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leading search engine in 
Russia (and not only) 

Who we are?

〉 Group working on data analyses in Natural sciences


〉 2 physicists and 7 mathematicians (out of them 5 students)


〉 Part of a nonprofit Yandex School of Data Analysis


〉 Members of the LHCb collaboration


!

Aim to apply machine learning in the real scientific world problems
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Which tasks?
〉 Any, that can be formalised as a Machine Learning task


〉 good dataset


〉 clear rules to select winners


〉 formalisable additional conditions


〉 Examples include:


〉 Storage/Speed optimisation for triggers


〉 Jet and flavour tagging algorithms


〉 Brain cognitive studies 


〉 Ultra-high Cosmic Ray searches
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Outline
〉 Recent examples of ML algorithm developed for an LHC experiment


〉 High Level Trigger


〉 Data Popularity 


〉 Anomaly Detection


〉 Generalised ML algorithms useful for analysis


〉 BDT reweighting


〉 flatness boosting



ML in Trigger



LHCb topological trigger

〉 Generic trigger for decays of beauty and charm hadrons


〉 Designed to be inclusive trigger for any B decay with at least 2 
charged daughters including decays with missing particles


〉 Look for 2, 3, 4 track combinations in a wide mass range


〉 Use fast-track fit to improve signal efficiency and minbias rejection
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Event
〉 Sample: one proton-proton collision


〉 Event consists of:


• tracks (track description)


• secondary vertices (SV description)


• unstructured data


〉 Questions:


• How to describe event in ML terms?


• How to train model on such events?
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Data
〉 Monte Carlo samples (used as signal-like) are simulated 13-TeV 

with B decays of various topologies


〉 Generic Pythia 13-TeV proton-proton collisions are used as 
background-like sample (also includes some signal)


〉 Training data are set of SVs for all events


〉 Most events have many secondary vertices (not all events have 
them)


〉 Goal is to improve efficiency for each type of signal events along 
fixed efficiency for background
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Event is represented 
as set of SV’s

True match to signal

other preselections

ML

If at least one SV in the event passed all 
stages, the whole event passes trigger  



ROC curve, computed for events

ROC curve interpretation
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〉 Output rate = false positive rate (FPR) for 
events (since background = generic event)


〉 Optimize true positive rate (TPR) for fixed 
FPR for events 


〉 Weight signal events in such way that 
channels have the same amount of events.


〉 Optimize ROC curve in a small FPR region



Random forest for SVs selection

〉 Train random forest (RF) on SVs (typically ~30 per event)


• RF is stable to noise in data


• RF doesn’t penalize in case of misclassification (can find noisy samples)


〉 Select top-1, top-2 SVs by RF predictions for each signal event


〉 Train classifier on selected SVs
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Random forest for SVs selection
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Online processing

There are two possibilities to speed up prediction 
operation:


〉 Bonsai boosted decision tree format (BBDT)


〉 Post-pruning
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BBDT
〉 Features hashing using bins before training


〉 Converting decision trees to  
n-dimensional table (lookup table)


〉 Table size is limited in RAM (1Gb), thus count 
of bins for each features should be small (5 
bins for each of 12 features)


〉 Discretization reduces the quality


〉 Prediction operation takes one reading from 
the table
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Post-pruning

〉 Train MatrixNet (MN) with several thousands trees


〉 Reduce this amount of trees to a hundred


〉 Quality stays close to the initial


〉 Greedily choose trees to minimise a special loss function
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Topological trigger results (without RF trick)
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https://github.com/yandexdataschool/LHCb-topo-trigger

1.
2.

3.
4.

5.
6.

https://github.com/yandexdataschool/LHCb-topo-trigger
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ML in Data Popularity



Problem
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〉 PBs of real data and Monte Carlo are 
produced every year.


〉 The data is kept on disk and tape storage 
systems.


〉 Disks are faster but are way more 
expensive.


