawa = −Q̄L hu uR φ̃− Q̄L hd dR φ− L̄L h` `R φ+ h.c.

hu, hd, h` are generic complex N ×N matrices.

A theorem in linear algebra: Any generic complex squared
matrix h can be diagonalized by a bi-unitary transformation

ĥ = U† hV

where U, V are unitary matrices, and ĥ is diagonal with real
positive entries.

Thus, for example, we may redefine the lepton fields by

LL → U LL; `R → V `R

with U, V such that

ĥ` = U† h` V

is diagonal with real and positive entries.



The theory is otherwise unaffected, because this operation leaves
the rest of LSM unchanged. Hence, in the leptonic sector,

Llept
Yukawa = −L̄L ĥ` `R φ+ h.c.→ − 1√

2
¯̀
L ĥ` `R (v +H) + h.c.

= −meēe−mµµ̄µ−mτ τ̄ τ −
H√
2
(ĥeēe+ ĥµµ̄µ+ ĥτ τ̄ τ)

• Lepton masses mi
` = ĥi

` v√
2

are generated

• The original global symmetry is broken, but a residual [U(1)]3

invariance

`i → eiαi `i

is still present. This symmetry corresponds to the
conservation of individual (e, µ, τ) leptonic numbers.



The same argument does not apply to the hadron sector:

Lhadr
Yukawa = −Q̄L hu uR φ̃− Q̄L hd dR φ+ h.c.

We may transform the quark fields

uL → UL uL; dL → VL dL; uR → UR uR; uR → VR uR

with UL,R, VL,R chosen so that

ĥu = U†
L hu UR; ĥd = V †

L hd VR

are diagonal, but this is not a symmetry for the rest of the
Lagrangian.



Only one term is affected by such a rotation: the charged-current
interaction term in the hadron sector

Lcc =
g√
2

[
ūL γ

µ dLW
+
µ + d̄L γ

µ uLW
−
µ

]
→ g√

2

[
ūL γ

µ (U†
LVL)dLW

+
µ + d̄L γ

µ (V †
LUL)uLW

−
µ

]
The matrix

V = U†
LVL

is a unitary N ×N matrix, usually called the
Cabibbo-Kobayashi-Maskawa matrix.



With the Yukawa couplings in diagonal form we have

Lhadr
Yukawa = −Q̄L ĥu uR φ̃− Q̄L ĥd dR φ+ h.c.

→ − 1√
2
(v +H)

[
ūL ĥu uR + d̄L ĥd dR

]
+ h.c.

• Quark mass terms appear:

mi
u =

ĥi
uv√
2

mi
d =

ĥi
dv√
2

• The original global symmetry is lost; the residual symmetry is
now a U(1) symmetry

ui
L → eiα ui

L; di
L → eiα di

L; ui
R → eiα ui

R; di
R → eiα di

R

with a common phase α for all flavours, because of the CKM
mixing matrix. Baryon number conservation.



The entries of the CKM matrix are fundamental parameters of
the theory: they must be extracted from experiments.

How many independent numbers does V contain? A generic
N ×N unitary matrix depends on N2 independent real
parameters. Some (NA) of them can be thought of as rotation
angles in the N-dimensional space of generations, and they are as
many as the coordinate planes in N dimensions:

NA =

 N

2

 =
1
2
N (N − 1).



The remaining

N̂P = N2 −NA =
1
2
N (N + 1)

parameters are complex phases. Some can be removed by a
redefinition of left-handed quarks:

uf
L → eiαf uf

L; dg
L → eiβg dg

L

which leaves all terms in LSM unchanged except Lhadr
c , and

therefore amount to a redefinition of the CKM matrix:

Vfg → ei(βg−αf ) Vfg

The 2N constants αf , βg can be chosen so that 2N − 1 phases are
eliminated from the matrix V , since there are 2n− 1 independent
differences βg − αf . The number of really independent complex
phases in V is therefore

NP = N̂P − (2N − 1) =
1
2
(N − 1)(N − 2)



To summarize, the total number of independent parameters in
the CKM matrix is

NA +NP = (N − 1)2; NP =
1
2
(N − 1)(N − 2)

Comments:

• with N = 1 or N = 2 the CKM matrix can be made real. In
particular, for N = 2 it is fixed by one rotation angle, the
Cabibbo angle.

