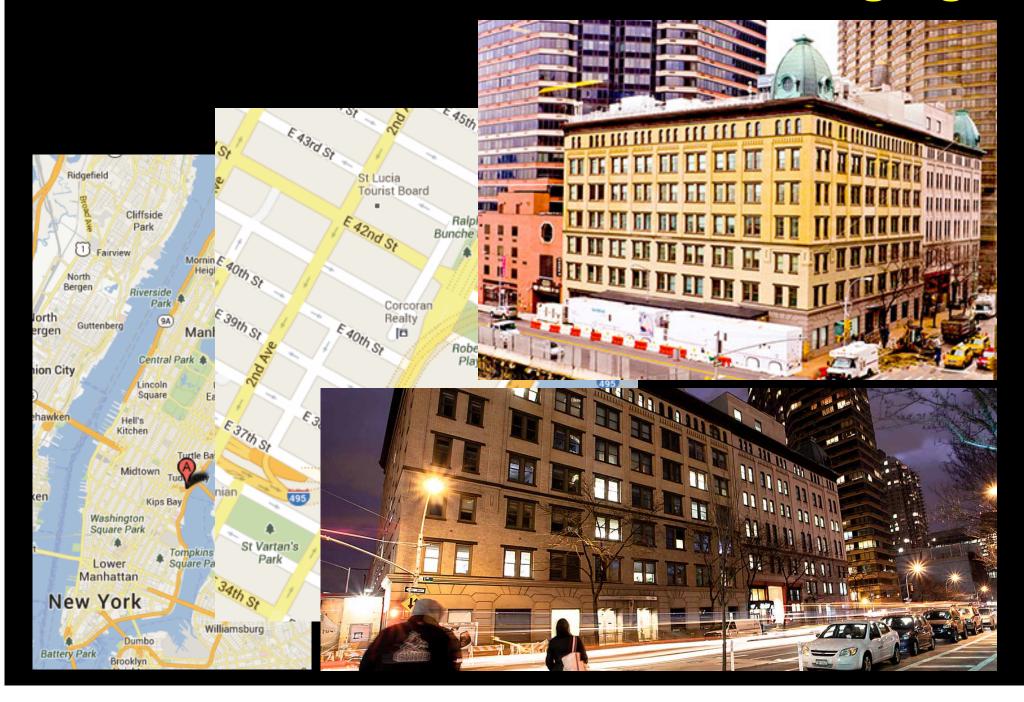


Riccardo Lattanzi, Ph.D.

Associate Professor of Radiology, Electrical and Computer Engineering New York University Langone Medical Center New York, NY, USA

Ultimate Intrinsic Signal-to-Noise Ratio in MRI: Theory and Applications

NYU Center for Biomedical Imaging



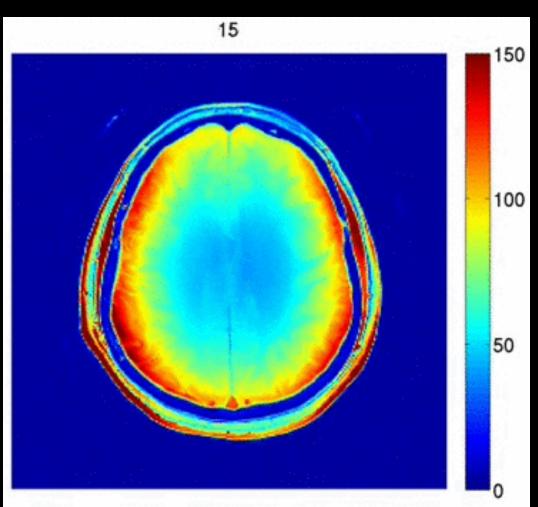
Receive Arrays Are Critical in MRI

- Advantages
 - SNR
 - Speed (parallel MRI)
 - Volumetric coverage
 - Image quality
 - Simplicity

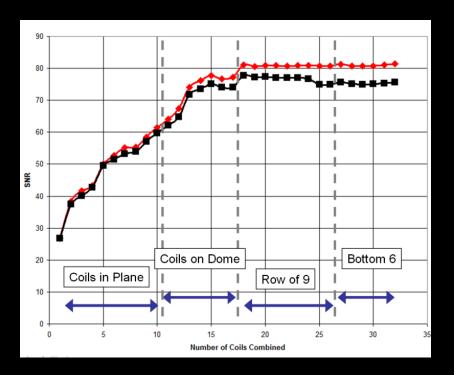
- Disadvantages
 - Cost
 - Complexity
 - Data load
 - **—** ...

How many elements do we need?

How to Increase Central SNR with an Array



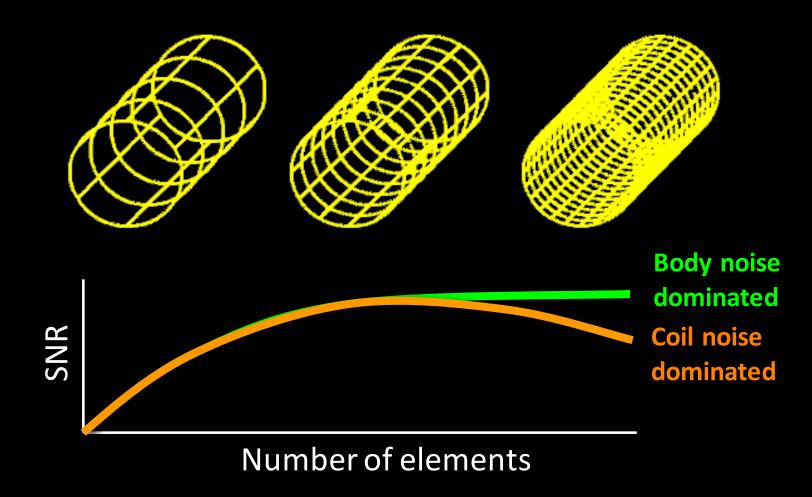
Central SNR vs. # of Active Elements



Courtesy of Graham Wiggins (NYU)

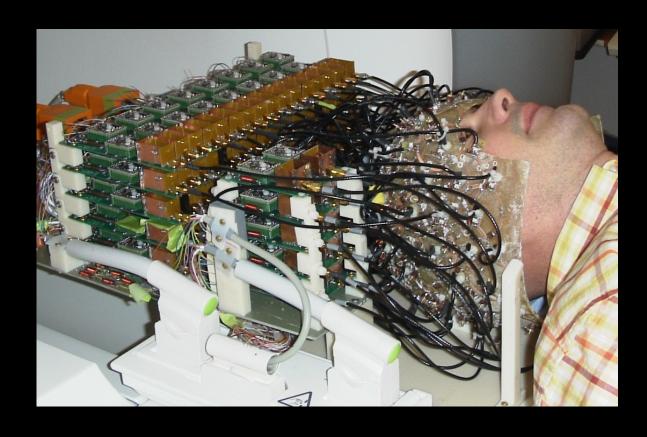
The best central SNR is achieved when the object is fully surrounded by coils

SNR at Depth

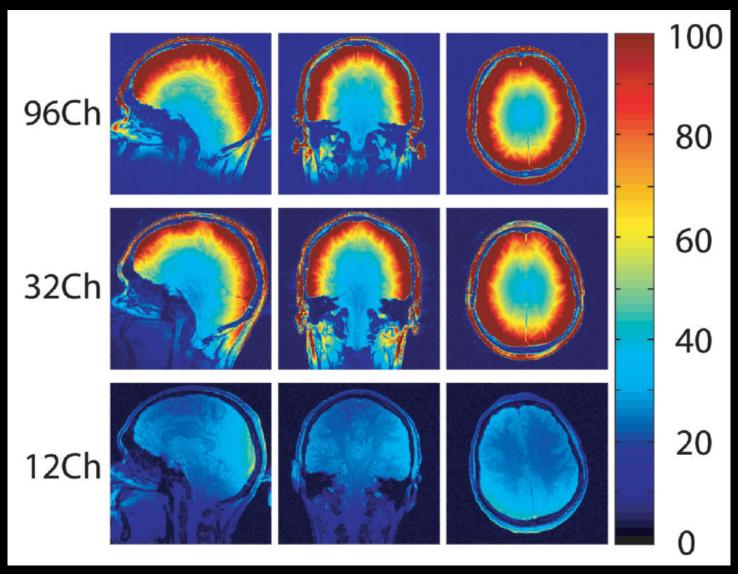


more coils are better up to a certain point!

96-Element Head Array



Head Array SNR Comparisons



Benefits for Parallel Imaging

- Max acceleration = # of detector coils
 - Need more coils to go faster!
- Intrinsic SNR loss
 - Need more coils for multi-dimensional acceleration and volumetric coverage!
- Noise amplifications (G factor)
 - Need more coils for improved encoding capabilities!

