The Atoms of Space and Gravity

T. Padmanabhan

IUCAA, Pune

T.P., arXiv:1603.08658

The Major Challenges to GR

SINGULARITIES: BLACK HOLES, UNIVERSE

COSMOLOGICAL CONSTANT

THE THERMODYNAMIC CONNECTION

These challenges involve $\hbar!$

$$A_{Planck} = rac{G\hbar}{c^3}; \quad \Lambda\left(rac{G\hbar}{c^3}
ight) pprox 10^{-123}; \quad k_BT = rac{\hbar}{c}\left(rac{g}{2\pi}
ight)$$

HOW DO WE PUT TOGETHER THE PRINCIPLES OF QUANTUM THEORY AND GRAVITY?

Everybody Wants To Quantize Gravity!

Everybody Wants To Quantize Gravity!

... But Nobody Has Succeeded!

► The perturbative approach does not work

 Virtually every interesting question about gravity is non-perturbative by nature

No guiding principle; metric is assumed to be a quantum variable

GR: THE NEXT 100 YEARS

Needs another paradigm shift

GR: THE NEXT 100 YEARS

Needs another paradigm shift

The equations governing classical gravity has the same conceptual status as those describing elasticity/hydrodynamics.

Related Ideas: Cai, Damour, Hu, Jacobson, Liberati, Sakharov, Thorne, Visser, Volovik,.... and many others

I will describe the work by me + collaborators (2004-16)

Part 1: Review of older results
Part 2: Recent Progress (2014-16)

Non-negotiable ingredient - 1

Spacetime dynamics should/can be described in a thermodynamic language; not in a geometrical language.

Evolution arises from departure from 'holographic equipartition':

$$Time\ evolution\ \propto\ Heating/Cooling \ \propto\ (N_{
m sur}-N_{
m bulk})$$

All static geometries have

$$N_{
m sur}=N_{
m bulk}$$

The gravity-thermodynamics connection transcends GR even when the entropy is not proportional to area.

All these results generalize to the Lanczos-Lovelock models of gravity with:

$$sd^2x = -rac{1}{2}rac{\sqrt{\sigma}d^{D-2}x}{4L_P^2}P_{cd}^{ab}\epsilon_{ab}\epsilon^{cd}$$

The thermodynamic connection transcends GR!

You should get more than what you put in!

You should get more than what you put in!

Leads to significant new insights about:
(i) classical gravity (ii) the microscopic structure of spacetime and (iii) cosmological constant.

More IS Different

The key new variable which distinguishes thermodynamics from point mechanics

$$Heat\ Density = \mathcal{H} = rac{Q}{V} = rac{TS}{V} = rac{1}{V}(E-F)$$
 $rac{TS}{V} = Ts = p +
ho = T_{ab}\ell^a\ell^b$

Normal matter has a heat density

Spacetime also has a heat density!

Spacetime also has a heat density!

One can associate a T and s with every event in spacetime just as you could with a glass of water!

Spacetime also has a heat density!

One can associate a T and s with every event in spacetime just as you could with a glass of water!

This fact transcends black hole physics and Einstein gravity.

Spacetime also has a heat density!

One can associate a T and s with every event in spacetime just as you could with a glass of water!

The T is independent of the theory of gravity; s depends on/determines the theory.

Spacetime in Arbitrary Coordinates

Local Inertial Observers

Validity of laws of SR ⇒ How gravity affects matter

Matter equations of motion $\Leftrightarrow
abla_a T_b^a = 0$

Spacetimes, Like Matter, can be Hot

The most beautiful result in the interface of quantum theory and gravity

Spacetimes, Like Matter, can be Hot

The most beautiful result in the interface of quantum theory and gravity

OBSERVERS WHO PERCEIVE A HORIZON ATTRIBUTE A TEMPERATURE TO SPACETIME

$$k_BT=rac{\hbar}{c}\left(rac{g}{2\pi}
ight)$$

[Davies (1975), Unruh (1976)]

Spacetimes, Like Matter, can be Hot

The most beautiful result in the interface of quantum theory and gravity

OBSERVERS WHO PERCEIVE A HORIZON ATTRIBUTE A TEMPERATURE TO SPACETIME

$$k_BT=rac{\hbar}{c}\left(rac{g}{2\pi}
ight)$$

[Davies (1975), Unruh (1976)]

This allows you to associate a heat density $\mathcal{H} = Ts$ with every event of spacetime!

FLAT SPACETIME

Local Rindler Observers

Vacuum fluctuations

Thermal fluctuations

Vacuum fluctuations

Thermal fluctuations

A VERY NON-TRIVIAL EQUIVALENCE!

Vacuum fluctuations

Thermal fluctuations

A VERY NON-TRIVIAL EQUIVALENCE!

QFT in FFF introduces \hbar ; we now have (\hbar/c) in the temperature

Regions of spacetime can be inaccessible to certain class of observers in any spacetime!

Regions of spacetime can be inaccessible to certain class of observers in any spacetime!

Take non-inertial frames seriously: not "just coordinate relabeling".

