

WP4: High Pressure TPC

F.Sánchez

Outline

- Motivation & Physics goals
- Atmospheric TPC
- High Pressure TPC
- Conclusions

Future T2K & HK challenges

- Protons on target!.
- Balancing anti-neutrino / neutrino runs.
- Neutrino flux shape: NA61 (and a little of near detector data)

Neutrino cross-sections (also for V flux)

Can we improve ND280 to optimize cross-section measurements?

BIST

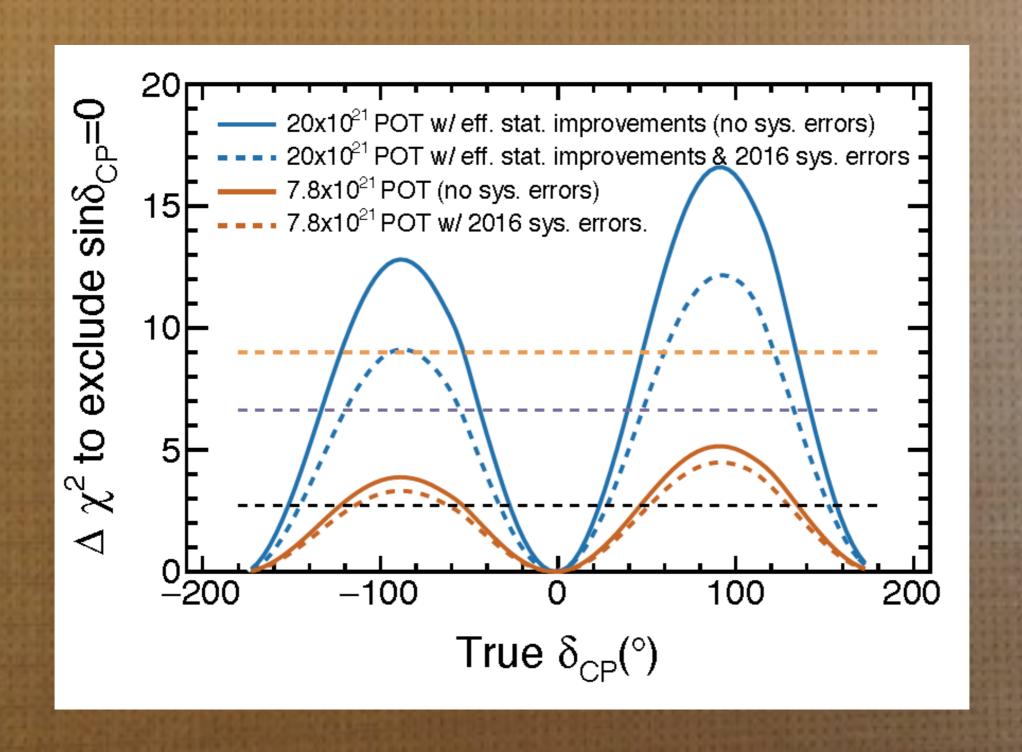
News!

[hep-ex] 14 Sep 2016

arXiv:1609.04111v1

- T2K has submitted a proposal for a T2K-phase II.
- This proposal contains:
 - Increase of statistics (20 x 10²¹) (actual 7.8x10²¹)
 - Potential upgrades of the near detector.