G-Factor

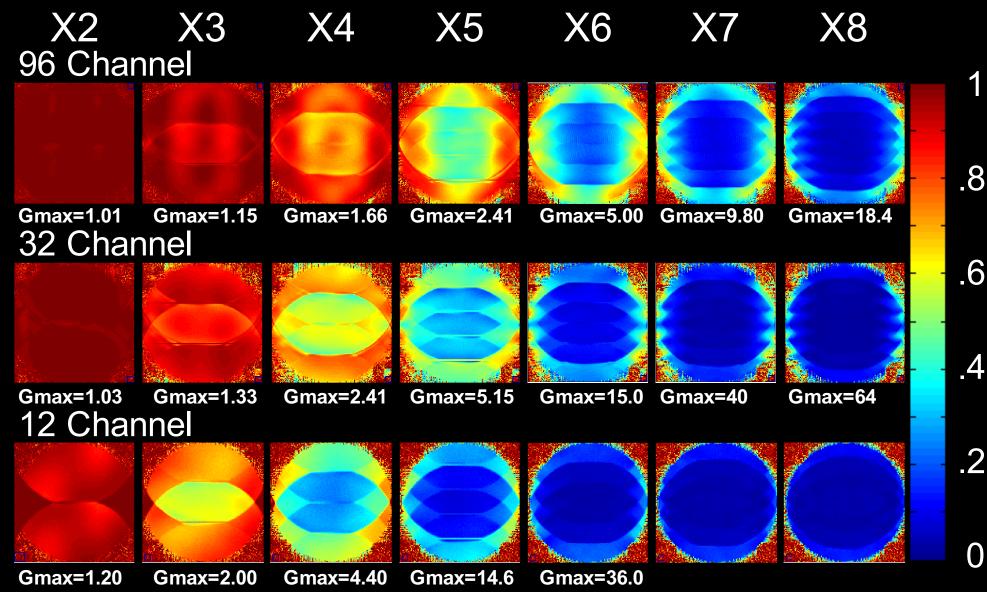
SNR for an accelerated image is defined as

$$SNR_{acc} = \frac{SNR_{full}}{\sqrt{R} g} \qquad g = \frac{SNR_{full}}{\sqrt{R} SNR_{acc}}$$

Where R = the reduction factor, and g (the "G-factor) is an additional SNR reduction connected with the number and geometrical configuration of the array elements.

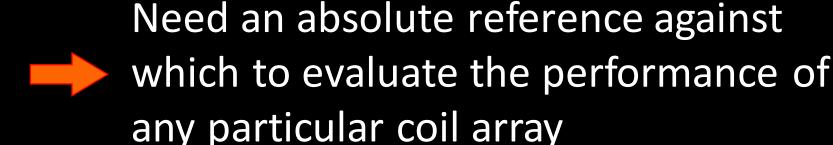
We plot the "SNR Loss", or 1/g

1/G-Factor vs. Acceleration Rate



Is SNR Alone Sufficient to Asses a Coil?

- Does it tell us how good is the design?
- Does it tell us how much room for improvement there is?
- Does it tell us if there is a better geometry?

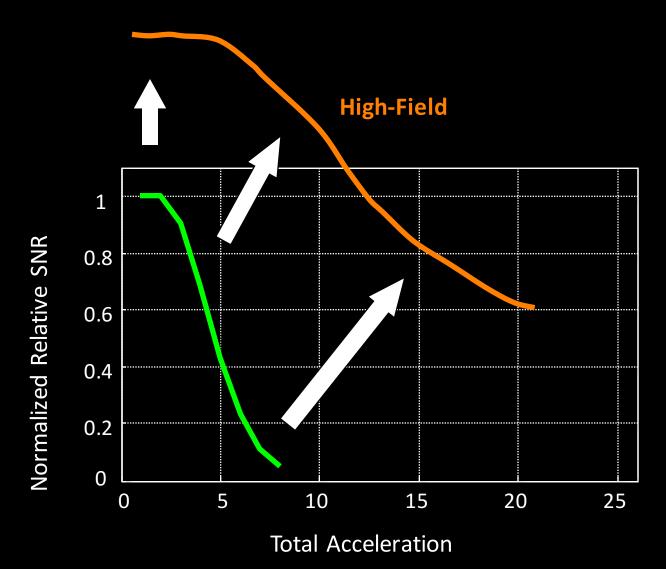


Ultimate Intrinsic SNR

- Best possible SNR compatible with electrodynamics
- Computed using a complete set of carefully chosen distinct electromagnetic fields representing an infinite array
- Depends on object geometry and electrical properties
- Independent from coil design

Is The Sky The Limit?

Lessons from Ultimate Intrinsic SNR



- Increased baseline SNR
- Slower decline
 with acceleration

Optimal SNR in Parallel MRI

Intrinsic SNR

Net coil sensitivity

Net electric field

Cartesian SENSE reconstruction

Optimal weights

$$SNR(\mathbf{r}_n) \sim \frac{\omega_0 M_0 S^{net}(\mathbf{r}_n)}{\sqrt{4k_B T_S \int_V \sigma(\mathbf{r}) |\mathbf{\mathcal{E}}^{net}(\mathbf{r})|^2 dV}}$$

$$S^{net}(\mathbf{r}_n) = \sum_{l} \beta_l \left(\mathcal{B}_{l,x}(\mathbf{r}_n) - i \mathcal{B}_{l,y}(\mathbf{r}_n) \right)$$

$$\mathcal{E}^{net}(\mathbf{r}_n) = \sum_{l} \beta_l \mathcal{E}_l(\mathbf{r}_n)$$

minimize
$$\sum_{l,l'} \int_{V} \sigma(\mathbf{r}) \beta_{l} \mathcal{E}_{l}(\mathbf{r}) \cdot \beta_{l'}^{*} \mathcal{E}_{l'}^{*}(\mathbf{r}) dV = \sum_{l,l'} \beta_{l} \beta_{l'}^{*} \Psi_{l,l'}$$
subject to
$$S^{net}(\mathbf{r}_{n'}) = \delta_{n,n'} \qquad n, n' = 1,...N$$

$$\tilde{\boldsymbol{\beta}} = (\mathbf{S}^{\mathrm{H}}\boldsymbol{\Psi}^{-1}\mathbf{S})^{-1}\mathbf{S}^{\mathrm{H}}\boldsymbol{\Psi}^{-1}$$

Calculation of Ultimate Intrinsic SNR

Complete set of surface current patterns

Net Electric field

Net Magnetic field

Noise covariance matrix and coil sensitivities

Ultimate Intrinsic SNR

$$\mathbf{J}^{net}(\mathbf{r}) = \sum_{l} w_{l} \mathbf{j}_{l}(\mathbf{r})$$
 current mode

Dyadic Green's function

$$\mathcal{E}^{net}(\mathbf{r}) = i\omega\mu_o \int_S G(\mathbf{r}, \mathbf{r}') \mathbf{J}^{net}(\mathbf{r}) d\mathbf{r}' = \sum_l w_l \mathbf{e}_l(\mathbf{r})$$

$$\mathcal{B}^{net}(\mathbf{r}) = -\frac{1}{i\omega} \nabla \times \mathcal{E}^{net}(\mathbf{r}) = \sum_{l} w_{l} b_{l}(\mathbf{r})$$

$$\Psi_{l,l'} = \int_{V} \sigma(\mathbf{r}) \mathbf{e}_{l}(\mathbf{r}) \cdot \mathbf{e}_{l'}^{*}(\mathbf{r}) dv$$
$$S_{l}(\mathbf{r}_{n}) = (b_{l,x} - ib_{l,x})_{\mathbf{r}_{n}}$$

$$SNR_{ult}(\mathbf{r}_n) \propto \frac{\omega_o B_o}{\sqrt{4k_B T_S (\mathbf{S} \boldsymbol{\Psi}^{-1} \mathbf{S}^H)_{n,n}^{-1}}}$$

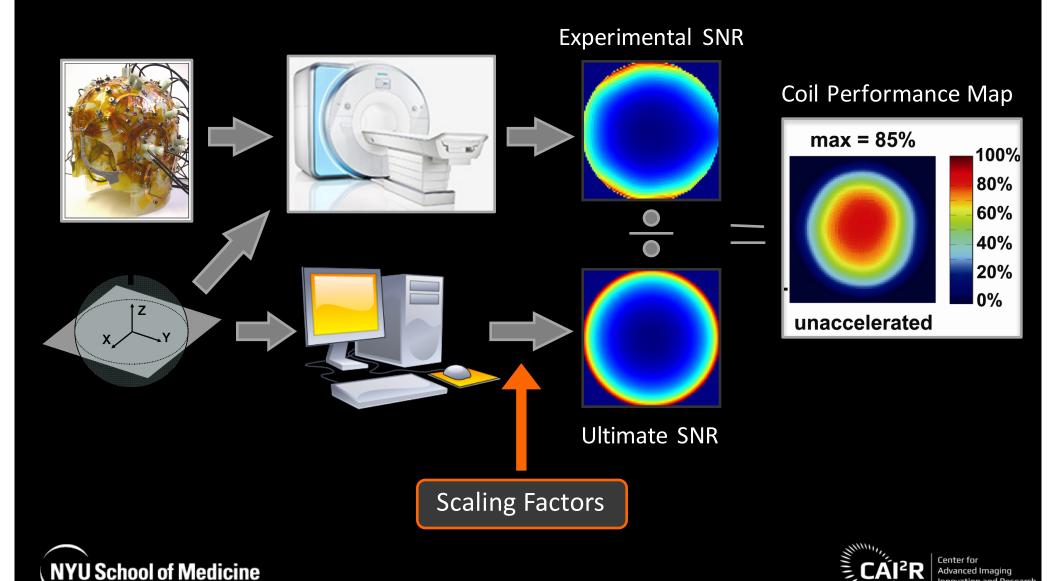
How Good Are Our Designs?

How Much Room For Improvement Is There?