Local Rindler Horizon

► Heat transfered due to matter crossing a null surface:

[T. Jacobson, qr-qc/9504004]

$$Q_m = \int d\mathcal{V} \, (T_{ab}\ell^a\ell^b); \quad \mathcal{H}_m \equiv T_{ab}\ell^a\ell^b$$

Local Rindler Horizon

► Heat transfered due to matter crossing a null surface: (T. Jacobson, gr-qc/9504004)

$$Q_m = \int d\mathcal{V} \, (T_{ab}\ell^a\ell^b); \quad \mathcal{H}_m \equiv T_{ab}\ell^a\ell^b$$

▶ Note: Null horizon ⇔ Euclidean origin

$$X^2 - T^2 = 0 \Leftrightarrow X^2 + T_E^2 = 0$$

$$T = x \sinh \kappa t, \ X = x \cosh \kappa t$$

 $T = x \sinh \kappa t, \ X = x \cosh \kappa t$ $T_E = x \sin \kappa t_E, \ X = x \cos \kappa t_E$

$$X^2 - T^2 = 0 \Leftrightarrow X^2 + T_E^2 = 0$$

$$X^2-T^2=\sigma^2\Leftrightarrow X^2+T_E^2=\sigma^2$$
 $X^2-T^2=0\Leftrightarrow X^2+T_E^2=0$

The Importance Of Being Hot

You could have figured out that water is made of discrete atoms without ever probing it at Angstrom scales!

Atoms of Matter

Boltzmann: If you can heat it, it must have micro-structure!

To store energy ΔE at temperature T, you need

$$\Delta n = rac{\Delta E}{(1/2)k_BT}$$

degrees of freedom. Microphysics leaves its signature at the macro-scales

Atoms of Spacetime

Boltzmann: If you can heat it, it must have micro-structure!

You can heat up spacetime!

Do we have an equipartition law for the microscopic spacetime degrees of freedom?

Can you count the atoms of space?

Equipartition with a surface-bulk correspondence

$$E_{
m bulk} = \int_{\partial \mathcal{V}} rac{dA}{L_P^2} \left(rac{1}{2} k_B T_{loc}
ight) \equiv rac{1}{2} k_B \int_{\partial \mathcal{V}} dn \, T_{
m loc}$$

Associates $dn=dA/L_P^2$ microscopic degrees of freedom ('atoms') with an area dA

Equipartition with a surface-bulk correspondence

$$E_{
m bulk} = \int_{\partial \mathcal{V}} rac{dA}{L_P^2} \left(rac{1}{2} k_B T_{loc}
ight) \equiv rac{1}{2} k_B \int_{\partial \mathcal{V}} dn \, T_{
m loc}$$

Associates $dn=dA/L_P^2$ microscopic degrees of freedom ('atoms') with an area dA

Extends to all Lanczos-Lovelock models with $dn=(32\pi P_{ad}^{ab}\epsilon_{ab}\epsilon^{cd})~dA/L_{P}^{2}$

$$N_{
m sur} = rac{A}{L_P^2} = N_{
m bulk} = rac{E}{[(1/2)k_BT_{
m av}]}$$

$$E = rac{1}{2L_P^2} \int da \; k_B T_{
m loc}$$

$$E=rac{1}{2L_{P}^{2}}\int da\;k_{B}T_{\mathrm{loc}}$$

$$\int
ho \; dV = rac{1}{2L_P^2} \int da \; \left(rac{\hbar}{c}
ight) \left(rac{g}{2\pi}
ight)$$

$$E=rac{1}{2L_{P}^{2}}\int da\;k_{B}T_{\mathrm{loc}}$$

$$\int
ho \; dV = rac{1}{2L_{P}^{2}} \int da \; rac{\hbar}{c} \left(rac{- ext{g}\cdot\hat{ ext{n}}}{2\pi}
ight)$$

$$E=rac{1}{2L_{P}^{2}}\int da\;k_{B}T_{\mathrm{loc}}$$

$$\int
ho \; dV = rac{1}{2L_P^2} \int da \; rac{\hbar}{c} \left(rac{-{f g} \cdot \hat{f n}}{2\pi}
ight)
onumber \ = -rac{\hbar}{4\pi c L_P^2} \int dV \; {f
abla} \cdot {f g}$$

$$E=rac{1}{2L_{P}^{2}}\int da\;k_{B}T_{\mathrm{loc}}$$

$$\int
ho \; dV = rac{1}{2L_P^2} \int da \; rac{\hbar}{c} \left(rac{-\mathbf{g}\cdot\hat{\mathbf{n}}}{2\pi}
ight)
onumber \ = -rac{\hbar}{4\pi c L_P^2} \int dV \; \mathbf{
abla} \cdot \mathbf{g}$$

$$abla \cdot \mathrm{g} = -rac{4\pi c L_P^2}{\hbar}
ho = -4\pi G \left(rac{
ho}{c^2}
ight)$$

Geometry ⇔ **Thermodynamics**

K. Parattu, B.R. Majhi, T.P. [arXiv:1303.1535]

Geometry ⇔ **Thermodynamics**

K. Parattu, B.R. Majhi, T.P. [arXiv:1303.1535]

$$q^{ab} \equiv \sqrt{-g} g^{ab}$$

$$q^{ab} \equiv \sqrt{-g} g^{ab}$$

$$p^a_{bc} \equiv -\Gamma^a_{bc} + rac{1}{2}(\Gamma^d_{bd}\delta^a_c + \Gamma^d_{cd}\delta^a_b) \, .$$

These variables have a thermodynamic interpretation

$$(q\delta p, p\delta q) \Leftrightarrow (s\delta T, T\delta s)$$

Geometry = Thermodynamics

K. Parattu, B.R. Majhi, T.P. (2013) [arXiv:1303.1535]

On any null surface: $(\delta p_{bc}^a, \delta q^{bc}) \Leftrightarrow (\delta T, \delta s)$