Proposal for an Extended Run of T2K to 20 x 10²¹ POT


K. Abe, ** H. Aihara, *3,19 A. Ajmi, ** J. Amey, ** C. Andreopoulos, *2,23 M. Antonova, ** S. Aoki, ²⁰ A. Atherton, ⁴⁰ S. Ban, ²¹ F.C.T. Barbato, ¹⁵ M. Barbi, ³⁵ G.J. Barker, ⁵¹ G. Barr, ³¹ P. Bartet-Friburg ³² M. Batkiewicz, ⁹ V. Berardi, ¹⁴ S. Bhadra, ⁵⁵ J. Bian, ² S. Bienstock, 32 A. Blondel, S. Bolognesi, S. Bordoni, H. S.B. Boyd, D. Brailsford, 22 A. Bravar, ⁸ C. Bronner, ¹⁹ M. Buizza Avanzini, ⁷ J. Calcutt, ²⁵ R. G. Calland, ¹⁹ D. Calvet, ³ T. Campbell, S. Cao, 21 S.L. Cartwright, 40 R. Castillo, 11 M.G. Cataresi, 14 A. Cervera, 12 C. Checchia, ¹⁶ D. Cherdack, ⁵ N. Chikuma, ¹⁸ G. Christodoulou, ²⁸ A. Clifton, ⁵ J. Coleman, ²⁸ G. Collazuol, ¹⁶ D. Coplowe, ³¹ L. Cremoresi, ³⁴ A. Cudd, ²⁵ A. Dabrowska, ³ A. Delbart, 3 G. De Rosa, 15 T. Dealtry, 22 P.F. Denner, 51 S.R. Dennis, 28 C. Densham, 42 D. Dewhurst,³¹ F. Di Lodovico,³⁴ S. Dolan,³¹ O. Drapier,⁷ K.E. Duffy,³¹ J. Dumarchez,³² M. Dunkman, ²⁵ M. Dziewiecki, ⁵⁰ S. Emery-Schrenk, ³ P. Fernandez, ³⁹ T. Peusels, ⁵⁶ A.J. Firch, 22 G.A. Fiorentini, 55 G. Fiorillo, 15 M. Fitton, 22 M. Friend, 10, 4 Y. Fujii, 10, 4 D. Fukuda, 28 Y. Fukuda, 25 A. Garcia, 11 C. Giganti, 32 F. Gizzarelli, 3 M. Gorin, 7 N. Grant, St. D.R. Hadley, St. L. Hægel, S. M.D. Haigh, St. D. Hansen, SS. J. Harada, SO. M. Hartz, 19,48 T. Hasegawa, 10,4 N. C. Hastings, 35 T. Hayashino, 21 Y. Hayato, 44,19 T. Hiraki, A. Hiramoto, S. Hirota, M. Hogan, J. Holeczek, F. Hosomi, S. K. Huang, 24 A.K. Ichikawa, 24 M. Ikeda, 25 J. Imber, 7 J. Insler, 25 R.A. Intonti, 15 T. Ishida, 10, * T. Ishii, 10, * E. Iwai, 10 K. Iwamoto, 36 A. Izmaylov, 12, 18 B. Jamieson, 53 M. Jiang²¹ S. Johnson, ⁴ J.H. Jo, ²⁸ P. Jonsson, ¹³ C.K. Jung, ²⁸, [†] M. Kabirrezhad, ²⁷ A.C. Kaboth, 37,42 T. Kajita, 45,† H. Kakuno, 46 J. Kameda, 44 T. Katori, 34 E. Kearns, 1,19,† M. Khabibullin, 18 A. Khotjantsev, 18 H. Kim, 30 S. King, 34 J. Kisiel, 41 A. Knight, 52 A. Knox, 22 T. Kobayashi, 10, * L. Koch, 38 T. Koga, *8 A. Konaka, *8 K. Kondo, 21 L.L. Kormos,²² A. Korzenev,⁸ Y. Koshio,²³, † K. Kowalik,²⁷ W. Kropp,² Y. Kudenko,¹⁸, † R. Kurjata, ⁵⁰ T. Kutter, ²⁴ L. Labarga, ³⁹ J. Lagoda, ²⁷ I. Lamont, ²² M. Lamoure ux, ³ E. Larkin, E. P. Lasorak, M. Laveder, M. Lave, T. Lindner, E. Z.J. Liptak, Laveder, E. Larkin, E. C. Lindner, E. Z.J. Liptak, Laveder, E. Larkin, E. Larki R.P.Litchfield, 13 X.Li, 28 A.Longhin, 16 J.P.Lopez, 4 T.Lou, 43 L.Ludovici, 17 X.Lu, 31 L. Magaletti, 14 K. Mahr, 25 M. Malek, 40 S. Manly, 35 A.D. Marino, 4 J.F. Martin, 47 P. Martins, 34 S. Martynenko, 28 T. Maruyama, 10, 4 V. Matveev, 18 K. Mavrokoridis, 23 W. Y. Ma, 13 E. Mazzucato, 3 M. McCarthy, 55 N. McCauley, 23 K.S. McFarland, 36 C. McGrew, 28 A. Mefodiev, 18 C. Metello, 28 M. Mezzetto, 16