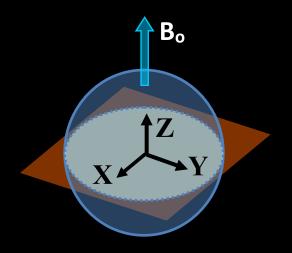
Coil Performance Maps

- Ultimate intrinsic SNR is independent from any particular coil design, thus it can used as a reference against which the performance of any coil can be evaluated
- Coil performance maps show how closely a coil approaches the best possible SNR
 - Intuitive visual feedback of the quality of a coil
 - Absolute measure of coil performance

Coil Performance Maps at a Glance



Coil Performance Maps: Methods

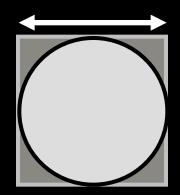


Braino uniform phantom

• $\sigma = 0.97 \Omega^{-1} \,\mathrm{m}^{-1}$

• $\varepsilon_{\rm r} = 81.3$

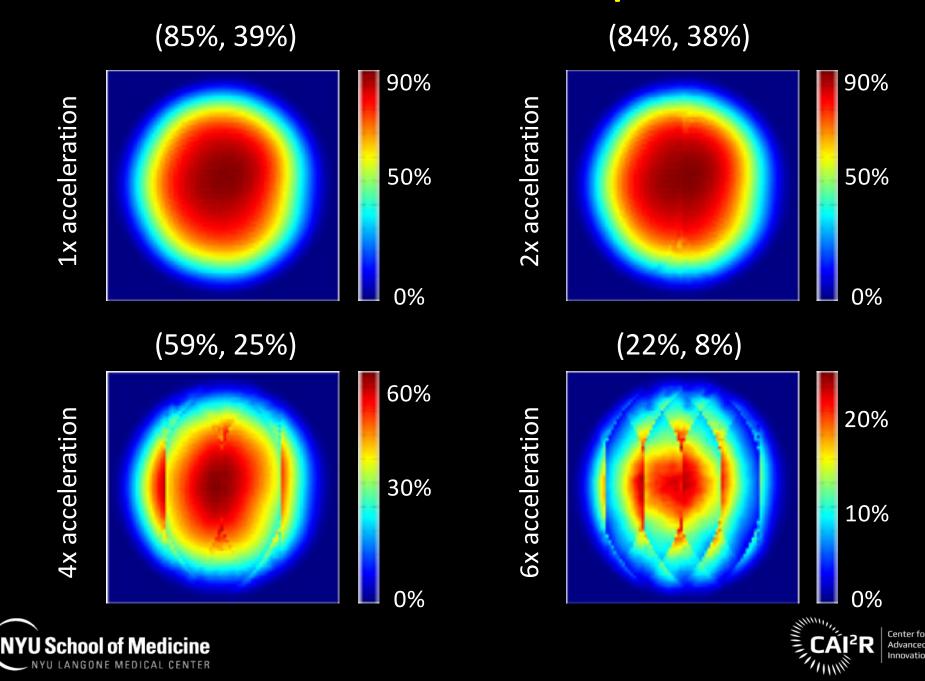
• $\mu = \mu_0$



- Siemens TIM Trio 3T
- 32-element head coil
- Long TR
- Short TE

F = noise factor (measured using "hot/cold resistor" method)

Coil Performance Maps: Results



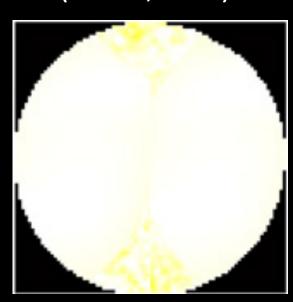
g-Factor Performance Maps

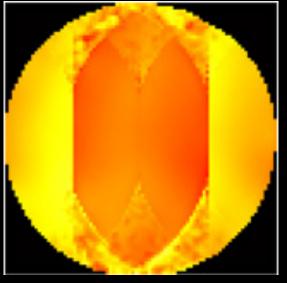
g g array

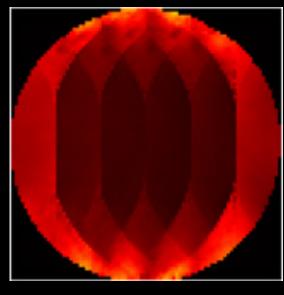
(100%, 98%)

(89%, 62%)

(66%, 19%)







100%

80%

60%

40%

20%

0%

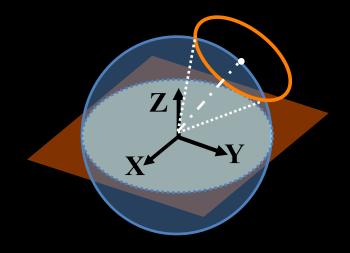
2x acceleration

4x acceleration

6x acceleration

Can We Approach The Ultimate Intrinsic SNR?

Methods





 Surface current distribution defined on a sphere with radius = 10.5 cm

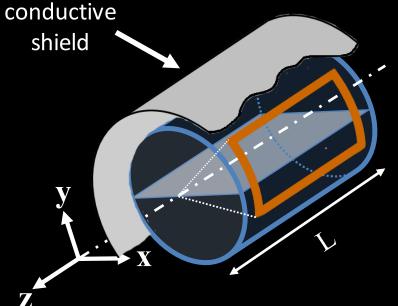
$$\mathbf{J}^{net}(\theta, \varphi) = \sum_{l=0}^{l_{\text{max}}} \sum_{m=-l}^{+l} \left(W_{l,m}^{(M)} \mathbf{X}_{l,m}(\theta, \varphi) + W_{l,m}^{(E)} \hat{\mathbf{r}} \times \mathbf{X}_{l,m}(\theta, \varphi) \right)$$
divergence-free curl-free

R. Lattanzi and D.K. Sodickson, MRM 2012, vol. 68(1) p. 286

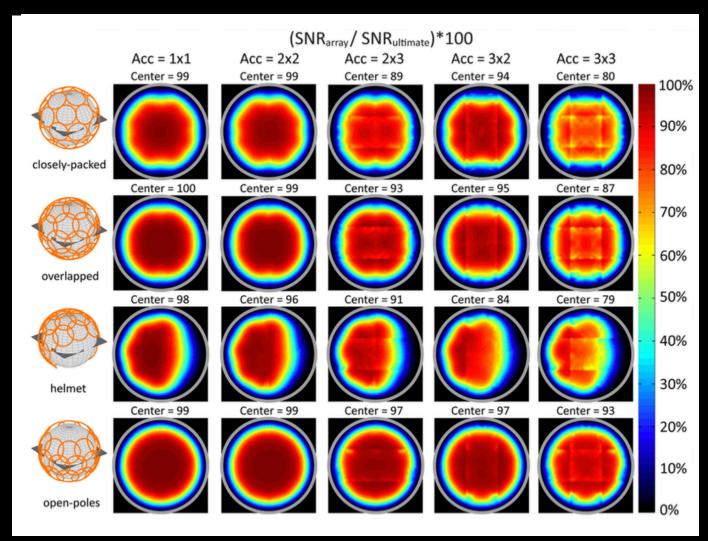
 Surface current distribution defined on a cylinder with radius = 16 cm

$$\mathbf{J}^{net}(\varphi,z) = \sum_{n=-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left(W_n^{(M)}(m) \nabla \times e^{in\varphi} e^{imz} \hat{r} + W_n^{(E)}(m) \nabla e^{in\varphi} e^{imz} \right) dm$$
divergence-free curl-free

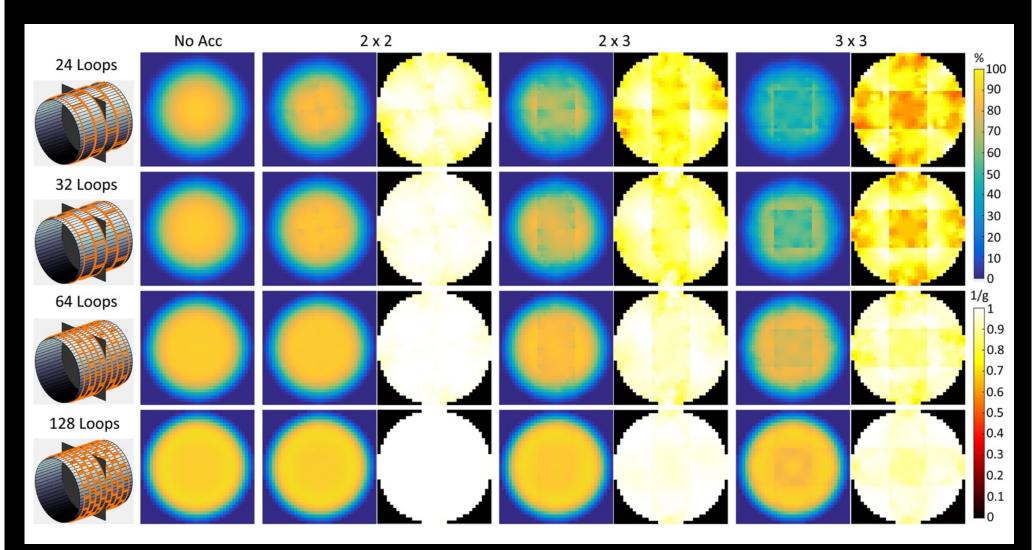
W. Schnell et al., IEEE Trans Ant Prop 2000, vol. 48 p. 418



Approaching Ultimate Intrinsic SNR with Finite Arrays at 3 T



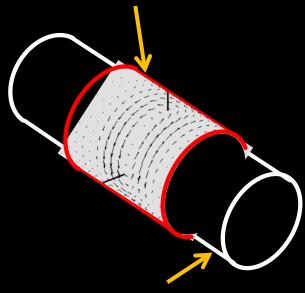
Approaching Ultimate Intrinsic SNR with Finite Arrays at 3 T



How Do We Get Closer To The Ultimate Intrinsic SNR?