• The first case with non-trivial phases is N = 3, which
corresponds to NP = 1.

• The presence of complex coupling constants implies violation
of the CP symmetry.



Much effort devoted to investigations in the flavour sector. A
subject of special interest: CP violation in B systems and the
unitarity relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0

A useful parametrization (by L. Wolfenstein:)

V =


1− λ2/2 λ λ3A(ρ− iη)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 +O(λ4)

ρ̄+ iη̄ =
(

1− λ2

2

)
(ρ+ iη)
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Unitary triangle fit in the SM in the ρ̄ - η̄ plane

UTfit Collaboration M. Bona, M. Ciuchini, E. Franco, V. Lubicz, G.

Martinelli, F. Parodi, M. Pierini, C. Schiavi, L. Silvestrini, V. Sordini,

A. Stocchi, C. Tarantino, V. Vagnoni



Very nice:

• Fermion masses generated

• All global symmetries broken except global baryon number
and individual lepton numbers (no right-handed neutrinos)

• FCNC effects suppressed (flavour mixing confined in the
charged-current sector)

• CP violated for N ≥ 3

Not easy to achieve the same result in different contexts.



(Slightly) beyond the Standard Model: neutrino masses

In the standard model, neutrinos are massless. With good
reasons: the experimental upper bounds on neutrino masses are

mνe ≤ 3 eV; mνµ ≤ 0.19 MeV; mντ ≤ 18.2 MeV,

so mν � mf , and mν = 0 is an excellent approximation.

However: non-zero neutrino masses are now a solid experimental
evidence, thus we must ask how to modify the standard model in
order to keep this evidence into account.



Standard neutrinos are massless because right-handed neutrinos
do not exist (more precisely, they transform trivially under the
gauge group, and therefore undergo no interaction: they are
sterile objects).

Let us now assume right-handed neutrinos do exist (only one
generation, for simplicity) with a covariant derivative term

ν̄R iD/ νR ≡ ν̄R i∂/ νR.

A Dirac mass term can be generated as in the case of up-type
quarks:

LYukawa → LYukawa − hν

[
¯̀
L φ̃ νR + ν̄R φ̃

† `L

]
contains a term

−m (ν̄L νR + ν̄R νL) ; m =
hνv√

2



The see-saw mechanism

Why are neutrino masses so much smaller than other fermions’
masses? Indeed, the experimental bound implies

hν

he
=

m

me

<∼ 10−6

difficult to understand.

However, right-handed neutrinos also admit a Majorana mass
term:

−1
2
M (ν̄c

R νR + ν̄R ν
c
R)

where νc
R = γ0γ2ν̄

T
R is the charge-conjugated spinor (not true for

other fermions, e.g. νL, because of gauge invariance).



Majorana mass terms induce violation of lepton number
conservation, typically suppressed by inverse powers of M . It is
natural to assume that M is of the order of the energy scale
characteristic of the unknown phenomena (e.g. the effects of
grand unification) experienced by right-handed neutrinos.



The most general neutrino mass term:

Lν mass = −1
2

(ν̄c
L ν̄R)

 0 m

m M

 νL

νc
R

+ h.c.

diagonalized by a linear transformation 0 m

m M

 = UT

 m1 0

0 m2

 U

with U unitary, and m1,m2 real and positive:

U =

 i cos θ −i sin θ
sin θ cos θ

 ; tan 2θ =
2m
M

and

m1 =
1
2

(√
M2 + 4m2 +M

)
; m2 =

1
2

(√
M2 + 4m2 −M

)
.



For m�M , θ ' m/M , and

m1 'M ; m2 '
m2

M

One eigenstate not observed at low energy; the other is lighter
than ordinary fermions by a factor m/M .

This is the see-saw mechanism.

