

Recent neutrino cross-section measurements at T2K

JENNIFER Plenary meeting – September 2016 - London

A hot topic...

Oscillation measurements in Far Detector constrained from Near Detector (xsec x flux)

$ND \rightarrow FD$ extrapolation :

- different acceptance and target
- different E_v spectrum
- $\nu_{\mu} \rightarrow \nu_{e}, \nu_{\mu}$
- \rightarrow rely on models to extrapolate
- Measurement of v xsec at ND is experimentally complicated:
 - E_v not known: xsec measurement always convoluted with flux → importance of minimization of uncertainties in flux modeling (and/or ratio measurements)
 - E_v inferred from final state leptons/hadrons which have limited angular acceptance, threshold on low energy particles, very small info on recoiling nucleus...

$\boldsymbol{\nu}_{e}$ at SuperKamiokande

What do we need to measure?

final state particles

Uncertainties in ND \rightarrow FD extrapolation :

- different E_v distribution
 (because of oscillation)
- different target

A-scaling: measure cross-sections on different targets (and/or on the same target of FD)

need to reconstruct the neutrino energy from the

• different acceptance

measurement of cross-section in the larger possible phase-space: increase angular acceptance of ND

 different neutrino flavor (because of oscillation)
 v (v) flux has typically a wrong sign component

measure cross-section asymmetries between different neutrino species (eg v vs v important for for δ_{CP})

Outline

Neutrino xsec as a <u>nuclear physics</u> problem

T2K flux

• CC0 π dominant at T2K

 \rightarrow from the detector measurement (muon+proton) to the incoming neutrino energy

• CC1π (+ DIS)

 \rightarrow how to disentangle Final State Interaction effects

• Impact on present and future oscillation measurements (δ_{CP}) : V_{μ}

- (+ proton module : fully active scintillator)
- coarser granularity, not magnetized but larger mass
- POD scintillator with water target

5/17

CC0 π : recent results

■ Neutrino interactions model tuned from bubble chambers vH data modern experiments scattering on heavy target (C,O) → nuclear effects

Why we need good models?

Phys.Rev. D87 (2013) no.1, 013009

Neutrino oscillation goes like $\sim L/E_v$ but we do not measure E_v ! We measure the outgoing muon at SuperKamiokande and we infer the neutrino energy on the base of available models

2p2h events fill the "dip" region sensitive to neutrino oscillation \rightarrow wrong modelling would cause bias on oscillation parameters

From models to Monte Carlo

■ Various 2p2h models available → completely generic mechanism to include any model in MC simulation: Hadron Tensors

Lookup tables encoding the nuclear physics as a function of transferred quadrimomentum to the nucleus

 Nuclear effects important also on single nucleon scattering (screening, binding energy, ...)

Nucleus modeled as a Fermi gas of nucleons: nucleon momentum as a function of its radial position in the nucleus

$CC1\pi$

Large effects from Final State Interaction: re-scattering of the π inside the nucleus (nuclear physics again!)

Cross-section and FSI have different A-dependence \rightarrow important effect when extrapolation from ND and FD with different material

$CC1\pi$ recent results

What do we need to measure?

Uncertainties in ND \rightarrow FD extrapolation :

- different E_v distribution
 (because of oscillation)
- need to reconstruct the neutrino energy from the final state particles

- different target
- - A-scaling: measure cross-sections on different targets (and/or on the same target of FD)

different acceptance

- measurement of cross-section in the larger possible phase-space: increase angular acceptance of ND
- different neutrino flavor (because of oscillation)
 v (v) flux has typically a wrong sign component
- measure cross-section asymmetries between different neutrino species (eg v vs v important for for δ_{CP})

Extended acceptance

T2K work in progress

v cross section measurement

The measurement of δ_{CP} crucially depends on the comparison of v vs \overline{v} oscillation \rightarrow bias on v vs \overline{v} cross section direct reflect in bias on δ_{CP} measurement

Future experiments: v_{e}

• We are interested to v_e appeareance and δ_{CP} from v - v comparison but in ND we mostly measure v_{μ} cross-sections.

 $\sigma = \sqrt{\Delta \chi^2}$

T2K uncertainty today 5-6% $\rightarrow v_e / v_\mu$ uncorrelated 2.5% $\rightarrow v / v$ uncorrelated 2%

- In future (HK, DUNE) large samples of 4 v species → the uncorrelated uncertainties are relevant
 - HK needed uncertainty to have negligible impact on $\delta_{\rm CP}$:

 $\nu_{_{e}}\text{-}\nu_{_{e}}$ uncorrelated 1%

• For DUNE assumed: uncorrelated ν_{μ} - $\overline{\nu}_{\mu}$ 5% and ν_{e} - $\overline{\nu}_{e}$ 2%

(shape of ν_{μ} itself may be more important for DUNE: shape analysis and spanning over different xsec)

The way out?

The role of Jennifer

- All (!!) the measurements presented here have been performed by Jennifer groups
- Jennifer is allowing to:
 - promote and enhance the European know-how on Near Detector analysis and Neutrino cross-section measurements
 - establish a strict collaboration with Monte Carlo builders in Japan (NEUT)
 - \rightarrow inject measurements into improved Neutrino Interaction modelling \rightarrow implements improved models in MC simulations

Crucial for T2K but also for future generation of long baseline experiments

BACKUP

Recent neutrino cross-section measurements at T2K

S.Bolognesi (IRFU, CEA Saclay)

CC inclusive: T2K

- Simple analysis: require at least one muon (small background from NC and flux pollution v_)
- Dominated by CCQE at T2K E, energy:
- \rightarrow indications in favour of new models with 2p2h

\rightarrow agreement also with old tuned models

Nuclear physics is the name of the game

- CCQE model tuned from bubble chambers vH data: M_A^{QE}~1GeV
 → modern experiments (K2K) include nuclear effects on heavy target (C,O): Fermi Gas
- MiniBoone measurement shows large discrepancy wrt to this model (large M_A^{QE}) ^C_b → explication from theoretical models

including :

- long range correlation between nucleons (aka RPA)
- possibility of interactions with NN pairs (aka 2p2h and MEC effects)

 $u_{\mu} n p \rightarrow \mu^{-} p p$ $\overline{\nu}_{\mu} n p \rightarrow \mu^{+} n n$

(well known in ep scattering but not definitive model)

 Final State Interaction only included in MC models: CC1π with pion re-absorption included in signal (CC0π)

New ways of looking at the data

