
Recent advances in the Machine Learning Methods

Applications in the High-Energy Physics

Denis Derkach

!

Yandex School of Data Analysis and Higher School of Economics, Moscow, Russia

INFN Bologna, 6 September 2016

2

leading search engine in
Russia (and not only)

Who we are?

〉 Group working on data analyses in Natural sciences

〉 2 physicists and 7 mathematicians (out of them 5 students)

〉 Part of a nonprofit Yandex School of Data Analysis

〉 Members of the LHCb collaboration

!

Aim to apply machine learning in the real scientific world problems

3

Which tasks?
〉 Any, that can be formalised as a Machine Learning task

〉 good dataset

〉 clear rules to select winners

〉 formalisable additional conditions

〉 Examples include:

〉 Storage/Speed optimisation for triggers

〉 Jet and flavour tagging algorithms

〉 Brain cognitive studies

〉 Ultra-high Cosmic Ray searches

4

Outline
〉 Recent examples of ML algorithm developed for an LHC experiment

〉 High Level Trigger

〉 Data Popularity

〉 Anomaly Detection

〉 Generalised ML algorithms useful for analysis

〉 BDT reweighting

〉 flatness boosting

ML in Trigger

LHCb topological trigger

〉 Generic trigger for decays of beauty and charm hadrons

〉 Designed to be inclusive trigger for any B decay with at least 2
charged daughters including decays with missing particles

〉 Look for 2, 3, 4 track combinations in a wide mass range

〉 Use fast-track fit to improve signal efficiency and minbias rejection

6

Event
〉 Sample: one proton-proton collision

〉 Event consists of:

• tracks (track description)

• secondary vertices (SV description)

• unstructured data

〉 Questions:

• How to describe event in ML terms?

• How to train model on such events?
7

Data
〉 Monte Carlo samples (used as signal-like) are simulated 13-TeV

with B decays of various topologies

〉 Generic Pythia 13-TeV proton-proton collisions are used as
background-like sample (also includes some signal)

〉 Training data are set of SVs for all events

〉 Most events have many secondary vertices (not all events have
them)

〉 Goal is to improve efficiency for each type of signal events along
fixed efficiency for background

8

SV SV SV SV SV

SV SV SV SV SV

SV SV SV SV SV

SV SV SV SV SV

Event is represented
as set of SV’s

True match to signal

other preselections

ML

If at least one SV in the event passed all
stages, the whole event passes trigger

ROC curve, computed for events

ROC curve interpretation

9

〉 Output rate = false positive rate (FPR) for
events (since background = generic event)

〉 Optimize true positive rate (TPR) for fixed
FPR for events

〉 Weight signal events in such way that
channels have the same amount of events.

〉 Optimize ROC curve in a small FPR region

Random forest for SVs selection

〉 Train random forest (RF) on SVs (typically ~30 per event)

• RF is stable to noise in data

• RF doesn’t penalize in case of misclassification (can find noisy samples)

〉 Select top-1, top-2 SVs by RF predictions for each signal event

〉 Train classifier on selected SVs

10

Random forest for SVs selection

11

Online processing

There are two possibilities to speed up prediction
operation:

〉 Bonsai boosted decision tree format (BBDT)

〉 Post-pruning

12

BBDT
〉 Features hashing using bins before training

〉 Converting decision trees to  
n-dimensional table (lookup table)

〉 Table size is limited in RAM (1Gb), thus count
of bins for each features should be small (5
bins for each of 12 features)

〉 Discretization reduces the quality

〉 Prediction operation takes one reading from
the table

13

Post-pruning

〉 Train MatrixNet (MN) with several thousands trees

〉 Reduce this amount of trees to a hundred

〉 Quality stays close to the initial

〉 Greedily choose trees to minimise a special loss function

14

Topological trigger results (without RF trick)

15
https://github.com/yandexdataschool/LHCb-topo-trigger

1.
2.

3.
4.

5.
6.

https://github.com/yandexdataschool/LHCb-topo-trigger

References

16

〉 https://github.com/yandexdataschool/LHCb-topo-trigger

〉 https://cdsweb.cern.ch/record/1384380/files/LHCb-PUB-2011-016.pdf

〉 http://arxiv.org/abs/1510.00572

https://github.com/yandexdataschool/LHCb-topo-trigger
https://cdsweb.cern.ch/record/1384380/files/LHCb-PUB-2011-016.pdf
http://arxiv.org/abs/1510.00572

ML in Data Popularity

Problem

18

〉 PBs of real data and Monte Carlo are
produced every year.