The mass term takes the form

Lν mass = −1
2
m1 (ν̄c

1 ν1 + ν̄1 ν
c
1)−

1
2
m2 (ν̄c

2 ν2 + ν̄2 ν
c
2) ,

where

ν1 = νL sin θ + νc
R cos θ

ν2 = −iνL cos θ + iνc
R sin θ



General case: N species of left-handed neutrinos, (N = 3 as far as
we know), plus K right-handed neutrinos (not necessarily N = K).

m is a K ×N matrix, and M a K ×K matrix.

Choosing K = N we have

Llept
Y = −

[
`L φhE eR + eR φ

† h†E `L
]

−
[
¯̀
L φ̃ hN νR + ν̄R φ̃

† h†N `L

]
The Majorana mass terms for right-handed neutrinos are

−1
2
(
ν̄′cR M νR + ν̄RM

† ν′cR
)



Lepton flavour eigenstates are linear combinations of mass
eigenstates. Neutrinos produced with a definite flavour (e.g.
nuclear β decays in the Sun produce electron neutrinos)

A neutrino beam of definite flavour, is a linear combination of
mass eigenstates:

|να〉 =
n∑

i=1

U∗
αi |νi〉

with U a unitary matrix. Time evolution in the rest frame is
given by

|νi(τ)〉 = e−imiτ |νi(0)〉

or, in the laboratory frame,

|νi(t)〉 = e−i(Eit−piL) |νi(0)〉

where L is the distance travelled in the time interval t.



Since neutrinos are almost massless,

L ' t; Ei =
√
p2

i +m2
i ' pi +

m2
i

2E
where E ' pi ' pj. Hence,

|να(L)〉 '
n∑

i=1

U∗
αi exp

(
−im

2
i

2E
L

)
|νi(0)〉

The probability amplitude of observing the flavour β at distance
L is given by

〈νβ |να(L)〉 =
n∑

i=1

U∗
αi exp

(
−im

2
i

2E
L

) n∑
j=1

Uβj 〈νj |νi〉

=
n∑

i=1

ξαβ
i exp (−iεiL) ,

where we have used the unitarity of U , and we have defined

ξαβ
i = U∗

αi Uβi; εi =
m2

i

2E
.



The corresponding probability is given by

Pαβ(L) = |〈νβ |να(L)〉|2 = δαβ − 4
n∑

i=1

n∑
j=i+1

Re
(
ξαβ
i ξ∗αβ

j

)
sin2 1

2
(εj − εi)L

−2
n∑

i=1

n∑
j=i+1

Im
(
ξαβ
i ξ∗αβ

j

)
sin(εj − εi)L.

Not very rigorous: Quantum states with definite momentum have
an infinite uncertainty in position, and therefore it makes no
sense to talk about observation at distance L. We should
introduce wave packets, and check that a sizable overlap among
packets survives at distance L from the source.

If this is the case, the oscillation probability is correctly given by
the above formula.



A simple case: CP invariance + mixing between two flavours. In
this case

ξ121 = ξ211 = − cos θ12 sin θ12

ξ122 = ξ212 = +cos θ12 sin θ12.

and therefore

P12(L) = P21(L) = sin2 2θ12 sin2 L∆m2
12

4E
.

The results of neutrino oscillation experiments are usually
displayed in the form of allowed regions in the (∆m2

12, θ12) plane.
The following units are often adopted:

L∆m2

4E
' 1.27

∆m2(eV2)L(km)
E(GeV)

.



To summarize:

• Massive neutrinos bring us out of the Standard Model

• Heavy sterile neutrinos + see-saw mechanism: a satisfactory
scenario

• New parameters needed, but no radical modification



5. Experimental confirmations

• 1974 charm quark and weak neutral currents observed

• 1977 bottom quark

• 1983 W and Z vector bosons

• 1994 top quark

• 2012 Higgs boson



Precision data in excellent
agreement with SM pre-
dictions. The standard
model tested at the level
of one-loop corrections.

