Mu2e crystals qualification

I. Sarra
PADME ECal Meeting

8 September 2016
Mu2e Calorimeter: state of the art

The Calorimeter consists of two disks with 674 CsI 34x34x200 mm3 square crystals:

→ $R_{\text{inner}} = 374 \text{ mm}$, $R_{\text{outer}} = 660 \text{ mm}$, depth = $10 \times X_0$ (200 mm)

→ Each crystal is readout by two large area UV extended SiPM’s (14x20 mm2)

→ Analog FEE is on the SiPM and digital electronics is located in near-by electronics crates

→ Radioactive source and laser system provide absolute calibration and monitoring capability
Mu2e Calorimeter: state of the art (2)

High granularity crystal based calorimeter with:

- 2 Disks (Anuli) geometry to optimize acceptance for spiraling electrons
- Crystals with high Light Yield for timing/energy resolution \rightarrow LY(photosensors) > 20 pe/MeV

- 2 photo-sensors/preamps/crystal for redundancy and reduce MTTF requirement \rightarrow now set to 1 million hours/SiPM
- Fast signal for Pileup and Timing resolution \rightarrow τ of emission < 40 ns + Fast preamps
- Crystals and sensors should work in 1 T B-field and in vacuum of 10^{-4} Torr and:
 - Crystals survive a dose of 100 krad and a neutron fluency of 10^{12} n/cm2
 - Photo-sensors survive 20 krad a neutron fluency of 3×10^{11} n$_{1MeV}$/cm2
Design: Crystals and Sensors choice

<table>
<thead>
<tr>
<th></th>
<th>BaF$_2$</th>
<th>CsI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation Length X_0 [cm]</td>
<td>2.03</td>
<td>1.86</td>
</tr>
<tr>
<td>Light Yield [% NaI(Tl)]</td>
<td>4/36</td>
<td>3.6</td>
</tr>
<tr>
<td>Decay Time[ns]</td>
<td>0.9/650</td>
<td>30</td>
</tr>
<tr>
<td>Photosensor</td>
<td>RMD APD</td>
<td>SiPM</td>
</tr>
<tr>
<td>Wavelength [nm]</td>
<td>220/300</td>
<td>310</td>
</tr>
</tbody>
</table>

Undoped CsI
- Adequate radiation hardness
- Slightly hygroscopic
- 30 ns emission time, small slow component.
- Emits @ 310 nm.
- Comparable LY of fast component of BaF$_2$.
- Lower cost (6-8 $/cc$
- Well know crystal. Mass produced before .. KTeV

TSV with SPL SiPMs
Design: meeting the requirements

- Simulation performed as a function of LY and many other variables → Csl+SIPM match requirements.
- Test beam with e⁻ @ BTF, LNF 80 to 130 MeV → 3x3 array of 30x30x200 mm³ CsI + MPPC
- Good energy (7%) and timing (110 ps) resolution
- Exp tests → Matching EMC requirements

Mu2e Framework Simulation

LNF Test Beam

Energy Resolution [%]

<table>
<thead>
<tr>
<th>Deposited Energy by MC [MeV]</th>
<th>Energy Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>4</td>
</tr>
<tr>
<td>80</td>
<td>4.5</td>
</tr>
<tr>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>5.5</td>
</tr>
<tr>
<td>110</td>
<td>6</td>
</tr>
</tbody>
</table>

Data

MC

σ / E < 7%
dominated by leakage and beam energy spread

LNF Test Beam

- Orthogonal single crystal
- Orthogonal all crystals above 10 MeV
- Cosmic
- Neighboring crystals @ 50 deg
- Single crystal @ 50 deg
- Most energetic crystal @ 50 deg
- 50 deg all crystals above 10 MeV

Energy vs Deposited Energies
Design: Radiation hardness & cooling

- **Crystals have been tested up to 100 krad and 10^{12} \text{n/cm}^2 with 14 \text{MeV neutrons}** i.e. the doses in the experiment with a safety factor of 3 applied.
 - No major issues/damages observed (LY drop 40% @ 100 krad)
 - Radiation hardness will be part of our QA test procedure
 - Effect of thermal neutrons on Radiation Induced Current being investigated

- **Photosensors have been tested up to 20 krad and 3 \times 10^{11} \text{n/cm}^2.**
 - No problems with dose
 - With neutrons, sensors are still working but leakage current increases to too high values (a factor \sim 2000)
 - Cooling photo-sensors to 0 °C is needed.
Crystals: Quality Control

Transmittance of the pure CsI has been much improved from 2014

From left to right: SICCAS (2014 sample), Opto Materials and ISMA CsI crystals
• To study the **light yield** and **longitudinal uniformity** of each crystal, we used a low intensity collimated 22Na source which irradiates them in a region of few mm2;

• The source is placed between the crystals and a small tagging system, constituted by a 3×3×10 mm3 LYSO crystal, readout by a 3×3 mm2 MPPC;

• One of the two back-to-back 511 keV photons produced by the source is tagged by this monitor while the second photon is used to calibrate the crystal under test, which is readout by means of a 2” UV extended photomultiplier tube (PMT) from ET Enterprises.