Geometry = Thermodynamics

K. Parattu, B.R. Majhi, T.P. (2013) [arXiv:1303.1535]

On any null surface: $(\delta p_{bc}^a, \delta q^{bc}) \Leftrightarrow (\delta T, \delta s)$

$$rac{1}{16\pi L_P^2}\int_{\mathcal{H}} d^2x_\perp \ \ell_c \left(p_{ab}^c\delta q^{ab}
ight) = \int_{\mathcal{H}} d^2x_\perp \ T \ \delta s_\perp$$

On any null surface: $(\delta p_{bc}^a, \delta q^{bc}) \Leftrightarrow (\delta T, \delta s)$

$$rac{1}{16\pi L_P^2}\int_{\mathcal{H}} d^2x_\perp \ \ell_c \left(p_{ab}^c\delta q^{ab}
ight) = \int_{\mathcal{H}} d^2x_\perp \ T \ \delta s_\perp$$

$$rac{1}{16\pi L_P^2}\int_{\mathcal{H}} d^2x_\perp \ \ell_c \left(q^{ab}\delta p_{ab}^c
ight) = \int_{\mathcal{H}} d^2x_\perp \ s \, \delta T$$

What makes Spacetime Evolve?

TP, Gen.Rel.Grav (2014) [arXiv:1312.3253]

TP, Gen.Rel.Grav (2014) [arXiv:1312.3253]

TP, Gen.Rel.Grav (2014) [arXiv:1312.3253]

$$\int \frac{d\sigma_a}{8\pi L_P^2} q^{\ell m} \mathcal{L}_{\xi} p_{\ell m}^a = -\frac{1}{2} k_B T_{\text{av}} \left(N_{\text{sur}} - N_{\text{bulk}} \right)$$

T.P., Gen.Rel.Grav (2014) [arXiv:1312.3253]

T.P., Gen.Rel.Grav (2014) [arXiv:1312.3253]

$$\int rac{d\Sigma_a}{8\pi L_B^2} [q^{\ell m}\pounds_\xi \ p_{\ell m}^a] = -rac{1}{2}k_BT_{
m av} \ \left(N_{
m sur}-N_{
m bulk}
ight)$$

T.P., Gen.Rel.Grav (2014) [arXiv:1312.3253]

$$\int rac{d\Sigma_a}{8\pi L_P^2} \left[q^{\ell m}\pounds_\xi \ p_{\ell m}^a
ight] = -rac{1}{2}k_BT_{
m av} \ \left(N_{
m sur}-N_{
m bulk}
ight)$$

time evolution of spacetime

= heating of spacetime

T.P., Gen.Rel.Grav (2014) [arXiv:1312.3253]

$$\int rac{d\Sigma_a}{8\pi L_P^2} [q^{\ell m}\pounds_\xi \ p_{\ell m}^a] = -rac{1}{2} k_B T_{
m av} \ \left(N_{
m sur} - N_{
m bulk}
ight)$$

time evolution of spacetime

= heating of spacetime

deviation from holographic equipartition

$$\int rac{d\Sigma_a}{8\pi L_P^2} \left[q^{\ell m}\pounds_\xi \ p_{\ell m}^a
ight] = -rac{1}{2}k_B T_{
m av} \ \left(N_{
m sur} - N_{
m bulk}
ight)$$

time evolution of spacetime

= heating of spacetime

deviation from holographic equipartition

Evolution of spacetime is described in thermodynamic language; not in geometric language!

COSMIC EXPANSION: A QUEST FOR HOLOGRAPHIC EQUIPARTITION

T.P., [1207.0505]

$$egin{align} rac{dR_H}{dt} &= (1-rac{\epsilon N_{
m bulk}}{N_{
m sur}}) \hspace{0.5cm} \epsilon = \pm 1 \ N_{
m sur} &= 4\pirac{R_H^2}{L_P^2}; \hspace{0.5cm} N_{
m bulk} = -\epsilonrac{E}{(1/2)k_BT}; \hspace{0.5cm} T = rac{H}{2\pi} \ \end{array}$$

Remarkably enough, this leads to the standard FRW dynamics!

Provides insights into classical GR!

Provides insights into classical GR!

For matter, $abla_a T_b^a = 0$ but

$$abla_a P^a[v] \equiv -
abla_a (T^a_b v^b)
eq 0.$$
Why?

Provides insights into classical GR!

For matter,
$$\nabla_a T_b^a = 0$$
 but

$$abla_a P^a[v] \equiv -
abla_a (T^a_b v^b)
eq 0.$$

Why?

Because you did not add the momentum density of spacetime!

$$abla_a(P^a[v]+\mathcal{G}^a[v])=0$$

T.P. [arXiv:1506.03814]

T.P. [arXiv:1506.03814]

$$\sqrt{-g}P^a[v] \equiv -\sqrt{-g}Rv^a - q^{ij}\pounds_v p^a_{ij}$$

$$\sqrt{-g}P^a[v] \equiv -\sqrt{-g}Rv^a - q^{ij}\pounds_v p^a_{ij}$$

Restores momentum conservation to nature! $abla_a(P^a+M^a)=0$ for all observers imply field equations

$$\sqrt{-g}P^a[v] \equiv -\sqrt{-g}Rv^a - q^{ij}\pounds_v p^a_{ij}$$

Restores momentum conservation to nature! $abla_a(P^a+M^a)=0$ for all observers imply field equations