Nν = 2.9841± .0083

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

∆αhad(mZ)∆α(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.385 ± 0.015 80.377

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012



The Lagrangian density of the Standard Model in the Unitary
gauge

LSM = L0 + Lem + Lc + Ln + LV + LHiggs

where

L0 =
n∑

i=1

[
ν̄i i∂/ νi + ēi (i∂/−mi

E) ei + ūi (i∂/−mi
U)ui + d̄i (i∂/−mi

D) di
]

−1
4
ZµνZ

µν +
1
2
m2

Z Z
µZµ −

1
2
W+

µνW
µν
− +m2

W Wµ+W−
µ − 1

2
∂µAν ∂

µAν

+
1
2
∂µH ∂µH − 1

2
m2

H H2,

with

Zµν = ∂µZν − ∂νZµ; Wµν
± = ∂µW ν

± − ∂νWµ
±.

The index i labels the N fermion families (N = 3 according to our
present knowledge).



Lem is the electromagnetic interaction term for charged fermions:

Lem = e

n∑
i=1

(
−ēi γµ e

i +
2
3
ūi γµ u

i − 1
3
d̄i γµ d

i

)
Aµ,

where e is the proton charge.

Lc is the weak charged-current interaction term:

Lc =
g

2
√

2

 n∑
i=1

ν̄i γµ(1− γ5) ei +
n∑

i,j=1

ūi γµ(1− γ5)Vij d
j

W+
µ

+
g

2
√

2

 n∑
i=1

ēi γµ(1− γ5) νi +
n∑

i,j=1

d̄j γµ(1− γ5)V ∗
ij u

i

W−
µ ,

where g is the SUL(2) coupling constant.



Ln is the weak neutral-current interaction term:

Ln =
g

4 cos θW

n∑
i=1

[
ν̄i γµ(1− γ5) νi + ēi γµ

(
−1 + 4 sin2 θW + γ5

)
ei

+ ūi γµ

(
1− 8

3
sin2 θW − γ5

)
ui + d̄i γµ

(
−1 +

4
3

sin2 θW + γ5

)
di

]
Zµ.



LV is the interaction term among vector bosons:

LYM = +ig sin θW (W+
µνW

µ
−A

ν −W−
µνW

µ
+A

ν + FµνW
µ
+W

ν
−)

+ig cos θW (W+
µνW

µ
−Z

ν −W−
µνW

µ
+Z

ν + ZµνW
µ
+W

ν
−)

+
g2

2
(2gµνgρσ − gµρgνσ − gµσgνρ)

[
1
2
W+

µ W
+
ν W

−
ρ W

−
σ

−W+
µ W

−
ν (AρAσ sin2 θW + ZρZσ cos2 θW + 2AρZσ sin θW cos θW)

]
,

where

Fµν = ∂µAν − ∂νAµ.



LHiggs is the interaction term between the Higgs scalar H(x) and
fermions and vectors:

LHiggs =
(
m2

W Wµ+W−
µ +

1
2
m2

Z Z
µZµ

)(
H2

v2
+

2H
v

)
−H
v

n∑
i=1

(mi
D d̄

idi +mi
U ū

iui +mi
E ē

iei)

−λvH3 − 1
4
λH4.



Parameters of the Standard Model

The parameters appearing in LSM are not all independent. The
gauge-Higgs sector is entirely defined by four quantities:

g, g′, v, mH .

because

m2
W =

1
4
g2v2 m2

Z =
1
4
(g2 + g′

2)v2

and

λ =
m2

H

2v2
; tan θW =

g′

g
,

where we have used g sin θW = g′ cos θW = e.



In pratice, v, g, g′ are usually traded for GF , αem, mZ, which are
known with high accuracy:

GF =
g2
√

2
8m2

W

=
1√
2v2

αem =
e2

4π
=

g2g′
2

4π(g2 + g′2)

m2
Z =

1
4
(g2 + g′

2)v2,

which give

v2 =
1√
2GF

g2 = 2
√

2m2
ZGF

(
1 +

√
1− 4παem√

2m2
ZGF

)

g′
2 = 2

√
2m2

ZGF

(
1−

√
1− 4παem√

2m2
ZGF

)
(assuming tan θW < 1).



The present measured values are

GF = 1.16637(1)×10−5 GeV−2; αem =
1

128
; mZ = 91.1876±0.0021 GeV

which give

v = 246.2 GeV α2 =
g2

4π
= 0.033 α1 =

g′
2

4π
= 0.010.

Finally,

mH = 125 GeV.