〉 The data is kept on disk and tape storage
systems.

〉 Disks are faster but are way more
expensive.

〉 Files are stored with several replicas.

Formulation

19

〉 Need 3 algorithms:

〉 The dataset popularity prediction (long term)

〉 Number of accesses prediction (short term)

〉 Optimisation of the data distribution

〉 We have:

〉 access history of the LHCb data storage
system for the last two and a half years

Data Popularity Prediction

20

〉 Features:

〉 recency, reuse distance, time of the
first access, creation time, access
frequency, type, extension, size

〉 Train Random forest to predict
popular files

Data Distribution

21

For short-term forecast Brown
exponential smoothing used

Based on the predicted_number_of_accesses/
number_of_replicas metric and long-term
forecast, we take decision:

〉 Increase number of replicas.

〉 Decrease number of replicas.

〉 Remove from disks.

Realisation

22

〉 Server can be cloned from git.

〉 After some installation procedures, used easily within python script:

References

23

〉 https://github.com/yandexdataschool/DataPopularity/tree/release_3.0.x

〉 To be shown at CHEP

https://github.com/yandexdataschool/DataPopularity/tree/release_3.0.x

ML for Anomaly Detection

Typical Workflow

25

〉 Several people are typically
on shifts controlling the flow
of data from detector into
the storage

Updated Workflow

26

〉 The monitoring systems can
be updated with:

〉 helper, a
recommendation system
for a shifter

〉 solver, automated
decision maker

〉 both

Approaches

27

〉 Two ML approaches are possible in this case:

〉 Supervised approach

〉 uses historical data processed by expert

〉 ML algorithm learns the pattern that lead to the experts’ decision

〉 problem: hard to outperform the expert in quality

〉 Unsupervised approach

〉 use time series to catch changes in data behaviour

〉 problem: hard to validate

Supervised Learning

28

〉 Problem: CMS Data Certification

〉 Data: CMS 2010B run open data

〉 Aim: automated classification of
LumiSections as “good” or “bad”
using expert opinions on
previous runs

〉 Features: particle flow jets,
Calorimeter Jets, Photons,
Muons

Supervised Learning

29

The aim is to minimise the Manual work
with low Loss Rate (“good” classified as
“bad”) and Pollution Rate (“bad”
classified as “good”).

Manual work rate

∼90% saving on manual work is feasible
for Pollution rate at 5‰

Unsupervised Learning

30

〉 Problem: LHCb Detector
Monitoring

〉 Data: LHCb trigger streams

〉 Aim: Identification of problems
using previous state of the
system

〉 Features: trigger line decisions,
other trigger objects.

Unsupervised Learning

31

〉 First attempts look promising

〉 work is ongoing

References

32

〉 http://arxiv.org/abs/1510.00132

〉 https://github.com/yandexdataschool/cms-dqm

〉 F. Ratnikov @ DSHEP https://indico.hep.caltech.edu/indico/conferenceOtherViews.py?
confId=102&view=standard

http://arxiv.org/abs/1510.00132
https://github.com/yandexdataschool/cms-dqm
https://indico.hep.caltech.edu/indico/conferenceOtherViews.py?confId=102&view=standard

Reweighting problem in
HEP

Data/MC disagreement

34

〉 Monte Carlo (MC) simulated samples are used for training and tuning a model

〉 After, trained model is applied to real data (RD)

〉 Real data and Monte Carlo have different distributions

〉 Thus, trained model is biased (and the quality is overestimated on MC samples)

Distributions reweighting

35

〉 Reweighting in HEP is used to minimize
the difference between RD and MC
samples

〉 The goal of reweighting: assign weights to
MC s.t. MC and RD distributions coincide

〉 Known process is used, for which RD can
be obtained (MC samples are also
available)

〉 MC distribution is original, RD distribution
is target

Typical approach: histogram reweighting

36

〉 variable(s) is split into bins

〉 in each bin the MC weight is multiplied by:

 - total weights of events in a bin for target and original
distributions

!