Sensitivity & systematics

- Very agresive program to reduce the systematic error.
- Predictions for the flux estimations:

	Current Uncertainty		Projected Uncertainty	
	(%)		(%)	
Neutrino species	Absolute	Extrapolation	Absolute	Extrapolation
$\nu-$ mode, ν_{μ}	9.1	0.17	5.6	0.12
$\nu-$ mode, $\bar{\nu}_{\mu}$	7.6	0.62	6.6	0.38
$\nu-$ mode, ν_e	8.8	0.37	5.2	0.27
$ u$ —mode, $\bar{\nu}_{e}$	7.2	0.50	5.0	0.41
$\bar{\nu}-$ mode, $ u_{\mu}$	7.3	0.61	6.3	0.31
$\bar{ u}$ —mode, $\bar{ u}_{\mu}$	9.1	0.28	5.5	0.27
$\bar{\nu}$ —mode, ν_{e}	6.7	0.73	4.8	0.33
$\bar{\nu}$ -mode, $\bar{\nu}_{\varepsilon}$	8.7	0.43	5.3	0.16

The oscillations

• The number of events depends on the cross-section:

$$N_{events}(E_{\nu}) = \sigma_{\nu}(E_{\nu})\Phi(E_{\nu})$$

 This is not so critical if we can determine the energy of the neutrino, since at the far detector

$$N_{events}^{far}(E_{\nu}) = \sigma_{\nu}(E_{\nu})\Phi(E_{\nu})P_{osc}(E_{\nu})$$

and it cancels out in the ratio as function of energy:

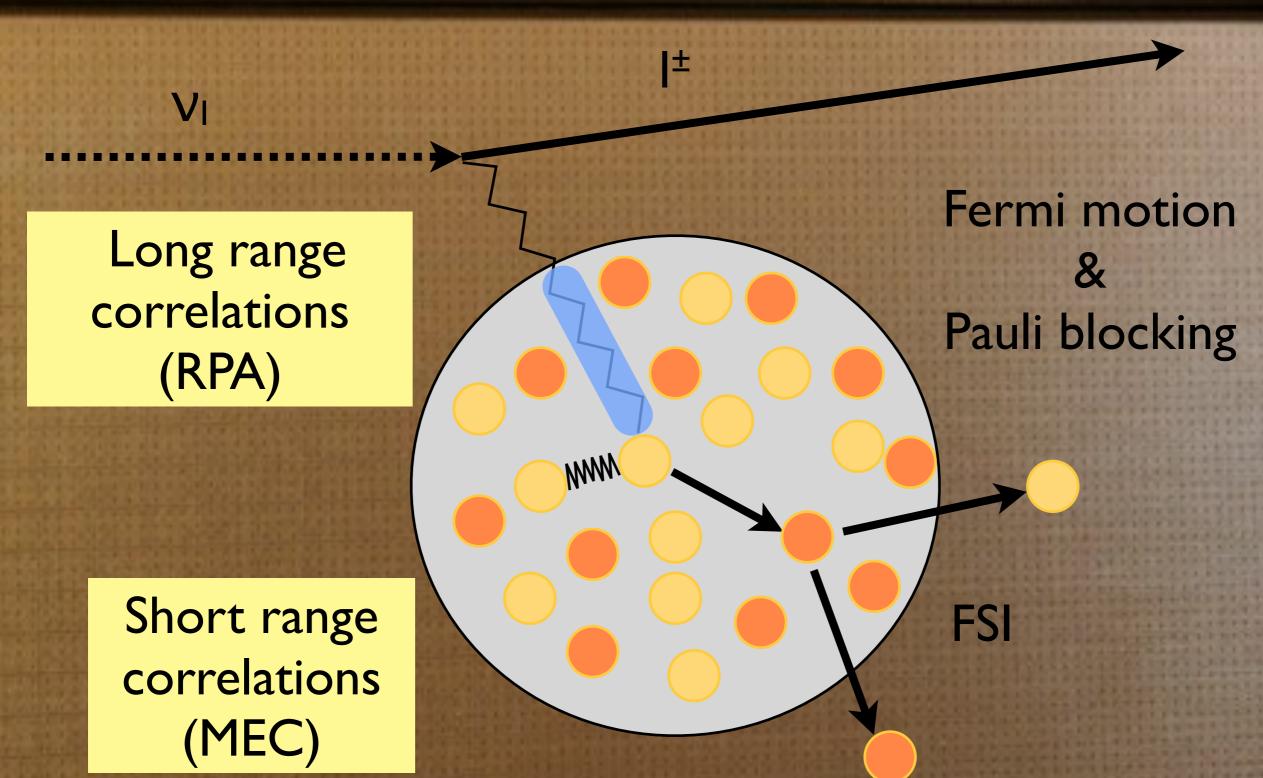
$$\frac{N_{events}^{far}(E_{\nu})}{N_{events}(E_{\nu})} = P_{osc}(E_{\nu})$$