Fermionic sector:

mu = 1.7− 3.1 MeV; md = 4.1− 5.7 MeV; ms = 100+30
−20 MeV.

Because of features of the strong interactions, heavy quark
masses are known to a better level of accuracy:

mc = 1.29+0.05
−0.11 GeV; mb = 4.19+0.18

−0.06 GeV; mt = 172.9±0.6±0.9 GeV.



The Cabibbo-Kobayashi-Maskawa matrix V is specified by a total
of (N − 1)2 real parameters for N fermion families. The absolute
values of Vij are

|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|



=


0.97425± 0.00022 0.2252± 0.0009 (3.89± 0.44)× 10−3

0.230± 0.011 1.023± 0.036 (40.6± 1.3)× 10−3

(8.4± 0.6)× 10−3 (38.7± 2.1)× 10−3 0.88± 0.07

 .



This gives a total of 3N masses (three for each fermion family)
and (N − 1)2 phases and angles in V .

Total number of parameters in the standard model:

4 + 1 + 3N + (N − 1)2 = N2 +N + 6

which is 18 for N = 3.



5. Strong interactions

It took some time (if compared the history with electromagnetic
and weak interactions) to recognize that a local field theory for
strong interactions exists.

The main steps along this path:

• Hadrons are not pointlike objects;

• The hadron spectrum shows some approximate global
symmetries which are useful in many respects;

• Quark model;

• A new quantum number (in addition to flavor and spin) is
needed for a consistent description of hadron spectroscopy;

• The constituents of hadrons behave as almost non-interacting
when hadrons are observed at high momentum transfer.



The above considerations lead (almost univocally) to the
formulation of Quantum Chromodynamics (QCD) as the field
theory underlying strong interactions.

• QCD is a local non-abelian gauge theory based on the gauge
group SU(3); quarks are spin-1/2 particles, and their Dirac
fields are in the fundamental representation of SU(3).

• The strong interaction is mediated by N2 − 1 = 8 massless
vector bosons, called gluons;

• QCD (with less then 16 flavors) is asymptotically free.

One additional assumption is needed: only SU(3) singlets are
observable (in particular, quarks and gluons are not). This is
called color confinement. A wonderfully simpler theory with a
surprising wealth of physics content.



How is it possible to make predictions with QCD, given that its
fundamental degrees of freedom (quarks and gluons) are not
directly observable?

Factorization of collinear singularities: the parton model survives
QCD radiative corrections:

dσ(p1, p2, Q
2) =

∑
i,j

∫
dz1

∫
dz2 fi(z1, µ2)fj(z2, µ2)dσ̂ij

(
z1p1, z2p2, αS(µ2),

µ2

Q2

)
where

• dσ̂ij (the partonic cross sections) are computable in
perturbation theory, provided Q2 is large enough;

• fi(z, µ2) (the parton distribution functions) cannot be
computed from first principles, but are universal: they do not
depend on the process, but only on the initial state.



The scale dependence of parton distribution functions

µ2 ∂fi(z, µ2)
∂µ2

can also be computed perturbatively (Altarelli-Parisi evolution
equations). This allows us (i.e. large collaborations) to extract
them consistently from data taken at different scales, and to
perform global fits.

An important source of uncertainty in theoretical predictions.



What does “large enough” mean? The QCD β function:

µ2 dαS(µ2)
dµ2

= −β0α
2
S(µ

2) +O(α3
S)

with

β0 =
33− 2nf

12π
< 0

Leading log solution:

αS(µ2) =
αS(µ2

0)

1 + β0αS(µ2
0) log µ2

µ2
0

which goes to zero as µ2

µ2
0
→∞ (asymptotic freedom).



Sometimes useful to define a parameter Λ by

1 + β0αS(µ2
0) log

Λ2

µ2
0

= 0

so that

αS(µ2) =
αS(µ2

0)

1 + β0αS(µ2
0) log Λ2

µ2
0

+ β0αS(µ2
0) log µ2

Λ2

=
1

β0 log µ2

Λ2

(dimensional transmutation). It turns out that

Λ ∼ 150 MeV

QCD enters the perturbative regime at scales Q2 � Λ2.





