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S-matrix theory = technology for calculating and dealing with amplitudes. 

Amplitudes are not physical observables, suffering artefacts like gauge dependence, 
ghosts, IR singularities and superficially acausal behaviour. 

These artefacts are eliminated only when we combine individual amplitudes 
together to obtain physical probabilities. 

Goal: develop the technology for calculating these probabilities directly in the 
hope that such artefacts never appear explicitly.
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Causality is built into QFT through the vanishing of the equal-time commutator 
(bosons) or anti-commutator (fermions) of field operators: 

Yet, it is the Feynman propagator that is ubiquitous in S-matrix theory: 

 
The S-matrix is not a good place to start: infinite plane waves in infinite past/future. 

Surely, it is the retarded propagator that should be ubiquitous:
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An archetypal signalling process: Fermi’s two-atom problem       

Fermi calculated that P (D∗S|DS∗) = 0 for T < R/c

but he made a mistake

[E. Fermi, Rev. Mod. Phys. 4 (1932) 87]



Fermi should have obtained a non-zero result for all T:

• Vacuum can excite D at any time (R independent)  

• Even the R dependent part of P is non-zero for T < R/c

There is no paradox though because Fermi had proposed a non-local observable. 

Resolution finally came via Shirokov (1967) and Ferretti (1968). 

Think of measuring only D and not S (or the electromagnetic field) at time T.

for T < R/c
dP (D∗|DS∗)

dR
= 0

[M. I. Shirokov, Sov. J. Nucl. Phys. 4 (1967) 774; B. Ferretti, in Old and new problems in elementary particles, ed. Puppi, G., Academic Press, 
New York (1968); E. A. Power and T. Thirunamachandran, Phys. Rev. A56 (1997) 3395; for a summary of the history of the Fermi problem, see R. 
Dickinson, J. Forshaw and P. Millington, Phys. Rev. D93 (2016) 065054.]
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Amplitude-level analysis: the relevant Feynman graphs

1 2 3 4

1 4 2 2 3 3x x x* * *+ +

crossed+ c.c.

Acausal terms cancel:

Causality emerges only at the level of probabilities



“Weak causality”

1. Alice prepares her atom at t = 0 (excited = 1, ground = 0)  
Bob prepares his atom at t = 0. 

2. Bob measures his atom at t = T. 

3. Go to step 1 and repeat. 

4. Bob can determine Alice’s choice only after accumulating sufficient statistics.
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A manifestly causal way to compute probabilities

An example: Fermi problem in scalar field theory
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ωmn ≡ ωm − ωn



To see causality: commute E through U and use BCH

P = ⟨i|U †|f⟩⟨f |U |i⟩

E

The BCH formula leads to an expansion of nested commutators:  
[see also M. Cliche and A. Kempf, Phys. Rev. A81 (2010) 012330; J. D. Franson and M. M. Donegan, Phys. Rev. A65 (2002) 052107;  
R. Dickinson, J. Forshaw, P. Millington and B. Cox, JHEP 1406 (2014) 049.] 
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Notation:
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Can then write down any F operator:

(…) = permutations subject to time ordering within each operator
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e.g. the Fermi case (only D is observed to be in state with energy      )ωq
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Implies 1 index is never underlined on EX
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Lowest order:

No dependence on source atom S. 
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• Every term is purely real. 

• Every term contains a retarded propagator linking S and D = manifestly causal. 

• Just need expectation values of nested commutators & anti-commutators. 

• Simple diagrammatic rules…..
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The graphs relevant to the part of the probability that D is excited at time T  
that depends on the location of atom S. 

These are NOT Feynman graphs.
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Computing expectation values

1. The field

The vacuum expectation value of a general nesting of commutators and anti-
commutators, i.e. E1...(2p) with any combination of underlinings, can be written
as 2p times the sum of all distinct products of p propagators subject to the fol-
lowing rule: every non-underlined (commutation) index must become the second
index on a retarded propagator and all remaining indices are paired and associ-
ated with Hadamard propagators.
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2. The atoms E = ϵmn |m⟩⟨n|
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e.g. N = 3

1. Work clockwise around the ellipse and

(a) assign a factor of µrs for each time,

(b) connect consecutive times with atom Wightman propagators �r(>)
ij ,

(c) assign a factor of e+(�)i�rti for the times ti followed (preceded) by a
cross.

2. Assign a factor of �i for any time ti appearing on the falling side of the
ellipse.
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Since probabilities contain both time-ordered and anti-time-ordered contributions, the 
diagrammatic structure resembles that of the closed-time-path formalism. 
 
[J. S. Schwinger, J. Math. Phys. 2 (1961) 407-432; L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47 (1964) 1515-1527, Sov. Phys. JETP 20 (1965) 1018; R. L. 
Kobes and G. W. Semenoff, Nucl. Phys. B260 (1985) 714-746; B272 (1986) 329-364; R. L. Kobes, Phys. Rev. D43 (1991) 1269-1282; see also R. 
Dickinson, J. Forshaw, P. Millington and B. Cox, JHEP 1406 (2014) 049.]



In order to find a (weakly) causal result for the Fermi two-atom problem, we had to 
sum inclusively over the (unobserved) final state of the photon field. 

By working directly with probabilities, summing inclusively over the states spanning 
a given Hilbert space corresponds to a unit operator, i.e. we do not have to 
calculate the individual amplitudes for all possible emissions in the final state. 

What does this mean for the Bloch-Nordsieck or Kinoshita-Lee-Nauenberg 
theorems? Are they applied implicitly if we work directly with probabilities?  



Semi-inclusive observables

= semi-inclusive projection operator

e.g.

e.g.

Very nice operator form of the Sudakov factor



Conclusions 

• The S-matrix is (quite literally) only half the story. 

• Einstein causality in the Fermi two-atom problem emerges only after we sum inclusively 
over the unobserved final states of the source atom and the electromagnetic field. 

• There exists a way to compute directly at the level of probabilities where causality is 
explicit: how useful is it? 

• What are the implications for dealing with soft and collinear IR divergences in gauge 
theories? 

• There are parallels with the closed-time path formalism and diagrammatics of non-
equilibrium QFT, including the Kobes-Semenoff unitarity cutting rules.