Ideal Current Patterns

Current sheet diameter = 32cm



Diameter = 30cm

 $e_r = 44.7$

s = 0.36

w = 63.9 MHz

 Given the complex weights for each mode in the optimum SNR combination, we can combine the modes to generate the ideal current pattern for maximum SNR at a given point in the sample

R. Lattanzi and D.K. Sodickson, MRM 2012, vol. 68(1) p. 286

Calculation of Ultimate Intrinsic SNR

Complete set of surface current patterns

Net Electric field

Net Magnetic field

Noise covariance matrix and coil sensitivities

Ultimate Intrinsic SNR

$$\mathbf{J}^{net}(\mathbf{r}) = \sum_{l} w_{l} \mathbf{j}_{l}(\mathbf{r})$$
 current mode

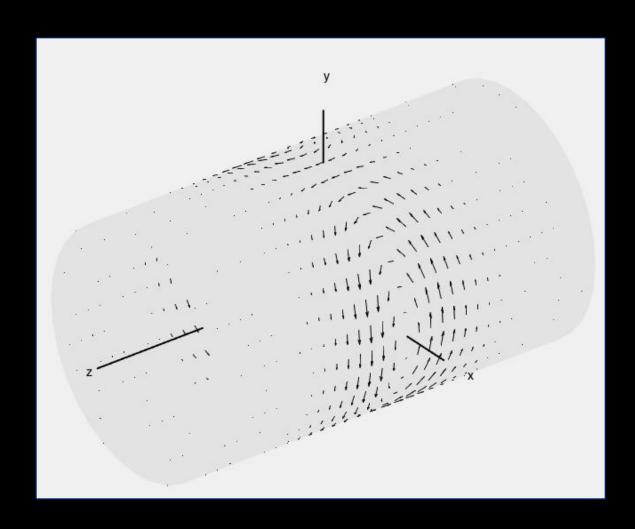
Dyadic Green's function

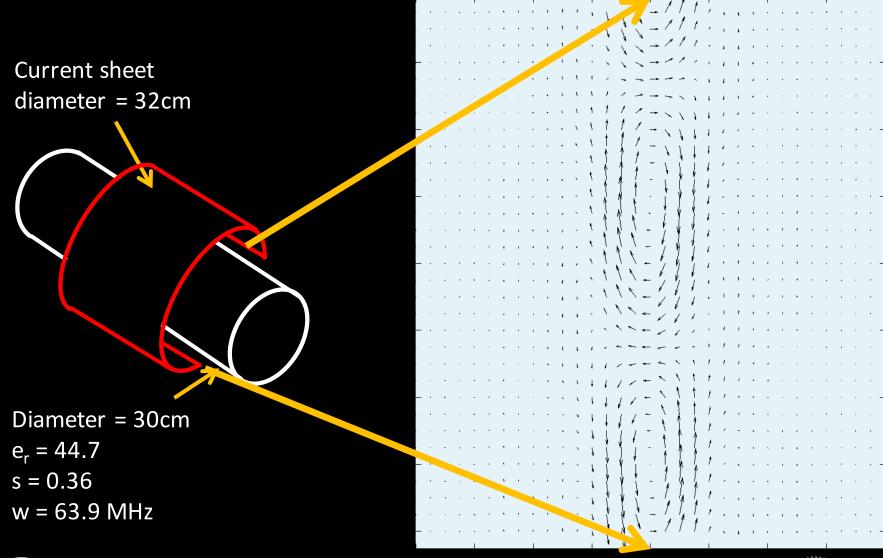
$$\mathcal{E}^{net}(\mathbf{r}) = i\omega\mu_o \int_S G(\mathbf{r}, \mathbf{r}') \mathbf{J}^{net}(\mathbf{r}) d\mathbf{r}' = \sum_l w_l \mathbf{e}_l(\mathbf{r})$$

$$\mathcal{B}^{net}(\mathbf{r}) = -\frac{1}{i\omega} \nabla \times \mathcal{E}^{net}(\mathbf{r}) = \sum_{l} w_{l} b_{l}(\mathbf{r})$$

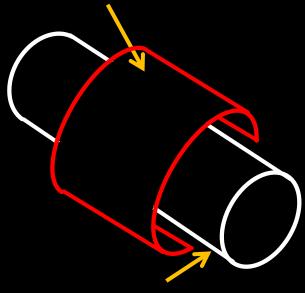
$$\Psi_{l,l'} = \int_{V} \sigma(\mathbf{r}) \mathbf{e}_{l}(\mathbf{r}) \cdot \mathbf{e}_{l'}^{*}(\mathbf{r}) dv$$
$$S_{l}(\mathbf{r}_{n}) = (b_{l,x} - ib_{l,x})_{\mathbf{r}_{n}}$$

$$SNR_{ult}(\mathbf{r}_n) \propto \frac{\omega_o B_o}{\sqrt{4k_B T_S (\mathbf{S} \boldsymbol{\Psi}^{-1} \mathbf{S}^H)_{n,n}^{-1}}}$$





Current sheet diameter = 32cm

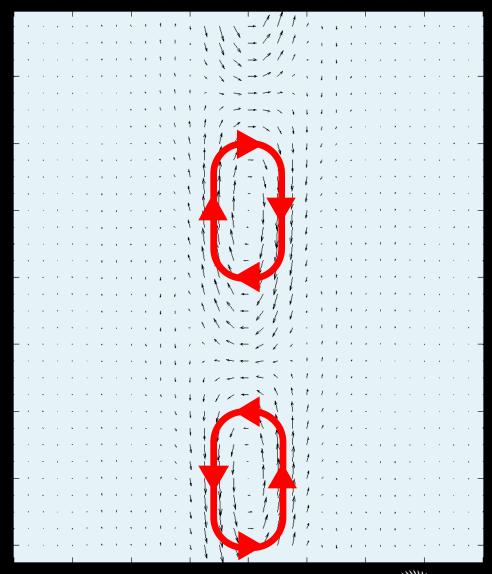


Diameter = 30cm

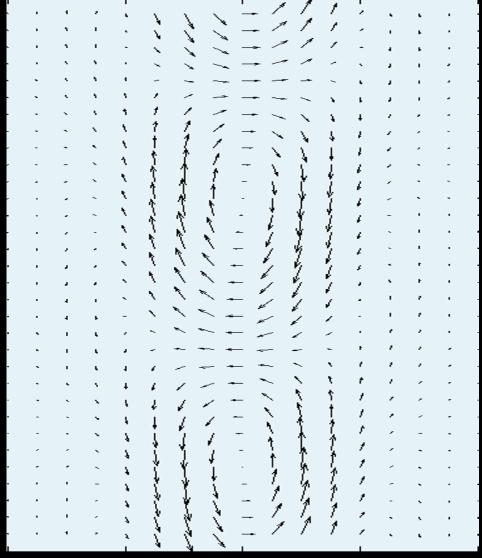
 $e_r = 44.7$

s = 0.36

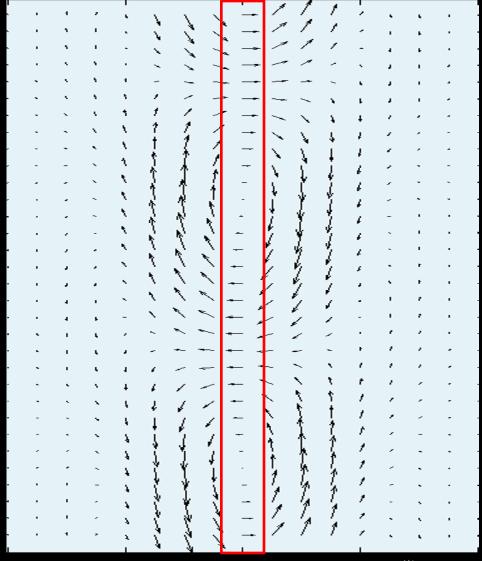
w = 63.9 MHz



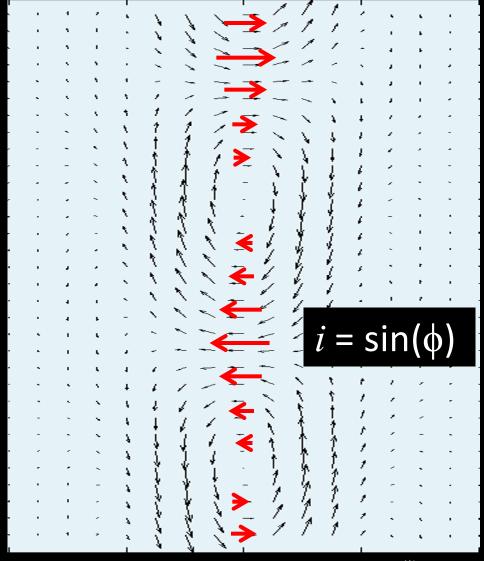
Expand the current plot along z



Examine the current vectors at z = 0

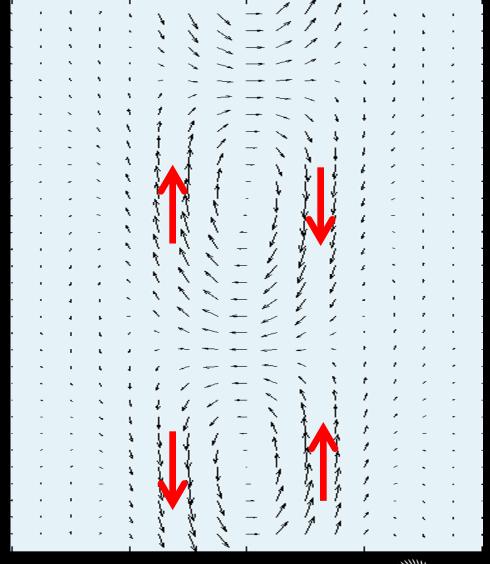


Current follows a $sin(\phi)$ function, just like the current in the rungs of a birdcage