Hadronic cross sections characterized by large energy scales (e.g.
the production of heavy objects) can be reliably computed using
perturbative QCD + precisely measured parton densities.

Typical examples:

• Drell-Yan pairs: virtual photons with large virtuality, or weak
vector bosons;

• heavy quarks and heavy quark pairs;

• Higgs boson;

• jets at large transverse momentum



We do not know how to prove color confinement by a
first-principle calculation: the hadron-formation scale is well
outside the perturbative domain. However:

• The fact that αS(µ2) grows very large at energy scales of the
order of the typical hadrom mass is consistent with
confinement;

• lattice calculations show that for example the strong
quark-antiquark potential is Coulomb-like at short distances,
but grows linearly ar large distances:

Vqq̄(r) = CF

[
αS(1/r2)

r
+ . . .+ σr

]



The linearly increasing term in the potential makes it
energetically impossible to separate a qq̄ pair. If the pair is
created at one spacetime point, for example in e+e− annihilation,
and then the quark and the antiquark start moving away from
each other in the center-of-mass frame. It is energetically
favourable to create additional pairs.

Confinement provide an explanation of the short range of nuclear
forces: massless gluon exchange would be long range, but
nucleons are color singlets, and cannot exchange colour octet
gluons. The lightest colour singlet hadronic particles are pions,
and the range of nuclear forces is fixed by the pion mass
r ∼ 1

mπ
∼ 10−13 cm, since V (r) = e−mπr

r .
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∫
Ldt

[fb−1] Reference

tt̄Z
σ= 176+52−48±24 fb (data)

HELAC-NLO (theory)
20.3 JHEP 11, 172 (2015)

σ= 0.92±0.29±0.1 pb (data)
Madgraph5 + aMCNLO (theory)

3.2 EPJC 77 (2017) 40

tt̄W
σ= 369+86−79±44 fb (data)

MCFM (theory)
20.3 JHEP 11, 172 (2015)

σ= 1.5±0.72±0.33 pb (data)
Madgraph5 + aMCNLO (theory)

3.2 EPJC 77 (2017) 40

ts−chan σ= 4.8±0.8+1.6−1.3 pb (data)
NLO+NNL (theory)

20.3 PLB 756, 228-246 (2016)

ZZ
σ= 6.7±0.7+0.5−0.4 pb (data)

NNLO (theory)
4.6 JHEP 03, 128 (2013)

σ= 7.3±0.4+0.4−0.3 pb (data)
NNLO (theory)

20.3 JHEP 01, 099 (2017)

σ= 17.2±0.6±0.7 pb (data)
Matrix (NNLO) & Sherpa (NLO) (theory)

36.1 ATLAS-CONF-2017-031

WZ
σ= 19+1.4−1.3±1 pb (data)

MATRIX (NNLO) (theory)
4.6 EPJC 72, 2173 (2012)

σ= 24.3±0.6±0.9 pb (data)
MATRIX (NNLO) (theory)

20.3 PRD 93, 092004 (2016)

σ= 50.6±2.6±2.5 pb (data)
MATRIX (NNLO) (theory)

3.2 PLB 762 (2016) 1

Wt
σ= 16.8±2.9±3.9 pb (data)

NLO+NLL (theory)
2.0 PLB 716, 142-159 (2012)

σ= 23±1.3+3.4−3.7 pb (data)
NLO+NLL (theory)

20.3 JHEP 01, 064 (2016)

σ= 94±10+28−23 pb (data)
NLO+NNLL (theory)

3.2 arXiv:1612.07231 [hep-ex]

H
σ= 22.1+6.7−5.3+3.3−2.7 pb (data)

LHC-HXSWG YR4 (theory)
4.5 EPJC 76, 6 (2016)

σ= 27.7±3+2.3−1.9 pb (data)
LHC-HXSWG YR4 (theory)

20.3 EPJC 76, 6 (2016)

σ= 61.5+10.5−10+4.3−3.2 pb (data)
LHC-HXSWG YR4 (theory)

13.3 ATLAS-CONF-2016-081

WW
σ= 51.9±2±4.4 pb (data)

NNLO (theory)
4.6 PRD 87, 112001 (2013)