1. simple and fast

2. number of variables is very limited by statistics (typically only one, two)

3. reweighting in one variable may bring disagreement in others

4. which variable is preferable for reweighting?

multiplier
bin

=
w

bin, target

w
bin, original

w
bin, target

, w
bin, original

Typical approach: example

37

Typical approach: example

38

!

〉 Problems arise when there are too few events
in a bin

〉 This can be detected on a holdout (see the
latest row)

〉 Issues:

1. few bins - rule is rough

2. many bins - rule is not reliable

!

!

Reweighting rule must be checked on a holdout!

Reweighting quality

39

〉 How to check the quality of
reweighting?

〉 One dimensional case: two samples
tests (Kolmogorov-Smirnov test,
Mann-Whitney test, …)

〉 Two or more dimensions?

〉 Comparing 1d projections is not a way

Comparing nDim distributions using ML

40

〉 Final goal: classifier doesn’t use data/MC disagreement
information = classifier cannot discriminate data and MC

〉 Comparison of distributions shall be done using ML:

〉 train a classifier to discriminate data and MC

〉 output of the classifier is one-dimensional variable

〉 looking at the ROC curve (alternative of two sample
test) on a holdout 
(should be 0.5 if the classifier cannot discriminate
data and MC)

Density ratio estimation approach

41

〉 We need to estimate density ratio:

〉 Classifier trained to discriminate MC and RD should reconstruct  
probabilities pMC(x) and pRD(x)	

〉 For reweighting we can use

!

1. Approach is able to reweight in many variables

2. It is successfully tried in HEP, see D. Martschei et al,  
"Advanced event reweighting using multivariate analysis", 2012

3. There is poor reconstruction when ratio is too small / high

4. It is slower than histogram approach

fRD(x)

fMC(x)

fRD(x)

fMC(x)
⇠ pRD(x)

pMC(x)

Way to Succeed

42

〉 Write ML algorithm to solve directly reweighting problem

〉 Remind that in histogram approach few bins is bad, many bins is bad too.

〉 What can we do?

〉 Better idea…

〉 Split space of variables in several large regions

〉 Find this regions ‘intellectually’

!

Decision tree for reweighting

43

Write ML algorithm to solve directly reweighting problem:

〉 Tree splits the space of variables with orthogonal cuts (each tree leaf is a
region, or bin)

〉 There are different criteria to construct a tree (MSE, Gini index, entropy, …)

〉 Find regions with the highest difference between original and target
distribution

Spitting criteria

44

Finding regions with high difference
between original and target
distribution by maximizing
symmetrized:

�2 =
X

leaf

(w
leaf, original

� w
leaf, target

)2

w
leaf, original

+ w
leaf, target

A tree leaf may be considered as ‘a bin’;  
 - total
weights of events in a leaf for target and
original distributions.

w
leaf, original

, w
leaf, target

BDT reweighter

45

Many times repeat the following steps:

〉 build a shallow tree to maximize symmetrized

〉 compute predictions in leaves:

!

〉 reweight distributions:

!

!

!

!

!

�2

leaf pred = log

w
leaf, target

w
leaf, original

w =

(
w, if event from target (RD) distribution

w · epred, if event from original (MC) distribution

BDT reweighter DEMO

 after BDT reweighting
 before BDT reweighting

46

Kolmogorov-Smirnov distance for 1d projections

47

Bins reweighter uses only  
2 last variables (60 × 60 bins);
BDT reweighter uses all
variables

Comparing reweighting with ML

48

hep_ml library

49

Being a variation of GBDT, BDT reweighter is able to
calculate feature importances. Two features used in
reweighting with bins are indeed the most important.

Summary

50

1. Comparison of multidimensional distributions is ML problem

2. Reweighting of distributions is ML problem

3. Check reweighting rule on the holdout

!

BDT reweighter

〉 uses each time few large bins (construction is done intellectually)

〉 is able to handle many variables

〉 requires less data (for the same performance)

〉 ... but slow (being ML algorithm)

References

51

〉 https://arxiv.org/abs/1608.05806

〉 http://arogozhnikov.github.io/2015/10/09/gradient-boosted-reweighter.html

〉 https://arogozhnikov.github.io/hep_ml/

https://arxiv.org/abs/1608.05806
http://arogozhnikov.github.io/2015/10/09/gradient-boosted-reweighter.html
https://arogozhnikov.github.io/hep_ml/

Boosting to uniformity

Uniformity

53

Uniformity means that we have constant efficiency (FPR/TPR) against some
variable.