Variational principle has a physical meaning:

$$Q_{
m tot} = -\int d{\cal V}\, \ell_a\, \left[P^a(\xi) + M^a(\xi)
ight]$$

Fluid Mechanics Of Spacetime

S. Chakraborty, K. Parattu, and T.P. [arXiv:1505.05297]; S. Chakraborty, T.P. [arXiv:1508.04060]

Fluid Mechanics Of Spacetime

S. Chakraborty, K. Parattu, and T.P. [arXiv:1505.05297]; S. Chakraborty, T.P. [arXiv:1508.04060]

Three projections $P^a\ell_a,\; P^ak_a,\; P^aq_a^b$ on a null surface give

Navier-Stokes equation

[T.P., arXiv:1012.0119]

ightharpoonup TdS = dE + PdV

[T.P., gr-qc/0204019; D. Kothawala, T.P., arXiv:0904.0215]

Evolution equation for the null surface

T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

Field equations arise from maximizing entropy/heat density of gravity plus matter on all null surfaces.

T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

Field equations arise from maximizing entropy/heat density of gravity plus matter on all null surfaces.

$$Q=\int d{\cal V}\,\left({\cal H}_g+{\cal H}_m
ight)$$

T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

Field equations arise from maximizing entropy/heat density of gravity plus matter on all null surfaces.

$$Q=\int d{\cal V}\,\left({\cal H}_g+{\cal H}_m
ight)$$

Works for a wide class gravitational theories; entropy decides the theory.

T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

$${\cal H}_m = T^a_b \ell_a \ell^b$$

$${\cal H}_g = -\left(rac{1}{16\pi L_D^2}
ight) (4P_{cd}^{ab}
abla_a\ell^c
abla_b\ell^d)$$

T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

$${\cal H}_m = T^a_b \ell_a \ell^b$$

$$\mathcal{H}_g = -\left(rac{1}{16\pi L_P^2}
ight) (4P_{cd}^{ab}
abla_a\ell^c
abla_b\ell^d).$$

$$P_{cd}^{ab} \propto \delta_{cdc_{2}d_{2}...c_{m}d_{m}}^{aba_{2}b_{2}...a_{m}b_{m}} R_{a_{2}b_{2}}^{c_{2}d_{2}}...R_{a_{m}b_{m}}^{c_{m}d_{m}}$$

► The P^{ab}_{cd} is the entropy tensor of the spacetime which determines the theory [[yer and Wald (1994)]]

T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

ullet The demand $\delta Q/\delta \ell_a=0$ for all null ℓ_a leads to:

$$E^a_b \equiv P^{ai}_{jk} R^{jk}_{bi} - rac{1}{2} \delta^a_b \mathcal{R} = (8\pi L_P^2) T^a_b + \Lambda \delta^a_b,$$

T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

▶ The demand $\delta Q/\delta \ell_a=0$ for all null ℓ_a leads to:

$$E^a_b \equiv P^{ai}_{jk} R^{jk}_{bi} - rac{1}{2} \delta^a_b \mathcal{R} = (8\pi L_P^2) T^a_b + \Lambda \delta^a_b,$$

ullet These are Lanczos-Lovelock models of gravity. In d=4, it uniquely leads to GR

$$G_b^a = (8\pi L_P^2)T_b^a + \Lambda \delta_b^a$$

T.P., A. Paranjape [gr-qc/0701003]; T.P. [arXiv:0705.2533]

ullet The demand $\delta Q/\delta \ell_a=0$ for all null ℓ_a leads to:

$$E^a_b \equiv P^{ai}_{jk} R^{jk}_{bi} - rac{1}{2} \delta^a_b \mathcal{R} = (8\pi L_P^2) T^a_b + \Lambda \delta^a_b,$$

ullet These are Lanczos-Lovelock models of gravity. In d=4, it uniquely leads to GR

$$G_b^a = (8\pi L_P^2) T_b^a + \Lambda \delta_b^a$$

▶ On-shell value of Q_{tot}

$$Q_{
m tot}^{
m on-shell} = \int d^2x (T_{
m loc}\,s)igg|_{\lambda_1}^{\lambda_2}$$

Algebraic Aside

Algebraic Aside

Interestingly enough:

$$2P_{cd}^{ab}
abla_a n^c
abla_b n^d = \mathcal{R}_{ab} n^a n^b + igg\{ egin{array}{ll} ext{ignorable} \ ext{total divergence} \end{array}$$

Interestingly enough:

$$2P_{cd}^{ab}
abla_a n^c
abla_b n^d = \mathcal{R}_{ab} n^a n^b + igg\{ egin{array}{ll} ext{ignorable} \ ext{total divergence} \end{array}$$

► Alternative, dimensionless, form in GR:

$${\cal K}_g \equiv -rac{1}{8\pi}(L_P^2 R_{ab} n^a n^b)$$

Newton's Law of Gravitation

T.P. [hep-th/0205278]

Newton's Law of Gravitation

T.P. [hep-th/0205278]

Three constants: \hbar, c, L_P^2

Newton's Law of Gravitation

T.P. [hep-th/0205278]

Three constants: \hbar, c, L_P^2 Temperature $\Rightarrow (\hbar/c)$; Entropy $\Rightarrow L_P^2$

Three constants: \hbar, c, L_P^2 Temperature $\Rightarrow (\hbar/c)$; Entropy $\Rightarrow L_P^2$

$$m{F} = \left(rac{m{c}^3 L_P^2}{\hbar}
ight) \left(rac{m{m}_1 m{m}_2}{m{r}^2}
ight)$$

T.P. [hep-th/0205278]

Three constants: \hbar, c, L_P^2 Temperature $\Rightarrow (\hbar/c)$; Entropy $\Rightarrow L_P^2$

$$F=\left(rac{c^3L_P^2}{\hbar}
ight)\left(rac{m_1m_2}{r^2}
ight)$$

Gravity, like matter, is intrinsically quantum and cannot exist in the limit of $\hbar o 0$!