σ= 68.2±1.2±4.6 pb (data)
NNLO (theory)

20.3 PLB 763, 114 (2016)

σ= 142±5±13 pb (data)
NNLO (theory)

3.2 arXiv: 1702.04519 [hep-ex]

tt−chan
σ= 68±2±8 pb (data)

NLO+NLL (theory)
4.6 PRD 90, 112006 (2014)

σ= 89.6±1.7+7.2−6.4 pb (data)
NLO+NLL (theory)

20.3 arXiv:1702.02859 [hep-ex]

σ= 247±6±46 pb (data)
NLO+NLL (theory)

3.2 arXiv:1609.03920 [hep-ex]

tt̄
σ= 182.9±3.1±6.4 pb (data)

top++ NNLO+NNLL (theory)
4.6 EPJC 74: 3109 (2014)

σ= 242.9±1.7±8.6 pb (data)
top++ NNLO+NNLL (theory)

20.2 EPJC 74: 3109 (2014)

σ= 818±8±35 pb (data)
top++ NNLO+NLL (theory)

3.2 PLB 761 (2016) 136

Z
σ= 29.53±0.03±0.77 nb (data)

DYNNLO+CT14 NNLO (theory)
4.6 JHEP 02 (2017) 117

σ= 34.24±0.03±0.92 nb (data)
DYNNLO+CT14 NNLO (theory)

20.2 JHEP 02 (2017) 117

σ= 58.43±0.03±1.66 nb (data)
DYNNLO+CT14 NNLO (theory)

3.2 JHEP 02 (2017) 117

W
σ= 98.71±0.028±2.191 nb (data)

DYNNLO + CT14NNLO (theory)
4.6 arXiv:1612.03016 [hep-ex]

σ= 190.1±0.2±6.4 nb (data)
DYNNLO + CT14NNLO (theory)

0.081 PLB 759 (2016) 601

pp
σ= 95.35±0.38±1.3 mb (data)

COMPETE HPR1R2 (theory)
8×10−8 Nucl. Phys. B, 486-548 (2014)

σ= 96.07±0.18±0.91 mb (data)
COMPETE HPR1R2 (theory)

50×10−8 PLB 761 (2016) 158
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6. Open questions

1. Why so many (19) free parameters?

• Is there a grand unification?

• What is the origin of flavour mixing?

• Neutrino physics

2. Why is the Higgs boson so light?

• Hierarchy and Naturalness

3. Cosmology-related questions:

• the value of the cosmological constant

• baryogenesis

• dark matter

4. Gravity



Cross sections and decay width

dσ =
1

4
√

(p1 · p2)2 −m2
1m

2
2

∑
|M|2 dΦ(p1, p2; k1, . . . kn)

dΓ =
1

2M

∑
|M|2 dΦ(p1, p2; k1, . . . kn)

dΦ(p1, p2; k1, . . . kn) =
d3k1

(2π)32E~k1

. . .
d3kn

(2π)32E~kn

(2π)4δ(p1+p2−k1−. . .−kn)



External lines factors:

• A factor 1 for each external scalar line;

• A factor ūs(p) for each external outgoing fermion line
associated to a final-state fermion;

• A factor v̄s(p) for each external outgoing fermion line
associated to an initial-state antifermion;

• A factor us(p) for each external incoming fermion line
associated to an initial-state fermion;

• A factor vs(p) for each external incoming fermion line
associated to a final-state antifermion;

• A factor ε(λ)
µ (p) for each external vector line associated to an

initial-state vector;

• A factor ε(λ)∗
µ (p) for each external vector line associated to a

final-state vector.



Furthermore,

(p/−m)us(p) = 0

(p/+m)vs(p) = 0

p · ε(λ)(p) = 0

and
2∑

s=1

us(p)ūs(p) = p/+m

2∑
s=1

vs(p)v̄s(p) = p/−m

2∑
λ=1

ε(λ)
µ (p)ε∗(λ)

ν (p) → −gµν (γ)

3∑
λ=1

ε(λ)
µ (p)ε∗(λ)

ν (p) = −gµν +
pµpν

m2
V

(V = W,Z).