The oscillations

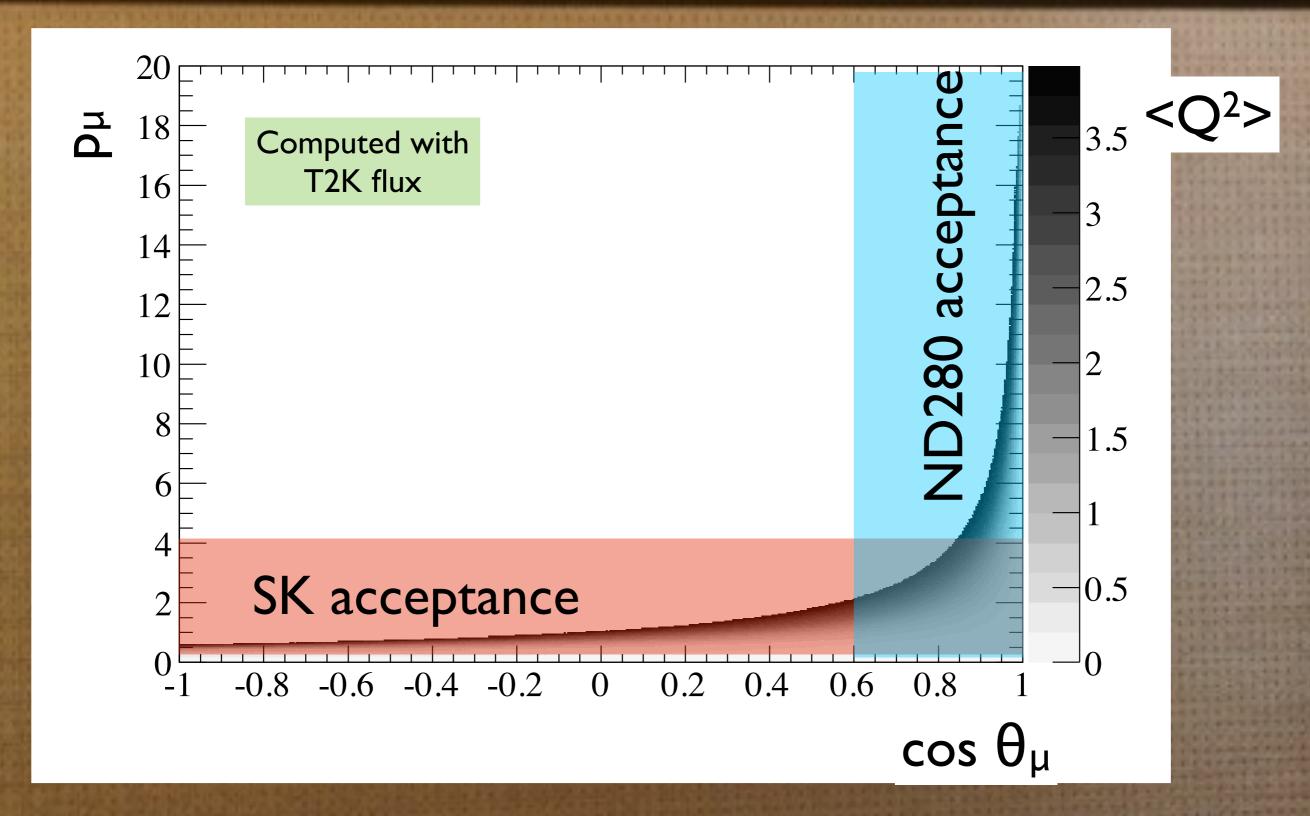
- Since the neutrino energy is not monochromatic, we need to determine event by event the energy of the neutrino.
- This estimation is not perfect, we have the problem that the crosssection does not cancels out in the ratio.