Ideal Current Patterns for Central SNR at 0.2 T

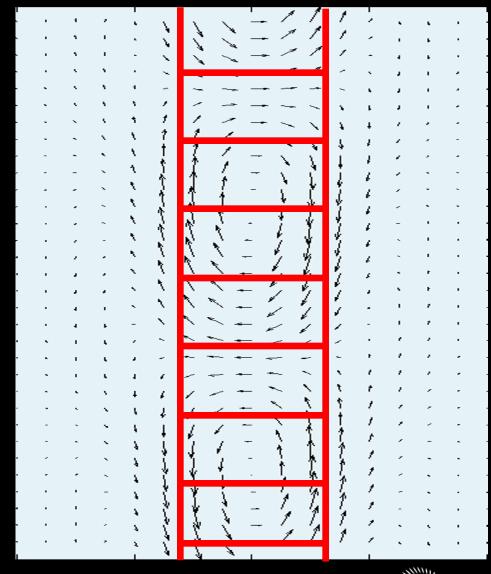
We also see strong azimuthal currents corresponding to end-ring currents in a birdcage



Ideal Current Patterns for Central SNR at 0.2 T

For central SNR in a cylinder, a birdcage is close to optimal

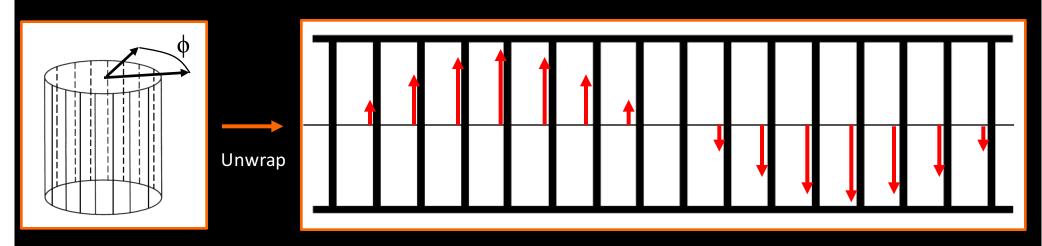
Ideal current patterns even point to optimum length to diameter ratio of ~1/2



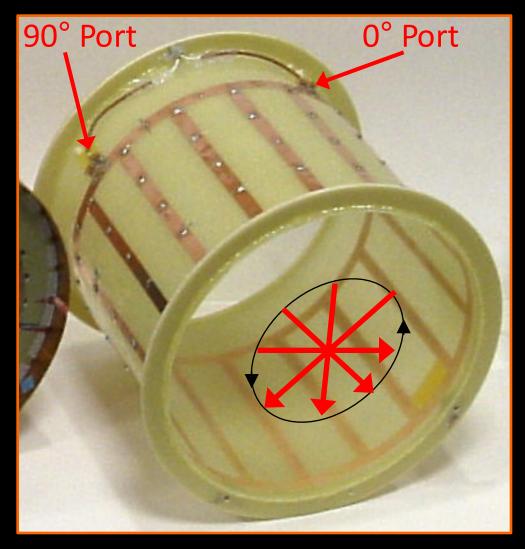
Birdcage Coil

Birdcage Modes

Uniform Mode: $I = I_0 \sin(\phi)$

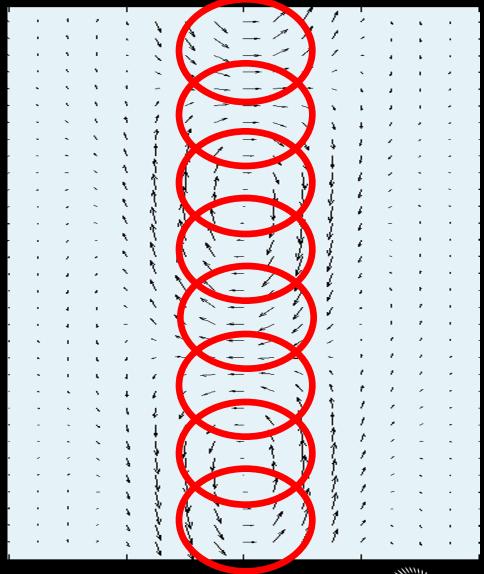


Birdcage Coil: Quadrature Drive

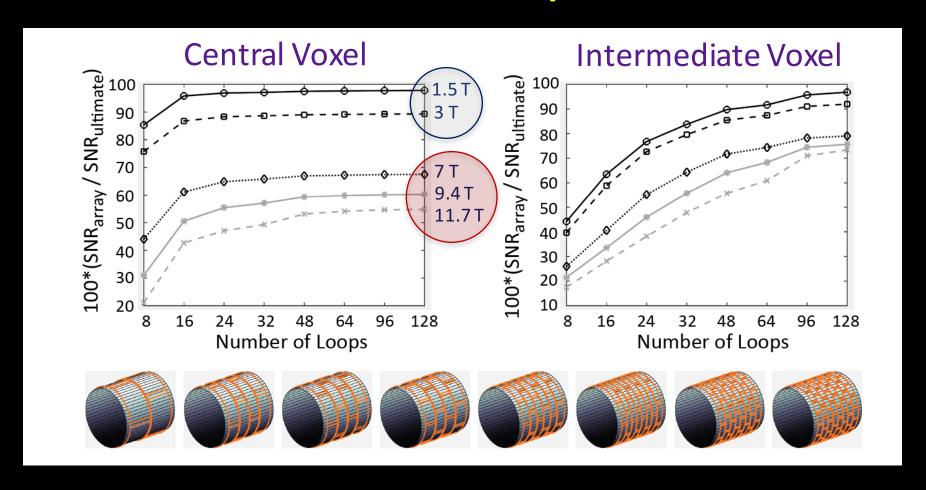


Ideal Current Patterns for Central SNR at 0.2 T

An array of loops can also provide close to optimal SNR for the center of a cylinder



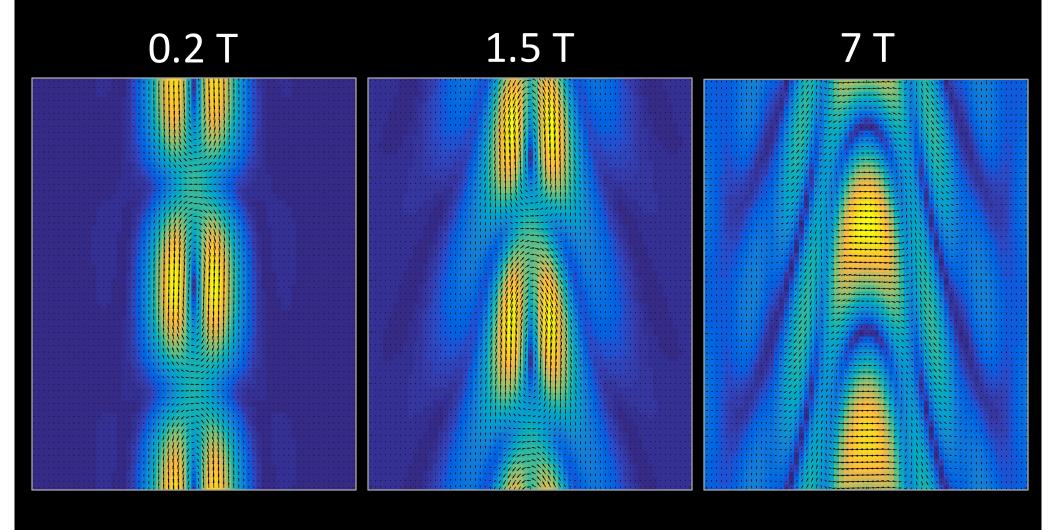
Approaching Ultimate Intrinsic SNR with Loops



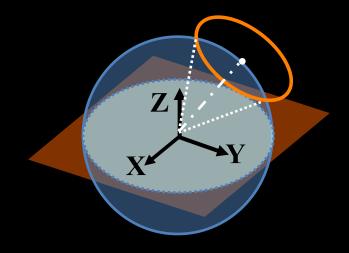
Loop arrays do not approach ultimate SNR at ultra-high field MRI!

What Happens to Ideal Current Patterns at High Field?