〉 Files are stored with several replicas.



Formulation
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〉 Need 3 algorithms:


〉 The dataset popularity prediction (long term)


〉 Number of accesses prediction (short term)


〉 Optimisation of the data distribution


〉 We have:


〉 access history of the LHCb data storage 
system for the last two and a half years



Data Popularity Prediction
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〉 Features:  


〉 recency, reuse distance, time of the 
first access, creation time, access 
frequency, type, extension, size

〉 Train Random forest to predict 
popular files



Data Distribution

21

For short-term forecast Brown 
exponential smoothing used

Based on the predicted_number_of_accesses/ 
number_of_replicas metric and long-term 
forecast, we take decision:


〉 Increase number of replicas.


〉 Decrease number of replicas.


〉 Remove from disks.



Realisation
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〉 Server can be cloned from git. 


〉 After some installation procedures, used easily within python script: 



References
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〉 https://github.com/yandexdataschool/DataPopularity/tree/release_3.0.x


〉 To be shown at CHEP

https://github.com/yandexdataschool/DataPopularity/tree/release_3.0.x


ML for Anomaly Detection



Typical Workflow
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〉 Several people are typically 
on shifts controlling the flow 
of data from detector into 
the storage  



Updated Workflow
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〉 The monitoring systems can 
be updated with:


〉 helper, a 
recommendation system 
for a shifter


〉 solver, automated 
decision maker


〉 both



Approaches
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〉 Two ML approaches are possible in this case:


〉 Supervised approach


〉 uses historical data processed by expert


〉 ML algorithm learns the pattern that lead to the experts’ decision


〉 problem: hard to outperform the expert in quality


〉 Unsupervised approach


〉 use time series to catch changes in data behaviour


〉 problem: hard to validate 



Supervised Learning
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〉 Problem: CMS Data Certification


〉 Data: CMS 2010B run open data


〉 Aim: automated classification of  
LumiSections as “good” or “bad” 
using expert opinions on 
previous runs


〉 Features: particle flow jets, 
Calorimeter Jets, Photons, 
Muons



Supervised Learning
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The aim is to minimise the Manual work 
with low Loss Rate (“good” classified as 
“bad”) and Pollution Rate (“bad” 
classified as “good”).

Manual work rate

∼90% saving on manual work is feasible 
for Pollution rate at 5‰




Unsupervised Learning
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〉 Problem: LHCb Detector 
Monitoring


〉 Data: LHCb trigger streams


〉 Aim: Identification of problems  
using previous state of the 
system


〉 Features: trigger line decisions, 
other trigger objects.



Unsupervised Learning
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〉 First attempts look promising

〉 work is ongoing
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Reweighting problem in 
HEP



Data/MC disagreement
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〉 Monte Carlo (MC) simulated samples are used for training and tuning a model


〉 After, trained model is applied to real data (RD)


〉 Real data and Monte Carlo have different distributions


〉 Thus, trained model is biased (and the quality is overestimated on MC samples)



Distributions reweighting
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〉 Reweighting in HEP is used to minimize 
the difference between RD and MC 
samples


〉 The goal of reweighting: assign weights to 
MC s.t. MC and RD distributions coincide


〉 Known process is used, for which RD can 
be obtained (MC samples are also 
available)


〉 MC distribution is original, RD distribution 
is target



Typical approach: histogram reweighting
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〉 variable(s) is split into bins


〉 in each bin the MC weight is multiplied by:


                                      


                                      - total weights of events in a bin for target and original 
distributions


!

1. simple and fast


2. number of variables is very limited by statistics (typically only one, two)


3. reweighting in one variable may bring disagreement in others


4. which variable is preferable for reweighting?

multiplier
bin

=
w

bin, target

w
bin, original

w
bin, target

, w
bin, original



Typical approach: example
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Typical approach: example
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!