WHY?

Can we understand these results from a deeper level? Can we get something new?

$$egin{array}{ll} \Omega_{
m tot} &=& \prod_{\phi_A} \prod_x \,
ho_g(\mathcal{G}_N,\phi_A) \,
ho_m(T_{ab},\phi_A) \ &\equiv& \prod_{n_a} \exp \sum_x \left(\ln
ho_g + \ln
ho_m
ight) \end{array}$$

$$egin{array}{ll} \Omega_{
m tot} &=& \prod_{\phi_A} \prod_x \,
ho_g(\mathcal{G}_N,\phi_A) \,
ho_m(T_{ab},\phi_A) \ &\equiv& \prod_a \exp \int d\mathcal{V} \left(\mathcal{H}_g(\mathcal{G}_N,\ell_a) + \mathcal{H}_m(T_{ab},\ell_a)
ight) \end{array}$$

$$egin{array}{ll} \Omega_{\mathrm{tot}} &=& \prod_{\phi_A} \prod_x \,
ho_g(\mathcal{G}_N,\phi_A) \,
ho_m(T_{ab},\phi_A) \ &\equiv& \prod_{\ell_a} \exp \int d\mathcal{V} \left(\mathcal{H}_g(\mathcal{G}_N,\ell_a) + \mathcal{H}_m(T_{ab},\ell_a)
ight) \end{array}$$

$$egin{array}{ll} \ln
ho_m & \equiv & L_P^4 \mathcal{H}_m = L_P^4 T_{ab} \ell^a \ell^b \ & \ln
ho_g & \equiv & L_P^4 \mathcal{H}_g pprox -rac{L_P^2}{8\pi} R_{ab} \ell^a \ell^b \end{array}$$

$$egin{array}{ll} \Omega_{\mathrm{tot}} &=& \prod_{\phi_A} \prod_x \,
ho_g(\mathcal{G}_N,\phi_A) \,
ho_m(T_{ab},\phi_A) \ &\equiv& \prod_{\ell_a} \exp \int d\mathcal{V} \left(\mathcal{H}_g(\mathcal{G}_N,\ell_a) + \mathcal{H}_m(T_{ab},\ell_a)
ight) \end{array}$$

 $R_b^a \ell_a \ell^b = (8\pi L_P^2) T_b^a \ell_a \ell^b$

$$egin{array}{ll} \Omega_{\mathrm{tot}} &=& \prod_{\phi_A} \prod_x \,
ho_g(\mathcal{G}_N,\phi_A) \,
ho_m(T_{ab},\phi_A) \ &\equiv& \prod_{\ell_a} \exp \int d\mathcal{V} \left(\mathcal{H}_g(\mathcal{G}_N,\ell_a) + \mathcal{H}_m(T_{ab},\ell_a)
ight) \end{array}$$

 $G_h^a = (8\pi L_P^2)T_h^a + (\text{const})\delta_h^a$

ullet Variational principle must remain invariant under $T^a_b o T^a_b + (const) \delta^a_b$.

Quantum spacetime has a zero-point length.

Matter equations of motion remain invariant when a constant is added to the Lagrangian

Gravity must respect this symmetry

The variational principle for the dynamics of spacetime must be invariant under

$$T_{b}^{a}
ightarrow T_{b}^{a}+\left(constant
ight) \delta_{b}^{a}$$

The variational principle for the dynamics of spacetime must be invariant under

$$T^a_b
ightarrow T^a_b + (constant) \ \delta^a_b$$

The variational principle cannot have metric as the dynamical variable!

• Minimal possibility: The matter should enter ho_m through

$${\cal H}_m \equiv T_{ab} \ell^a \ell^b$$

► This has a natural interpretation of heat density contributed by matter on null surfaces

Local Rindler Horizon

► Heat density (energy per unit area per unit affine time) of the null surface, contributed by matter crossing a local Rindler horizon:

$${\cal H}_m \equiv rac{dQ_m}{\sqrt{\gamma}d^2xd\lambda} = T_{ab}\ell^a\ell^b$$

This fixes the matter sector and leads to:

$$\Omega_{
m tot} = \prod_a \exp \int d\mathcal{V} \left(\mathcal{H}_g + T_{ab}\ell^a\ell^b
ight)$$

Macroscopic Nature Of Gravity

Gravity responds to heat density $(Ts = p + \rho)$ — not energy density!

Macroscopic Nature Of Gravity

Gravity responds to heat density $(Ts = p + \rho)$ — not energy density!

Cosmological constant arises as an integration constant

Macroscopic Nature Of Gravity

Gravity responds to heat density $(Ts = p + \rho)$ — not energy density!

Cosmological constant arises as an integration constant

Its value is determined by a new conserved quantity for the universe!

The Challenge

How can we get \mathcal{H}_g from a microscopic theory without knowing the full QG?

How can we get \mathcal{H}_g from a microscopic theory without knowing the full QG?