Ideal Current Patterns vs. B₀



Methods



• Surface current distribution defined on a sphere with radius = 10.5 cm

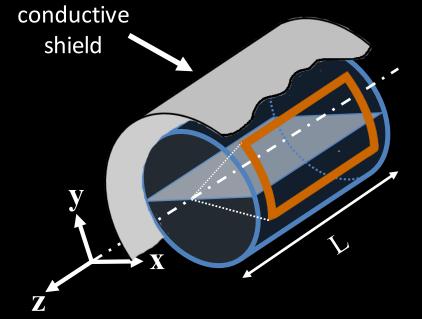
$$\mathbf{J}^{net}(\theta, \varphi) = \sum_{l=0}^{l_{\text{max}}} \sum_{m=-l}^{+l} \left(W_{l,m}^{(M)} \mathbf{X}_{l,m}(\theta, \varphi) + W_{l,m}^{(E)} \hat{\mathbf{r}} \times \mathbf{X}_{l,m}(\theta, \varphi) \right)$$
divergence-free curl-free

R. Lattanzi and D.K. Sodickson, MRM 2012, vol. 68(1) p. 286

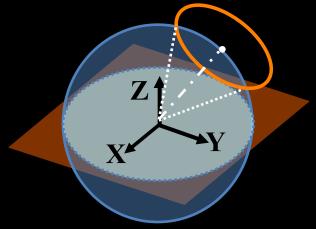
- Length = 40 cm, radius = 15 cm
- Surface current distribution defined on a cylinder with radius = 16 cm

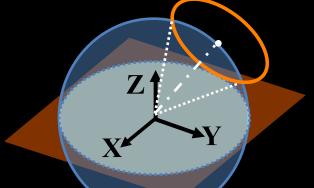
$$\mathbf{J}^{net}(\varphi,z) = \sum_{n=-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left(W_n^{(M)}(m) \nabla \times e^{in\varphi} e^{imz} \hat{r} + W_n^{(E)}(m) \nabla e^{in\varphi} e^{imz} \right) dm$$
divergence-free curl-free

W. Schnell et al., IEEE Trans Ant Prop 2000, vol. 48 p. 418



Methods





- Radius = 10 cm
- Surface current distribution defined on a sphere with radius = 10.5 cm

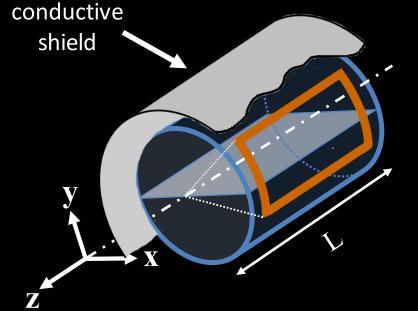
$$\mathbf{J}^{net}(\theta, \varphi) = \sum_{l=0}^{l_{\text{max}}} \sum_{m=-}^{+l} \left(W_{l,m}^{(M)} \mathbf{X}_{l,m}(\theta, \varphi) + W_{l,m}^{(E)} \hat{\mathbf{r}} \times \mathbf{X}_{l,m}(\theta, \varphi) \right)$$
divergence-free curl-free

R. Lattanzi and D.K. Sodickson, MRM 2012, vol. 68(1) p. 286

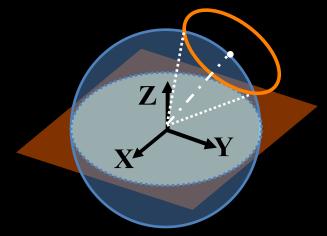
- Length = 40 cm, radius = 15 cm
- Surface current distribution defined on a cylinder with radius = 16 cm

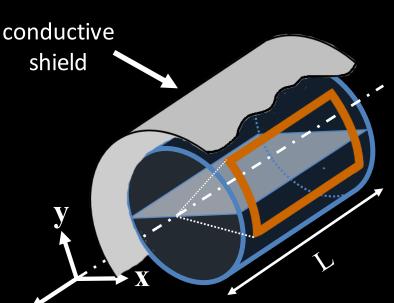
$$\mathbf{J}^{net}(\varphi,z) = \sum_{n=-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left(W_n^{(M)}(m) \nabla \times e^{in\varphi} e^{imz} \hat{r} + W_n^{(E)}(m) \nabla e^{in\varphi} e^{imz} \right) dm$$
divergence-free curl-free

W. Schnell et al., IEEE Trans Ant Prop 2000, vol. 48 p. 418



Methods





- Radius = 10 cm
- Surface current distribution defined on a sphere with radius = 10.5 cm

$$\mathbf{J}^{net}(\boldsymbol{\theta}, \boldsymbol{\varphi}) = \sum_{l=0}^{l_{\text{max}}} \sum_{m=-l}^{+l} \left(W_{l,m}^{(M)} \mathbf{X}_{l,m}(\boldsymbol{\theta}, \boldsymbol{\varphi}) + W_{l,m}^{(E)} \hat{\mathbf{r}} \times \mathbf{X}_{l,m}(\boldsymbol{\theta}, \boldsymbol{\varphi}) \right)$$
divergence-free curl-free

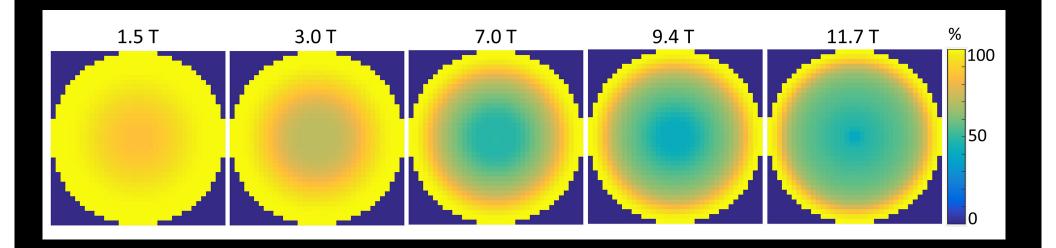
R. Lattanzi and D.K. Sodickson, MRM 2012, vol. 68(1) p. 286

- Length = 40 cm, radius = 15 cm
- Surface current distribution defined on a cylinder with radius = 16 cm

$$\mathbf{J}^{net}(\varphi,z) = \sum_{n=-\infty}^{+\infty} \int_{-\infty}^{+\infty} \left(W_n^{(M)}(m) \nabla \times e^{in\varphi} e^{imz} \hat{r} + W_n^{(E)}(m) \nabla e^{in\varphi} e^{imz} \right) dm$$
divergence-free curl-free

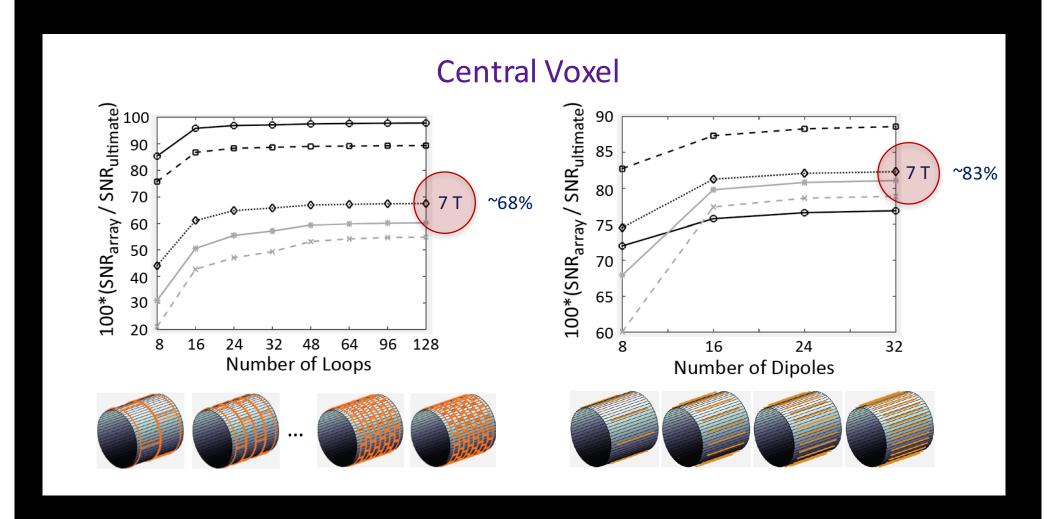
W. Schnell et al., IEEE Trans Ant Prop 2000, vol. 48 p. 418

Divergence-Free Contribution to UISNR

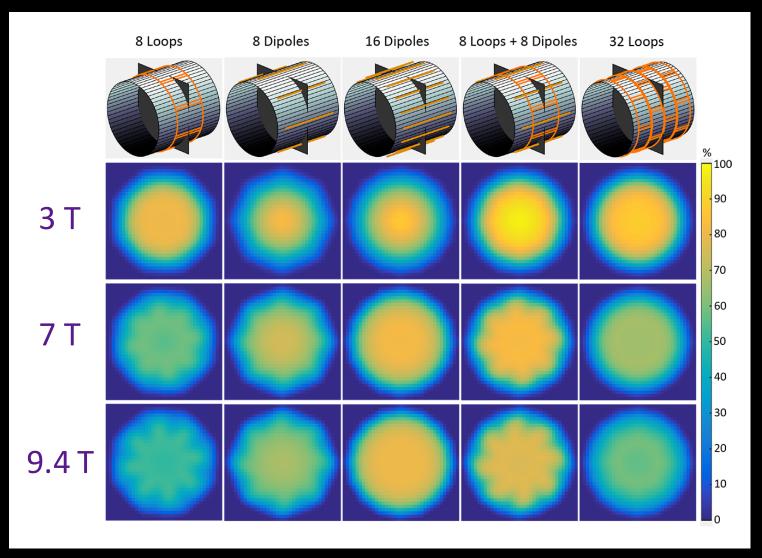


- At low field divergence-free currents (e.g., loops) are sufficient to capture most of the UISNR
- At high field curl-free currents contribution increases
 - Loops are not enough to approach the UISNR