〉 Problems arise when there are too few events 
in a bin


〉 This can be detected on a holdout (see the 
latest row)


〉 Issues:


1. few bins - rule is rough


2. many bins - rule is not reliable


!

!

Reweighting rule must be checked on a holdout!



Reweighting quality
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〉 How to check the quality of 
reweighting?


〉 One dimensional case: two samples 
tests (Kolmogorov-Smirnov test, 
Mann-Whitney test, …)


〉 Two or more dimensions?


〉 Comparing 1d projections is not a way


                                     



Comparing nDim distributions using ML
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〉 Final goal: classifier doesn’t use data/MC disagreement 
information = classifier cannot discriminate data and MC


〉 Comparison of distributions shall be done using ML:


〉 train a classifier to discriminate data and MC


〉 output of the classifier is one-dimensional variable


〉 looking at the ROC curve (alternative of two sample 
test) on a holdout 
(should be 0.5 if the classifier cannot discriminate 
data and MC)



Density ratio estimation approach
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〉 We need to estimate density ratio:


〉 Classifier trained to discriminate MC and RD should reconstruct  
probabilities pMC(x) and pRD(x)	

〉 For reweighting we can use


!

1. Approach is able to reweight in many variables


2. It is successfully tried in HEP, see D. Martschei et al,  
"Advanced event reweighting using multivariate analysis", 2012


3. There is poor reconstruction when ratio is too small / high


4. It is slower than histogram approach

fRD(x)

fMC(x)

fRD(x)

fMC(x)
⇠ pRD(x)

pMC(x)



Way to Succeed 
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〉 Write ML algorithm to solve directly reweighting problem


〉 Remind that in histogram approach few bins is bad, many bins is bad too.


〉 What can we do?


〉 Better idea…


〉 Split space of variables in several large regions


〉 Find this regions ‘intellectually’


!



Decision tree for reweighting
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Write ML algorithm to solve directly reweighting problem:


〉 Tree splits the space of variables with orthogonal cuts (each tree leaf is a 
region, or bin)


〉 There are different criteria to construct a tree (MSE, Gini index, entropy, …)


〉 Find regions with the highest difference between original and target 
distribution



Spitting criteria
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Finding regions with high difference 
between original and target 
distribution by maximizing   
symmetrized:


�2 =
X

leaf

(w
leaf, original

� w
leaf, target

)2

w
leaf, original

+ w
leaf, target

A tree leaf may be considered as ‘a bin’;  
                                                - total 
weights of events in a leaf for target and 
original distributions.


w
leaf, original

, w
leaf, target



BDT reweighter
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Many times repeat the following steps: 


〉 build a shallow tree to maximize symmetrized 


〉 compute predictions in leaves:


!

〉 reweight distributions:


!

!

!

!

!

�2

leaf pred = log

w
leaf, target

w
leaf, original

w =

(
w, if event from target (RD) distribution

w · epred, if event from original (MC) distribution



BDT reweighter DEMO


 after BDT reweighting
 before BDT reweighting
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Kolmogorov-Smirnov distance for 1d projections
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Bins reweighter uses only  
2 last variables (60 × 60 bins); 
BDT reweighter uses all 
variables



Comparing reweighting with ML
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hep_ml library
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Being a variation of GBDT, BDT reweighter is able to 
calculate feature importances. Two features used in 
reweighting with bins are indeed the most important.



Summary
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1. Comparison of multidimensional distributions is ML problem


2. Reweighting of distributions is ML problem


3. Check reweighting rule on the holdout


!

BDT reweighter


〉 uses each time few large bins (construction is done intellectually)


〉 is able to handle many variables


〉 requires less data (for the same performance)


〉 ... but slow (being ML algorithm)



References

51

〉 https://arxiv.org/abs/1608.05806


〉 http://arogozhnikov.github.io/2015/10/09/gradient-boosted-reweighter.html


〉 https://arogozhnikov.github.io/hep_ml/

https://arxiv.org/abs/1608.05806
http://arogozhnikov.github.io/2015/10/09/gradient-boosted-reweighter.html
https://arogozhnikov.github.io/hep_ml/


Boosting to uniformity



Uniformity
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Uniformity means that we have constant efficiency (FPR/TPR) against some 
variable.