We need to recognize discreteness and yet use continuum mathematics!

• Continuum fluid mechanics: $ho(x^i)$, $U(x^i)$, ignores discreteness and velocity dispersion.

- Continuum fluid mechanics: $ho(x^i)$, $U(x^i)$, ignores discreteness and velocity dispersion.
- Kinetic theory: $dN = f(x^i, p_i)d^3\mathrm{x}d^3\mathrm{p}$

- Continuum fluid mechanics: $\rho(x^i)$, $U(x^i)$, ignores discreteness and velocity dispersion.
- Kinetic theory: $dN = f(x^i, p_i)d^3 x d^3 p$
 - Recognizes discreteness, yet uses continuum maths!

- Continuum fluid mechanics: $\rho(x^i)$, $U(x^i)$, ignores discreteness and velocity dispersion.
- Kinetic theory: $dN = f(x^i, p_i)d^3xd^3p$
 - Recognizes discreteness, yet uses continuum maths!
 - Atom at x^i has an extra attribute p_i .

- Continuum fluid mechanics: $ho(x^i)$, $U(x^i)$, ignores discreteness and velocity dispersion.
- Kinetic theory: $dN = f(x^i, p_i)d^3xd^3p$
 - Recognizes discreteness, yet uses continuum maths!
 - Atom at x^i has an extra attribute p_i .
 - ullet Many atoms with different p_i can exist at same x^i

The Atoms Of Space

$$Q=\int d{\cal V}\,\left({\cal H}_g+{\cal H}_m
ight)$$

The distribution function for 'atoms of space' provides the microscopic origin for the variational principle

$$Q=\int d{\cal V}\,\left({\cal H}_g+{\cal H}_m
ight)$$

The distribution function for 'atoms of space' provides the microscopic origin for the variational principle

Points in a renormalized spacetime has zero volume but finite area!

The \mathcal{H}_g is proportional to the number of "atoms of space at" x^i with "momentum" n_i .

We expect \mathcal{H}_g to be proportional to the volume or the area measure "associated with" the event x^i in the spacetime

The \mathcal{H}_g is proportional to the number of "atoms of space at" x^i with "momentum" n_i .

We expect \mathcal{H}_g to be proportional to the volume or the area measure "associated with" the event x^i in the spacetime

Use equi-geodesic surfaces to make this idea precise

Geodesic Interval

D. Kothawala, T.P. [arXiv:1405.4967]; [arXiv:1408.3963]

Geodesic Interval

D. Kothawala, T.P. [arXiv:1405.4967]; [arXiv:1408.3963]

The geodesic interval $\sigma^2(x,x')$ and metric g_{ab} has same information about geometry:

$$\sigma(x,x')=\int_x^{x'}\sqrt{g_{ab}n^an^b}d\lambda$$

The geodesic interval $\sigma^2(x,x')$ and metric g_{ab} has same information about geometry:

$$\sigma(x,x')=\int_{x}^{x'}\sqrt{g_{ab}n^{a}n^{b}}d\lambda$$

$$rac{1}{2}
abla_a
abla_b\sigma^2 = g_{ab} - rac{\lambda^2}{3}\mathcal{E}_{ab} + rac{\lambda^2}{12}n^i
abla_i\mathcal{E}_{ab} + \mathcal{O}(\lambda^4)$$

$$n_j =
abla_j \sigma, \qquad \mathcal{E}_{ab} \equiv R_{akbj} n^k n^j$$

$$\sqrt{g} \propto \sigma^3 \qquad \sqrt{h} \propto \sigma^3$$

 $ds^2 = d\sigma^2 + \sigma^2 d\Omega_{(S3)}^2$

The $\sqrt{g} = \sqrt{h}$ will pick up curvature corrections

$$ds^2 = d\sigma^2 + h_{\alpha\beta} dx^{\alpha} dx^{\beta}$$

$$\sqrt{h}(x,x') = \sqrt{g}(x,x') = \sigma^3 \left(1 - rac{\sigma^2}{6} \mathcal{E}
ight) \sqrt{h_\Omega}; \;\;\; \mathcal{E} \equiv R_{ab} n^a n^b$$

Zero-Point Length

T.P. Ann.Phy. (1985), 165, 38; PRL (1997), 78, 1854

Zero-Point Length

T.P. Ann. Phy. (1985), 165, 38; PRL (1997), 78, 1854

Discreteness arises through a quantum of area, which is a QG effect

Discreteness arises through a quantum of area, which is a QG effect

Quantum spacetime has a zero-point length:

D. Kothawala, T.P. [arXiv:1405.4967]; [arXiv:1408.3963]

$$egin{array}{lll} \sigma^2(x,x') & o & S(\sigma^2) = \sigma^2(x,x') + L_0^2 \ g_{ab}(x) & o & q_{ab}(x,x';L_0^2) \end{array}$$

In conventional units, $L_0^2=(3/4\pi)L_P^2$.