• The whole system is inside a light tight black box.
Crystals: Quality Control (3)

- For each crystal, a longitudinal scan is done in **eight points**, with 2 cm steps, with respect to the readout system.
- In the scan, the source and the tag are moved together along the axis of the crystal under test with a manual movement.
- A complete longitudinal scan takes about 10 minutes. We take 20000 events/point at 500 Hz.
- All crystals are tested wrapped with reflector material (Tyvek).
Quality Control: Examples

• Charge distributions with the source placed in the central position;

• LY, defined as:

\[\frac{N_{p.e.}}{\text{MeV}} = \frac{\mu_{Q1[pC]}}{G_{PMT} \cdot E_{\gamma}[\text{MeV}] \cdot q_{e-}[pC]} \]

• To evaluate the longitudinal uniformity, LRU, we plot the light yield as function of the distance of the source from the PMT and we fit the number of photoelectrons produced per MeV with a linear function.
Quality Control: Specifications

✓ Angular coefficients are used to evaluate the LRU.

 dạ Specifications are defined according to samples characterized: Kharkov (Ukraine), Opto Materials (Italy), SICCAS (China) and Saint-Gobain (France);

فعاليات Crystal lateral dimension: ±100 µm, length: ±100 µm.

 dạ Scintillation properties measured by a bi-alkali PMT with air gap, coupled to the crystal wrapped with two layers of Tyvek paper:
 ➔ Light output (LO): > 100 p.e./MeV with 200 ns integration gate, will be defined as XX% of a candle crystal provided;
 ➔ FWHM Energy resolution: < 45% for 22Na peak;
 ➔ Fast (200 ns)/Total (3000 ns) Ratio: > 75%;
 ➔ Light response uniformity (LRU): < 10%.

 dạ Radiation hardness:
 ➔ Normalized LO after 10/100 krad > 85/60%.
 ➔ Radiation Induced Current (RIC) @1.8 rad/h: < 0.6 MeV.
Quality Control: Specifications (2)

LT of CsI depends on crystal surface quality, so cannot be used in specification.

LT and emission weighted LT (EWLT) may be used in radiation damage investigation provided that crystal surface is kept stable.
Specifications: LO and FWHM ER Examples

Kharkov samples are longer, so have lower LO

![Graph showing LO and FWHM ER examples](image)

- **LO** should be larger than 100 p.e./MeV
- **ER** should be better than 45%
Specifications: F/S Ratio and LRU Examples

Mu2e CsI

- **Ave Ratio** = 87 %
- **RMS/Means** = 9.4%

- **LO of 200 ns / 3000 ns Ratio (%)**
 - Kharkov 29×29×230 mm³
 - Optomaterial 30×30×200 mm³
 - SIC 30×30×200 mm³

- **F/S Ratio should be larger than 75%**

Mu2e CsI

- **Ave LRU** = 5.5 %
- **RMS/Means** = 49.9%

- **Variation of LRU should be less than 10%**

- **RMS of LRU in 200 ns Gate (%)**
 - Kharkov 29×29×230 mm³
 - Optomaterial 30×30×200 mm³
 - SIC 30×30×200 mm³
SPARES
No significant degradation in LO and LRU up to 10 krad
Radiation Damage (2)

Consistent radiation hardness: no significant degradation in LO and LRU up to 100 krad, but not beyond.

Cost of damage investigation is high because of no recovery/annealing.
Laser monitoring system -1-

The Mu2e laser system has the main purpose of:
1) Monitor the MPPC Gain
2) Allow fast debugging of FEE + setting (good experience during the last three test beams)
Laser monitoring system -2-

- The laser will be split, by means of semi transparent mirrors to 8 beams and focused by optical lens to 1 mm diameter Fused Silica fibers. 1/3 of the light will be sent to a 2” diffusing sphere with 3 pin-diodes for monitoring ➔ A

- Eight 60 m long fibers, routed from the counting room to the DS bulkhead brings the light to 8 2” diffusing spheres on the mechanical structure ➔ B

- Each sphere, will have 1 pin diode for monitor and 3 bundles of 200 μm silica fibers. Each fiber will be inserted into a lodging in the back of the crystals close to the SIPM holders ➔ C

- Laser Trigger will be synchronized with the DAQ Clock signals and delayed into the beam-off region.

Outside the DS

Feed-throughs for 8 optical fibers
8 Pin Diode cables [coaxial]
Total cross section < 10 cm²

Figure 11.1. Mu2e Beam Structure.