Coil Performance: Loops vs. Dipoles



Coil Performance: Loops vs. Dipoles



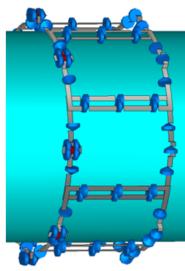
Combined Dipole-Loop Coil

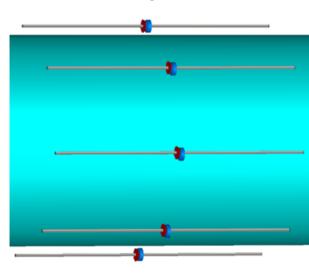
8 Loops

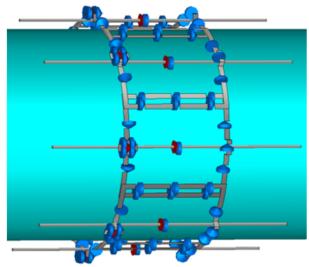
8 Dipoles

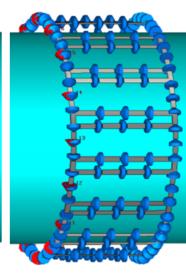
8 Loops + 8 Dipoles

16 Loops

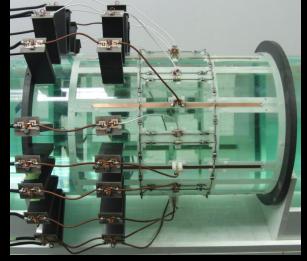




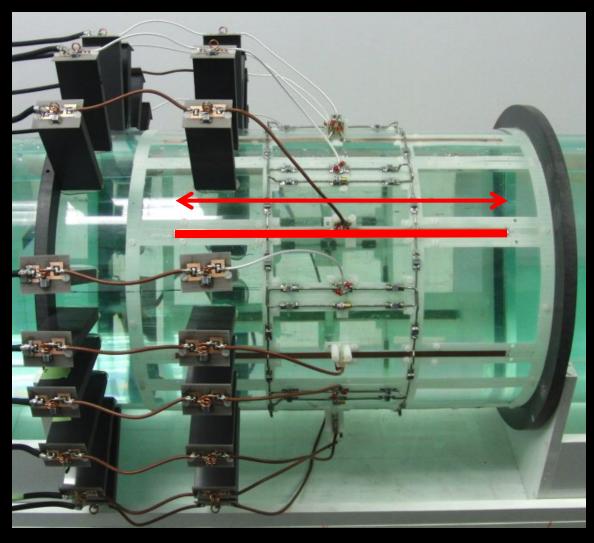




7 Tesla Coil Phantom diameter = 29.5cm Coil shell = 31.5cm e_r = 81.8, s = 0.604 (= Siemens phantom)

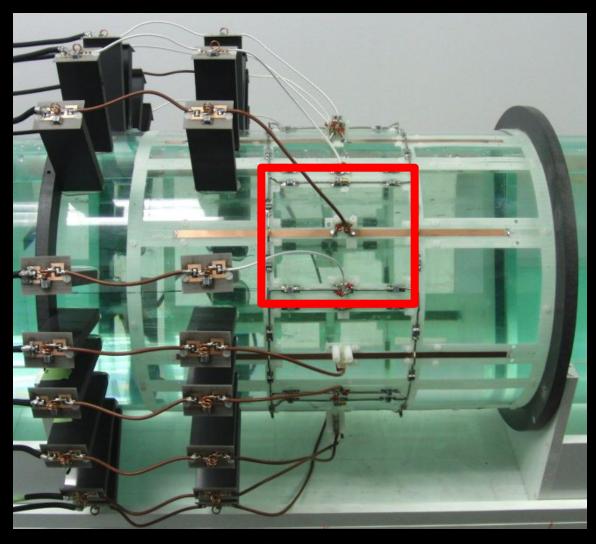


Combined Dipole-Loop Coil



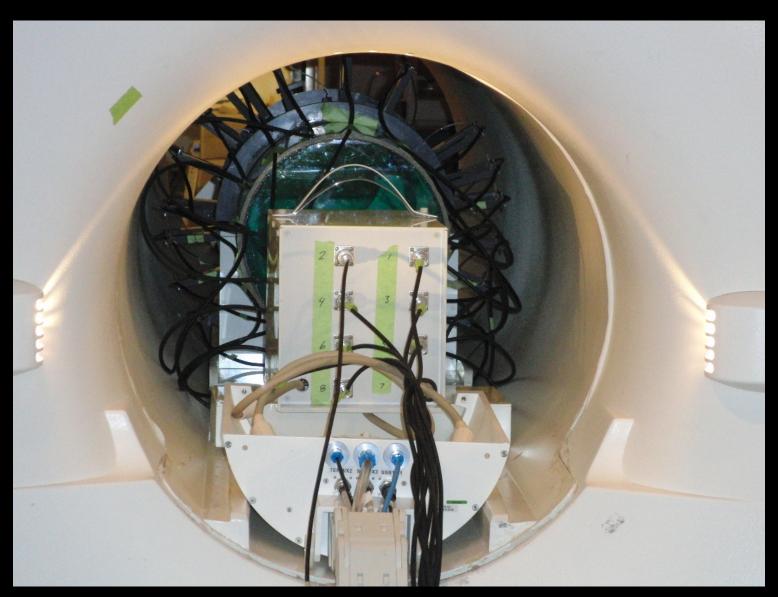
Dipole elements are self-resonant at 35.6 cm length