Area Of A Point

T.P. [arXiv:1508.06286]

Area Of A Point

T.P. [arXiv:1508.06286]

$$\sqrt{q} = \sigma \left(\sigma^2 + L_0^2
ight) \left[1 - rac{1}{6} \mathcal{E} \left(\sigma^2 + L_0^2
ight)
ight] \sqrt{h_\Omega}$$

Points have no volume but finite area:

$$\sqrt{h} = L_0^3 \left[1 - rac{1}{6} \mathcal{E} L_0^2
ight] \sqrt{h_\Omega}$$

Atoms of Space

Fig. The number of atoms of space at x^i scales as area measure of the equigeodesic surface when $x' \to x$

$$ho_g(x^i,\ell_a) \propto \lim_{\sigma o 0} \sqrt{h(x,\sigma)} pprox 1 - rac{1}{8\pi} L_P^2 R_{ab} \ell^a \ell^b$$

▶ The number of atoms of space at x^i scales as area measure of the equigeodesic surface when $x' \to x$

$$ho_g(x^i,\ell_a) \propto \lim_{\sigma o 0} \sqrt{h(x,\sigma)} pprox 1 - rac{1}{8\pi} L_P^2 R_{ab} \ell^a \ell^b$$

Fuclidean origin maps to local Rindler horizon. The $\sigma^2 \to 0$ limit picks the null vectors!

Null horizon ⇔ Euclidean origin

ullet The number of atoms of space at x^i scales as area measure of the equigeodesic surface when x' o x

$$ho_g(x^i,\ell_a) \propto \lim_{\sigma o 0} \sqrt{h(x,\sigma)} pprox 1 - rac{1}{8\pi} L_P^2 R_{ab} \ell^a \ell^b$$

- Euclidean origin maps to local Rindler horizon. The $\sigma^2 \to 0$ limit picks the null vectors!
- The variational principle leads to

$$G_{ab} = \kappa T_{ab} + \Lambda g_{ab}$$

Quantum of Information

T.P. [arXiv:1508.06286]

Spacetime becomes two-dimensional close to Planck scales!

Quantum of Information

T.P. [arXiv:1508.06286]

Spacetime becomes two-dimensional close to Planck scales!

See e.g., Carlip et al., [arXiv:1103.5993]; [arXiv:1009.1136]; G. Calcagni et al, [arXiv:1208.0354]; [arXiv:1311.3340]; J. Ambjorn, et al. [arXiv:hep-th/0505113]; L. Modesto, [arXiv:0812.2214]; V. Husain et al., [arXiv:1305.2814] etc.

- Spacetime becomes two-dimensional close to Planck scales!
- Basic quantum of information to count spacetime degrees of freedom is

$$I_{QG} = rac{4\pi L_{P}^{2}}{L_{P}^{2}} = 4\pi$$

Possible new insight

Redefining Cosmology

May be we should not describe the cosmos as a specific solution to gravitational field equations.

Our strange Universe

Our strange Universe

$$ho_{
m inf} < (1.94 imes 10^{16} \, {
m GeV})^4$$

$$ho_{
m inf} < (1.94 imes 10^{16}~{
m GeV})^4$$

$$ho_{
m eq} = rac{
ho_m^4}{
ho_D^3} = [(0.86 \pm 0.09) \ {
m eV}]^4$$

$$ho_{
m inf} < (1.94 imes 10^{16}~{
m GeV})^4$$

$$ho_{
m eq} = rac{
ho_m^4}{
ho_R^3} = [(0.86 \pm 0.09) \ {
m eV}]^4$$

$$ho_{\Lambda} = [(2.26 \pm 0.05) imes 10^{-3} ext{eV}]^4$$

Hope: High energy physics will (eventually!) fix $ho_{inf}^{1/4}pprox 10^{15} { m GeV}$ and

$$\left|
ho_{eq}^{1/4} \propto \left|rac{n_{DM}}{n_{\gamma}}m_{DM} + rac{n_{B}}{n_{\gamma}}m_{B}
ight| pprox 0.86 ext{ eV}$$

Hope: High energy physics will (eventually!) fix $ho_{inf}^{1/4}pprox 10^{15} { m GeV}$ and

$$\left|
ho_{eq}^{1/4} \propto \left|rac{n_{DM}}{n_{\gamma}}m_{DM} + rac{n_{B}}{n_{\gamma}}m_{B}
ight| pprox 0.86 ext{ eV}$$

But we have no clue why

$$ho_{\Lambda} L_{P}^{4} pprox 1.4 imes 10^{-123} pprox 1.1 imes e^{-283}$$
.

The FRW universe is described by the two equations (with $T=H/2\pi$)

$$rac{dV_H}{dt} = L_P^2 (N_{sur} - N_{bulk})$$

$$\mathcal{U}_H \equiv
ho V_H = TS$$

SIZE OF THE UNIVERSE

SIZE OF THE UNIVERSE

$$x(a_2,a_1)=\int_{t_1}^{t_2}rac{dt}{a(t)}=\int_{a_1}^{a_2}rac{da}{a^2H(a)}$$

$$x(a_2,a_1)=\int_{t_1}^{t_2}rac{dt}{a(t)}=\int_{a_1}^{a_2}rac{da}{a^2H(a)}$$

Boundary of accessible cosmic information for eternal observer

$$x(\infty,a)\equiv x_\infty(a)=\int_a^\infty rac{dar a}{ar a^2 H(ar a)}$$

$$x(a_2,a_1)=\int_{t_1}^{t_2}rac{dt}{a(t)}=\int_{a_1}^{a_2}rac{da}{a^2H(a)}$$

Boundary of accessible cosmic information for eternal observer

$$x(\infty,a)\equiv x_\infty(a)=\int_a^\infty rac{dar a}{ar a^2 H(ar a)}$$

This is infinite if $\Lambda=0$; finite if $\Lambda \neq 0$

COSMIC PARALLELOGRAM

COSMIC PARALLELOGRAM

T.P, Hamsa Padmanabhan [arXiv:1404.2284]