$$\frac{N_{events}^{far}(E_{\nu})}{N_{events}(E_{\nu})} = \frac{\int \sigma(E'_{\nu})\Phi(E'_{\nu})P(E_{\nu}|E'_{\nu})P_{osc}(E'_{\nu})dE'_{\nu}}{\int \sigma(E'_{\nu})\Phi(E'_{\nu})P(E_{\nu}|E'_{\nu})dE'_{\nu}}$$

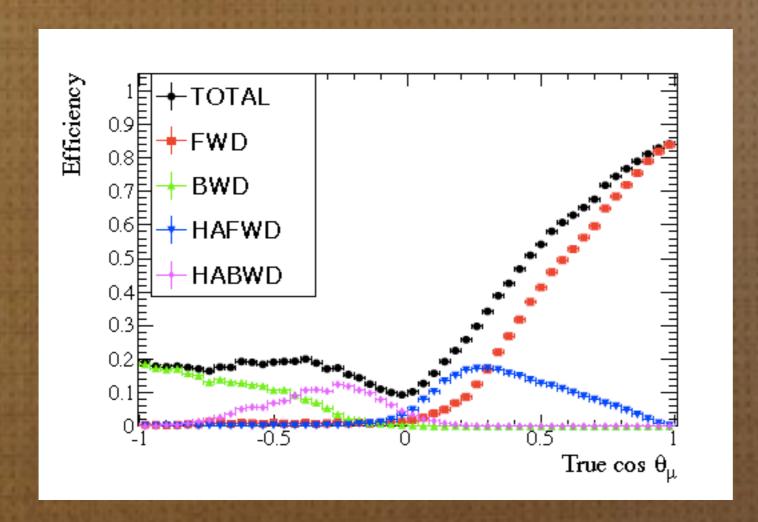
• The neutrino oscillations introduce differences in the flux spectrum and the ratio does not cancel the cross-sections.


Oscillation experiments require to know $\Phi(E_v)$, $\sigma(E_v)$ & $P(E_v|E'_v)$





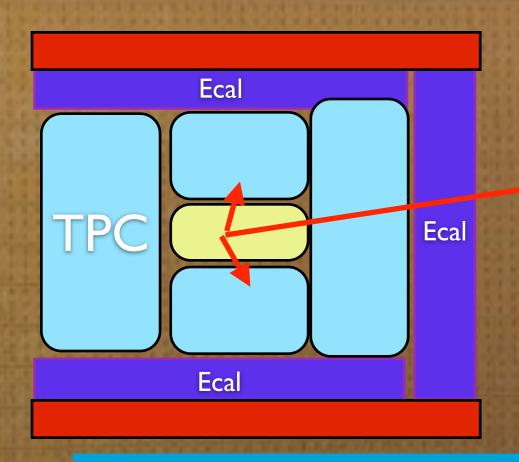
Acceptance



- The near detector acceptance does not match the far detector:
 - high angle and low momentum has low efficiency.

Red is used until now, new analysis will cover high angles.

Cross-sections


- The uncertainties in cross-sections affect:
 - neutrino energy reconstruction.
 - background calculation (Resonant into QE feed down).
 - Acceptance correction near-far (high angle and backward tracks).
- Actual unknowns:
 - 2p-2h
 - FSI and Pion re-interactions at detector.
 - Iπ and high mass resonances.
 - Spectral functions ?
 - bind energy ?

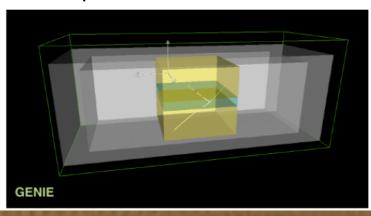
Most of these unknowns can be adressed with low threshold detectors.