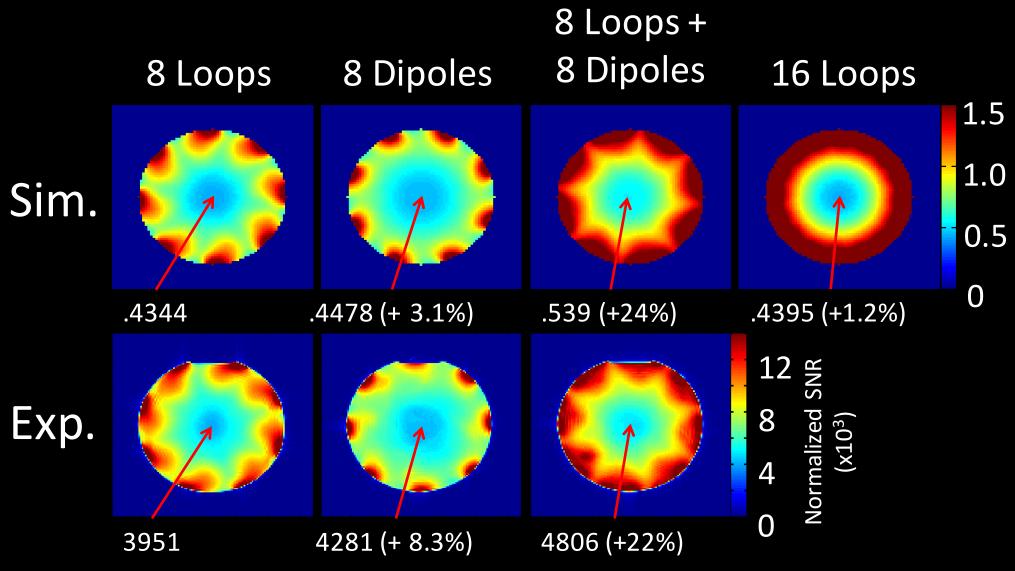
Combined Dipole-Loop Coil

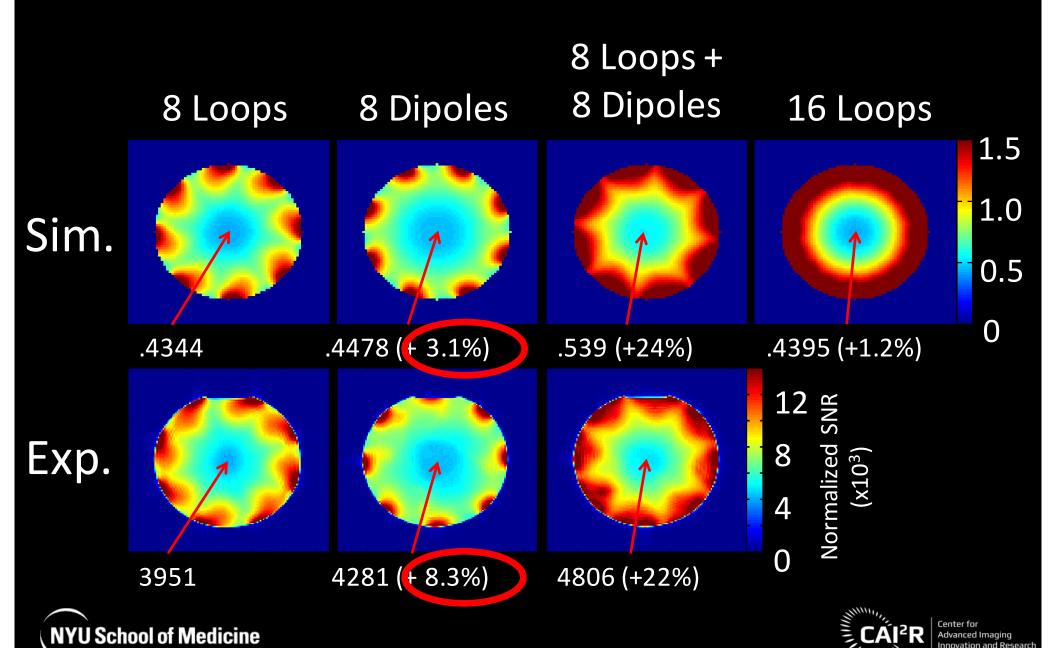


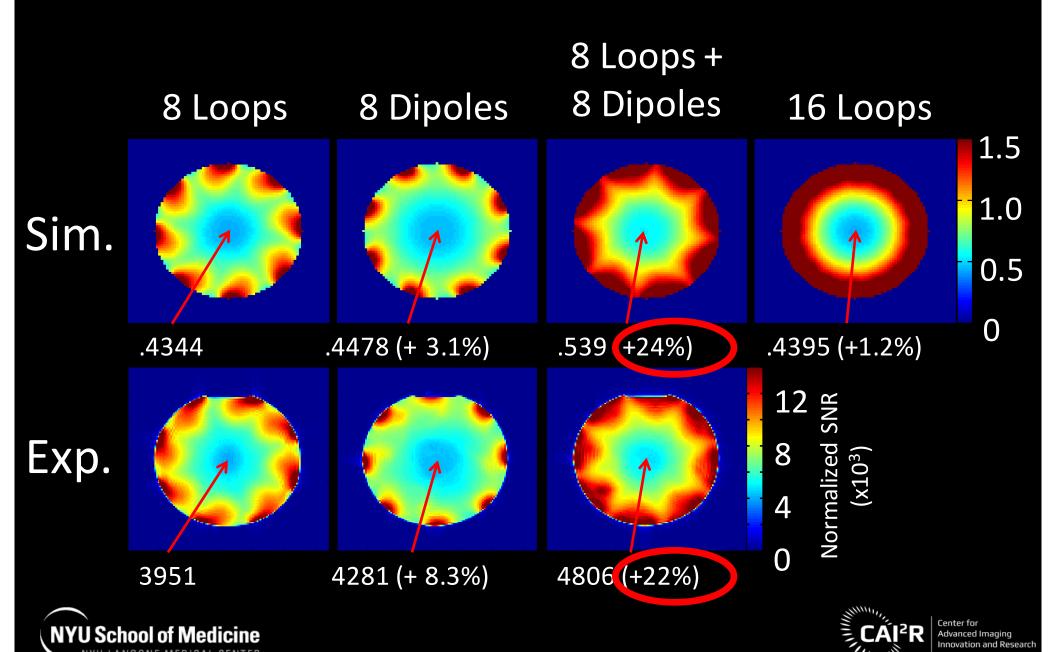
Overlapped Loop elements are 14.6 x 15 cm

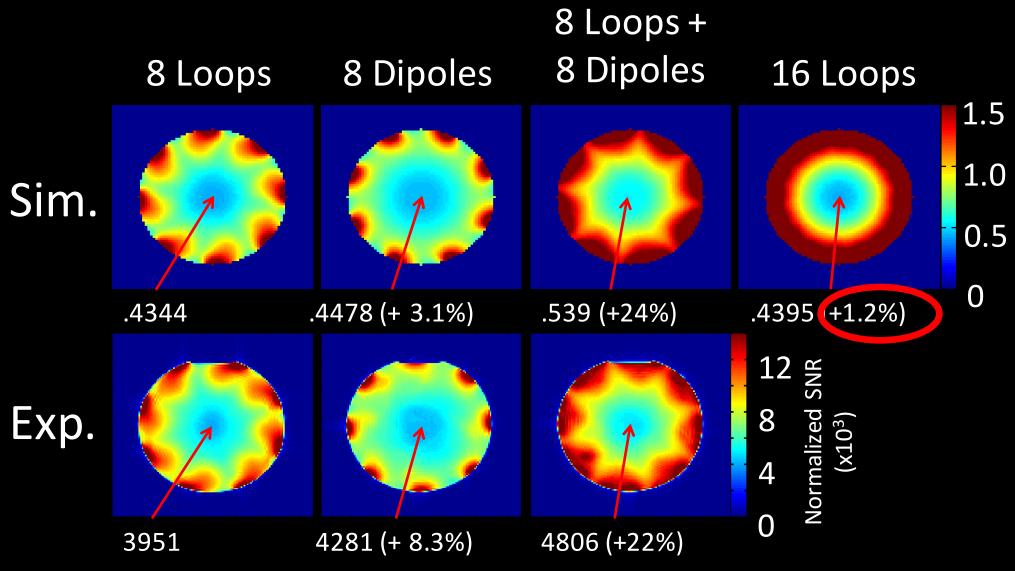
Scanner Measurements











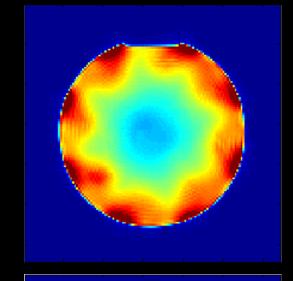
SNR Normalized By B₁+

Tra

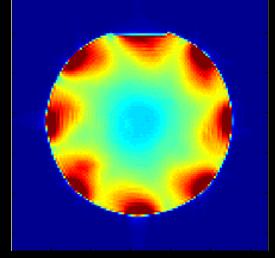
Sag

Cor

8 loops



8 dipoles

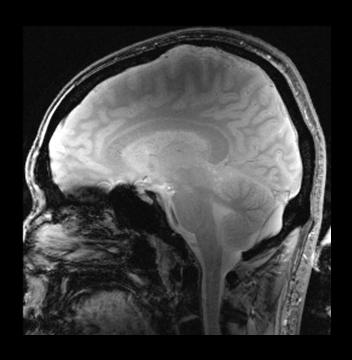


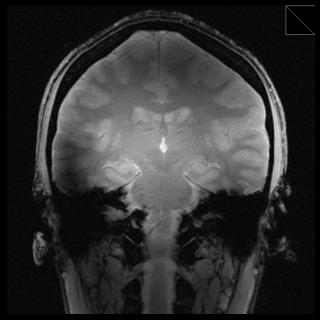
Extra Bonus SNR With Dipoles!

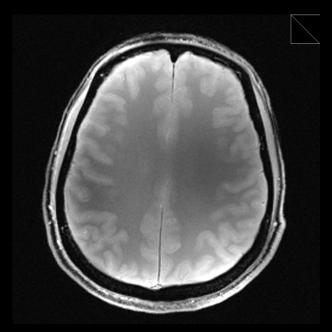
Tra Sag Cor 8 loops 8 dipoles

NYU School of Medicine

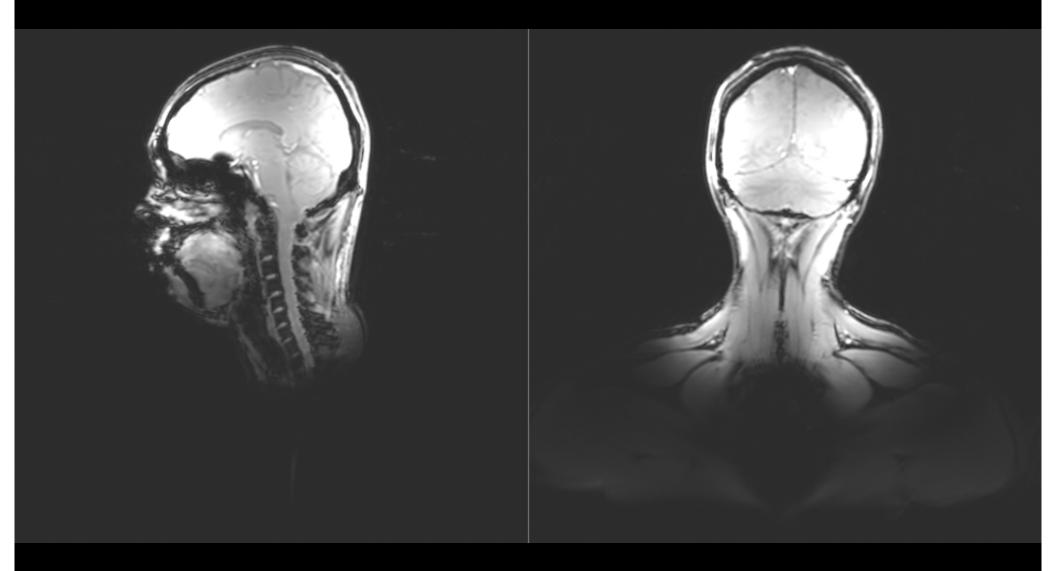
GRE Images: 7 T Dipole Array

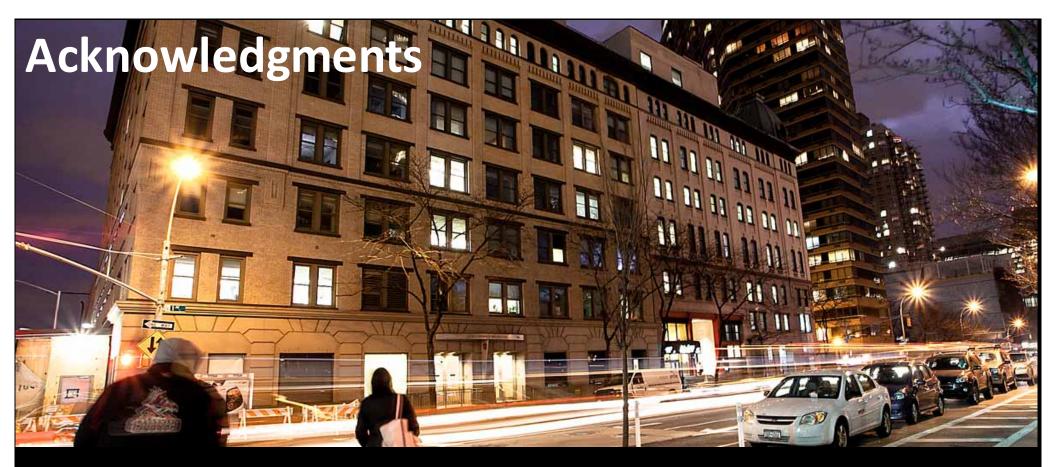






GRE Images: 7 T Dipole Array





■ NYU Center for Advanced Imaging Innovation and Research (CAI²R)

Daniel Sodickson

Graham Wiggins

Ryan Brown

Cem Murat Deniz

at Manushka Vaidya

Karthik Lakshmanan

Gillian <u>Haem</u>er

Gang Chen

Hong Hsi Lee

Thank You for Your Kind Attention!