T.P, Hamsa Padmanabhan [arXiv:1404.2284]

A measure of cosmic information accessible to eternal observer ('Cosmln')

 I_c = Number of modes (geodesics) which cross the Hubble radius during the radiation + matter dominated phase .

$$I_c = rac{2}{3\pi} \ln \left(rac{a_{
m rh}}{a_*}
ight)$$

A measure of cosmic information accessible to eternal observer ('Cosmln')

 I_c = Number of modes (geodesics) which cross the Hubble radius during the radiation + matter dominated phase .

$$I_c = rac{1}{9\pi}\,\ln\left(rac{4}{27}rac{
ho_{
m inf}^{3/2}}{
ho_\Lambda\,
ho_{
m eq}^{1/2}}
ight)$$

Cosmln and the Λ

T.P, Hamsa Padmanabhan [arXiv:1404.2284]

$$ho_{\Lambda} = rac{4}{27} rac{
ho_{ ext{inf}}^{3/2}}{
ho_{ ext{eq}}^{1/2}} \, \exp\left(-9\pi I_c
ight)$$

$$ho_{\Lambda} = rac{4}{27} rac{
ho_{
m inf}^{3/2}}{
ho_{
m eq}^{1/2}} \, \exp{(-9\pi I_c)}$$

$$ho_{\Lambda} = rac{4}{27} rac{
ho_{
m inf}^{3/2}}{
ho_{
m eq}^{1/2}} \, \exp{(-9\pi I_c)}$$

Using $I_c=I_{QG}=4\pi$ gives the numerical value of ho_{Λ}

The Magical Relation!

$$ho_{\Lambda} = rac{4}{27} rac{
ho_{inf}^{3/2}}{
ho_{eq}^{1/2}} \exp(-36\pi^2)$$

Hamsa Padmanabhan, **T.P**, CosMIn: Solution to the Cosmological constant problem [arXiv:1302.3226]

Key Open Question

Possibility for Matter Sector

Key Open Question

Possibility for Matter Sector

$$P(x^i,n_a) \propto \exp[\mu f(x^i,n_a)]$$

Possibility for Matter Sector

$$P(x^i,n_a) \propto \exp[\mu f(x^i,n_a)]$$

$$\langle n^a n^b
angle pprox (4\pi/\mu L_P^2) R_{ab}^{-1}$$

$$P(x^i, n_a) \propto \exp[\mu f(x^i, n_a)]$$

$$\langle n^a n^b
angle pprox (4\pi/\mu L_P^2) R_{ab}^{-1}$$

$$2\mu L_P^4 ~\langle ar{T}_{ab} n^a n^b
angle pprox 2\mu L_P^4 ~\langle ar{T}_{ab}
angle \langle n^a n^b
angle = 1$$

Demand that: (i) Gravity is immune to zero-level of energy.
(ii) The number of atoms of spacetime at a point to be proportional to the area measure in a spacetime with zero-point length. Then:

 Gravitational dynamics arises from a thermodynamic variational principle principle.

- Gravitational dynamics arises from a thermodynamic variational principle principle.
- ► The evolution equation has a purely thermodynamic interpretation related to the information content of the spacetime.

- Gravitational dynamics arises from a thermodynamic variational principle principle.
- ► The evolution equation has a purely thermodynamic interpretation related to the information content of the spacetime.
- ► The cosmological constant is related to the amount of information accessible to an eternal observer.

- Gravitational dynamics arises from a thermodynamic variational principle principle.
- The evolution equation has a purely thermodynamic interpretation related to the information content of the spacetime.
- ► The cosmological constant is related to the amount of information accessible to an eternal observer.
- At Planck scales spacetime is 2-dimensional with 4π units of information; this allows the determination of the value of the cosmological constant.

References

T.P, General Relativity from a Thermodynamic Perspective, Gen. Rel. Grav., **46**, 1673 (2014) [arXiv:1312.3253].

Review: T.P, The Atoms Of Space, Gravity and the Cosmological Constant, IJMPD, 25, 1630020 (2016) [arXiv:1603.08658].

Acknowledgements

Sunu Engineer Dawood Kothawala Bibhas Majhi Krishna Parattu Sumanta Chakraborty James Bjorken Aseem Paranjape Hamsa Padmanabhan Donald Lynden-Bell

THANK YOU FOR YOUR TIME!

Our strangeer Universe

► Compute the combination:

$$I=rac{1}{9\pi}\,\ln\left(rac{4}{27}rac{
ho_{
m inf}^{3/2}}{
ho_{\Lambda}\,
ho_{
m eq}^{1/2}}
ight)$$

Our strangeer Universe

► Compute the combination:

$$I=rac{1}{9\pi}\,\ln\left(rac{4}{27}rac{
ho_{
m inf}^{3/2}}{
ho_{\Lambda}\,
ho_{
m eq}^{1/2}}
ight)$$

You will find that

$$Ipprox 4\pi\left(1\pm\mathcal{O}\left(10^{-3}
ight)
ight)=I_{QG}$$

Our strangeer Universe

► Compute the combination:

$$I=rac{1}{9\pi}\,\ln\left(rac{4}{27}rac{
ho_{
m inf}^{3/2}}{
ho_{\Lambda}\,
ho_{
m eq}^{1/2}}
ight)$$

You will find that

$$Ipprox 4\pi\left(1\pm\mathcal{O}\left(10^{-3}
ight)
ight)=I_{QG}$$