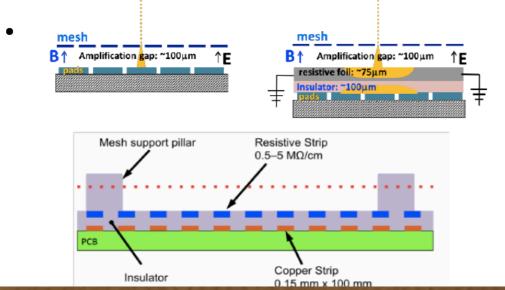
TPC upgrade concept

T2K phase II near detector

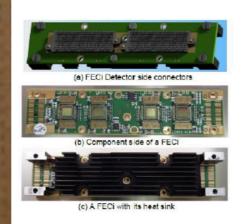
- Target is not the TPC so we can use H_20 as target.
- High Pressure is not needed in this case.

- Minimal upgrade pointing to acceptance matching!
- Interest from several institutions (all WP4 from Jennifer + many more)
- workshop being organised at CERN the 7th and 8th November 2016:
 - https://indico.cern.ch/event/569777/




Geant4 framework

 Framework developed to study acceptance and efficiencies issues with a parameterized detector response

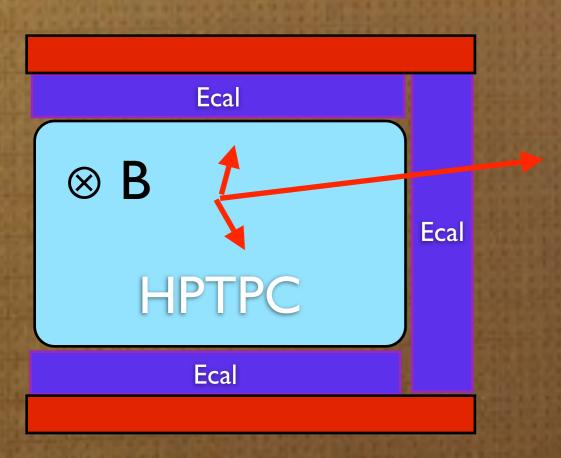

Resistive Bulk Micromegas

 Several advantages (charge spread, intrinsic spark protection)

Activities and R&D already starting.

ILC TPC R/O electronics

Size: 1/10 of a T2K TPC FEC, for the same number of channels. Flat readout achieved for a pad size of $3x7 \text{ mm}^{**}2$. We plan to use a pad size $\sim\sim100 \text{ mm}^{*}2$



Not all issues are covered by the atmospheric TPC upgrade:

low energy protons and pions!

Cross-section experiment

Target = detector. Low momentum detected inside the TPC.