!

Applications:


〉 trigger system (flight time)  
flat signal efficiency


〉 particle identification (momentum)  
flat signal efficiency


〉 rare decays (mass)  
flat background efficiency


〉 Dalitz analysis (Dalitz variables)  
flat signal efficiency



Non-flatness along the mass
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High correlation with the mass can create from 
pure background false peaking signal (specially 
if we use mass sidebands for training)


Goal: FPR = const for different regions in mass


FPR = background efficiency




Basic approach
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〉 reduce the number of features used in training


〉 leave only the set of features, which do not give enough information to 
reconstruct the mass of particle


〉 simple and works


〉 sometimes we have to lose information


!

Can we modify ML to use all features, but provide uniform  
background efficiency (FPR)/signal efficiency (TPR) along the mass?



Gradient boosting recall
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Gradient boosting greedily builds an ensemble of estimators


!

by optimizing some loss function. Those could be:


〉 MSE:


〉 AdaLoss:


〉 LogLoss:


Next estimator in series approximates gradient of loss in the space of functions  

D(x) =
X

j

↵jdj(x)

L =
X

i

(yi �D(xi))
2

L =
X

i

e�yiD(xi), y
i

= ±1

L =

X

i

log(1 + e�yiD(xi)
), y

i

= ±1



Non-uniformity measure
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〉 difference in the efficiency can be detected by analyzing distributions


〉 uniformity = no dependence between the mass and predictions

Uniform 

predictions 

Non-uniform 
predictions  
(peak in highlighted 
region)



Non-uniformity measure
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Average contributions (difference between global and local distributions) from 
different regions  
in the mass: use for this Cramer-von Mises measure (integral characteristic)

CvM =
X

region

Z
|F

region

(s)� F
global

(s)|2 dF
global

(s)



Minimizing non-uniformity
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〉 why not minimizing CvM as a loss function with GB?


〉 … because we can’t compute the gradient, but ROC AUC, classification accuracy 
are not differentiable too


〉 also, minimizing CvM doesn't encounter classification problem:  
the minimum of CvM is achieved i.e. on a classifier with random predictions



Flatness loss (FL)


60

〉 Put an additional term in the loss function which will penalize for non-uniformity 
predictions:


!

〉 Flatness loss approximates non-differentiable CvM measure:


!

 

L = L
adaloss

+ ↵L
FL

L
FL

=
X

region

Z
|F

region

(s)� F
global

(s)|2 ds

@

@D(x
i

)
L
FL

⇠ 2(F
region

(s)� F

global

(s))
��
s=D(xi)



Rare decay analysis DEMO
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〉 when we train on a sideband vs MC using 
many features, we easily can run into 
problems (there exist several features which 
depend on the mass)



Rare decay analysis DEMO
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all models use the same set of features for 
discrimination, but AdaBoost got serious 
dependence on the mass  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PID Demo (based on LHCb MC)
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Features strongly depend on the momentum and 
transverse momentum. Both algorithms use the same 
set of features.  
Used MVA is a specific BDT implementation with 
flatness loss.

LHCb MC LHCb MC



Trigger DEMO
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Both algorithms use the same set of features. 
The right one is uGB+FL.



Dalitz analysis DEMO
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The right one is uBoost algorithm. Global efficiency 
is set 70%

http://arxiv.org/pdf/1305.7248.pdf


hep_ml library
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Summary
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1. uBoost approach


2. Non-uniformity measure


3. uGB+FL approach: gradient boosting with flatness loss (FL)


!

uBoost, uGB+FL: 


〉 produce flat predictions along the set of features


〉 there is a trade off between classification quality and uniformity
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Thanks for attention
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