!

Applications:

〉 trigger system (flight time)  
flat signal efficiency

〉 particle identification (momentum)  
flat signal efficiency

〉 rare decays (mass)  
flat background efficiency

〉 Dalitz analysis (Dalitz variables)  
flat signal efficiency

Non-flatness along the mass

54

High correlation with the mass can create from
pure background false peaking signal (specially
if we use mass sidebands for training)

Goal: FPR = const for different regions in mass

FPR = background efficiency

Basic approach

55

〉 reduce the number of features used in training

〉 leave only the set of features, which do not give enough information to
reconstruct the mass of particle

〉 simple and works

〉 sometimes we have to lose information

!

Can we modify ML to use all features, but provide uniform  
background efficiency (FPR)/signal efficiency (TPR) along the mass?

Gradient boosting recall

56

Gradient boosting greedily builds an ensemble of estimators

!

by optimizing some loss function. Those could be:

〉 MSE:

〉 AdaLoss:

〉 LogLoss:

Next estimator in series approximates gradient of loss in the space of functions  

D(x) =
X

j

↵jdj(x)

L =
X

i

(yi �D(xi))
2

L =
X

i

e�yiD(xi), y
i

= ±1

L =

X

i

log(1 + e�yiD(xi)
), y

i

= ±1

Non-uniformity measure

57

〉 difference in the efficiency can be detected by analyzing distributions

〉 uniformity = no dependence between the mass and predictions

Uniform

predictions

Non-uniform
predictions  
(peak in highlighted
region)

Non-uniformity measure

58

Average contributions (difference between global and local distributions) from
different regions  
in the mass: use for this Cramer-von Mises measure (integral characteristic)

CvM =
X

region

Z
|F

region

(s)� F
global

(s)|2 dF
global

(s)

Minimizing non-uniformity

59

〉 why not minimizing CvM as a loss function with GB?

〉 … because we can’t compute the gradient, but ROC AUC, classification accuracy
are not differentiable too

〉 also, minimizing CvM doesn't encounter classification problem:  
the minimum of CvM is achieved i.e. on a classifier with random predictions

Flatness loss (FL)

60

〉 Put an additional term in the loss function which will penalize for non-uniformity
predictions:

!

〉 Flatness loss approximates non-differentiable CvM measure:

!

 

L = L
adaloss

+ ↵L
FL

L
FL

=
X

region

Z
|F

region

(s)� F
global

(s)|2 ds

@

@D(x
i

)
L
FL

⇠ 2(F
region

(s)� F

global

(s))
��
s=D(xi)

Rare decay analysis DEMO

61

〉 when we train on a sideband vs MC using
many features, we easily can run into
problems (there exist several features which
depend on the mass)

Rare decay analysis DEMO

62

all models use the same set of features for
discrimination, but AdaBoost got serious
dependence on the mass  

ba
ck

gr
ou

nd
 r

ej
ec

tio
n

ba
ck

gr
ou

nd
 r

ej
ec

tio
n

PID Demo (based on LHCb MC)

63

Features strongly depend on the momentum and
transverse momentum. Both algorithms use the same
set of features.  
Used MVA is a specific BDT implementation with
flatness loss.

LHCb MC LHCb MC

Trigger DEMO

64

Both algorithms use the same set of features.
The right one is uGB+FL.

Dalitz analysis DEMO

65

The right one is uBoost algorithm. Global efficiency
is set 70%

http://arxiv.org/pdf/1305.7248.pdf

hep_ml library

66

Summary

67

1. uBoost approach

2. Non-uniformity measure

3. uGB+FL approach: gradient boosting with flatness loss (FL)

!

uBoost, uGB+FL:

〉 produce flat predictions along the set of features

〉 there is a trade off between classification quality and uniformity

References

68

〉 https://arxiv.org/abs/1305.7248

〉 https://arxiv.org/abs/1410.4140

〉 https://arogozhnikov.github.io/hep_ml/

https://arxiv.org/abs/1410.4140
https://arogozhnikov.github.io/hep_ml/

Thanks for attention

Special thanks

70

〉 To people from Yandex group who were involved in preparing the slides:

〉 Tatiana Likhomanenko

〉 Fedor Ratnikov

〉 Alex Rogozhnikov

〉 Mikhail Hushchyn