Near detector

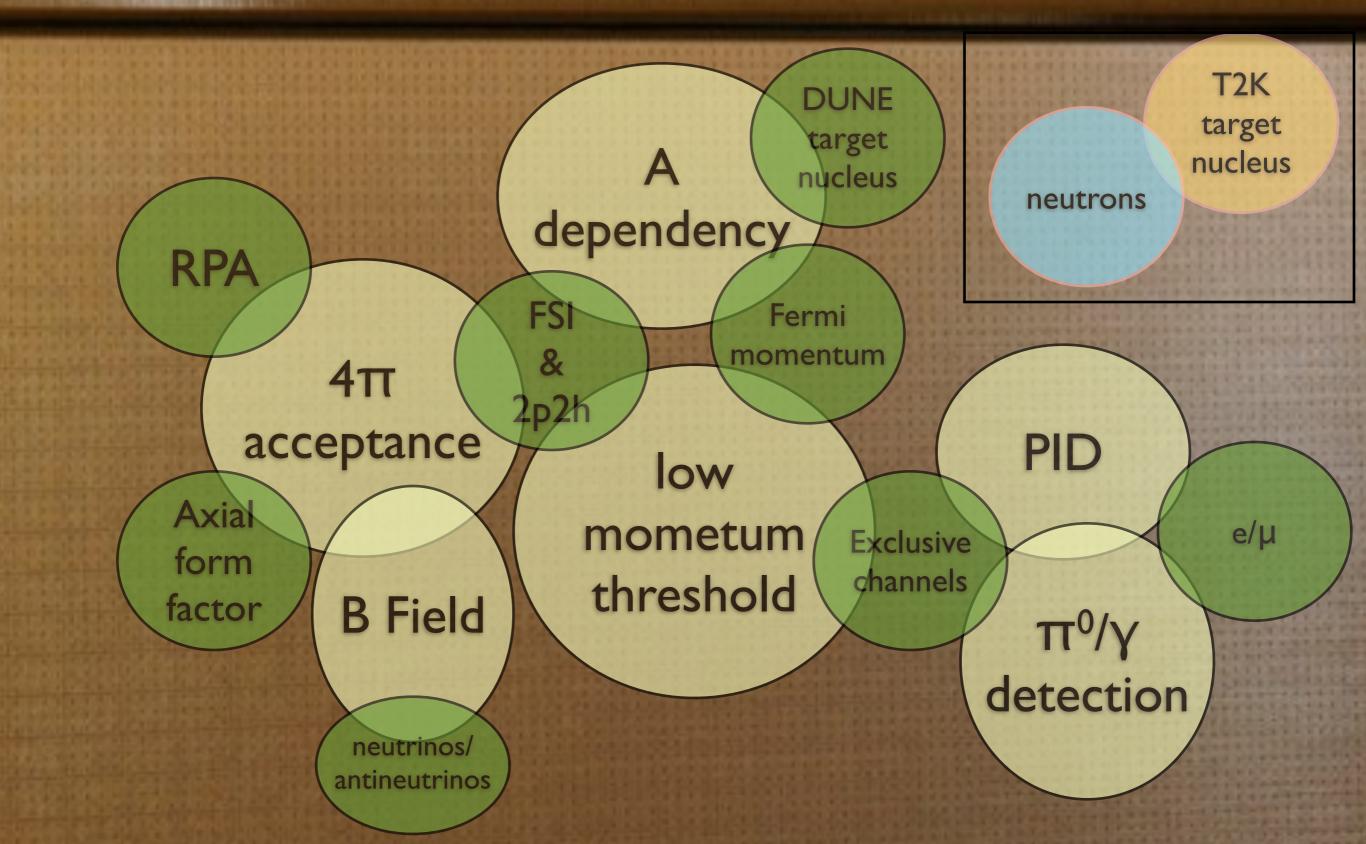
- Low momentum detected inside the TPC.
- High uniform acceptance.

As a cross-section experiment, HPTPC allows to change the nuclear target addressing nuclear uncertainties systematics.

CC events assuming a 8m³ detector & full FV.

2x2x2 m ³ 20°C	5 bars	10 bars
He	6.65 kg	13.3 kg
	520 evt/10 ²¹ pot	1040 evt/10 ²¹ pot
Ne	32.5 kg	67.1 kg
	2543 evt/10 ²¹ pot	5086 evt/10 ²¹ pot
Ar	66.5 kg	133 kg
	5203 evt/10 ²¹ pot	10406 evt/10 ²¹ pot
CF ₄	146.3 kg	293 kg
	11450 evt/10 ²¹ pot	22893 evt/10 ²¹ pot

A time projection chamber is a good candidate for these studies:


- + Target = detector.
- + 3D reconstruction capabilities.
- + Possibility to exchange targets.
- + low density → low thresholds
- + excellent PID capabilities.
- + Almost uniform 4π acceptance.
- low number of interactions → requires high pressure and large volume.
- requires in addition a magnet or range detectors to measure momentum.

HPTPC

Action I

- Requested an EU ITN student network by 12 institutions in europe (France, Germany, Italy, Poland, Spain, Switzerland & UK)
 - Program includes Theory-Experiment interplay.
 - good grades but rejected due to lack of industrial partners!.
- Resubmission this year under the new paradigm that includes CERN.

Action 2

- CERN Neutrino Platform got interested in the proposal as its contribution to T2K (and DUNE) activities.
- Pushing for a workshop at CERN and looking for ways of collaboration with other institutions.
- Plan to elaborate an R&D program based at CERN with collaboration from many institutions to develope both TPC and HPTPC technologies for neutrino oscillations.
 - side subjects as Dark Matter searches or Double Beta decay can be accommodated in case of common developments.

Conclusions

- Atmospheric full coverage TPC upgrade for T2K phase II. Interest from many institutions including CERN and Japanese groups.
- HPTPC is considered in two scenarios:
 - Near detector upgrade of HK.
 - Cross-section experiment to improve T2K and HK physics.
- A high pressure TPC will allow to access the low energy nuclear debris and help in the study for neutrino-nucleus interactions.