DAQ for Hyper-K Water Cherenkov detectors

Tom Dealtry for the HKUK DAQ group

Lancaster University

September 22, 2016

Hyper-Kamiokande & TITUS

2 Software

- Simulation
- Low-energy triggering

3 Hardware

2 / 17

Hyper-Kamiokande & TITUS

- Hyper-Kamiokande (HK) due to start operations ${\sim}2026$
 - Two 258 kton (187 kton fiducial) tanks
 - ► ~40,000 inner detector 50 cm PMTs per tank
 - ★ 40% inner detector photocoverage
- \bullet TITUS: intermediate detector ${\sim}2~\text{km}$ from the J-PARC neutrino beam
 - 2.1 kton fiducial tank
 - ightarrow ~3,000 inner detector 30 cm PMTs
 - Gd-doped
 - Magnetised muon range detector(s) (MRD)

Hyper-Kamiokande & TITUS

2 Software

- Simulation
- Low-energy triggering

3 Hardware

4 Summary

4 / 17

WCSim: digitizers & triggering

- \bullet WCSim is an open-sourced, C++ & Geant4-based simulation code
 - Modular design allows you to choose geometry, PMT type, ...
- There were problems with the dark noise, digitizer, & trigger
 - Trigger efficiency too high at low energy
 - Trigger used raw hits, instead of digits
 - Difficult to perform studies on digitizer/trigger effects
 - Rewrote to fix issues, and made it modular
 - ► A lot of code: +3009, -289
 - Added benefit: can now easily study new triggers (and digitizers)

WCSim: Radioactivity & Geant4.10.1

- Previously, the only 'background' in WCSim was PMT dark noise
- Added ability to simulate radioactive decays uniformly across PMT glass & in the water
 - Can study direct noise & pile-up on physics events
 - Important for low-energy triggering
- Studies in this talk use:
 - \blacktriangleright 208TI (emits 2.6 MeV γ and e^- 's with 1.5 MeV endpoint)
 - 214Bi (predominantly emits e⁻'s with 3.3 MeV endpoint)
 - ▶ 40K (emits e^- with 1.3 MeV endpoint or 1.5 MeV γ)
- Upgraded to Geant4.10.1
 - Better neutron capture model
 - Fixes gamma cascade bug

Outline

Hyper-Kamiokande & TITUS

2 Software

- Simulation
- Low-energy triggering

3 Hardware

7 / 17

Data source	Event rate	Hits/event	Raw data rate
Dark noise	10 kHz	1 (per tube)	5 GB/s
Low energy backgrounds	10 kHz	25	3 MB/s
Cosmic muons	100 Hz	40,000	50 MB/s
Beam	1 Hz	0	0 MB/s
Calibration	2 Hz	40,000	2 MB/s
Pedestal	1 Hz	40,000	2 MB/s

- Dark noise dominates the raw data
 - Want to reduce this as much as possible, without sacrificing physics
 - Leads to cheaper DAQ system
 - ★ Less hardware: easier to scale
 - * Less storage: 5 GB/s = 18 TB/hour = 13 PB/month
 - * Less CPU time to reconstruct events / analyse the dataset

How SK triggers: NHITS

- Count number of hits in a sliding time window
 - Window size pprox max light travel time across detector
- If NHITS > threshold, issue trigger
- If NHITS > a lower threshold, perform full reconstruction to decide to trigger

	SK	HK 14%	HK 40%
Max light travel time (ns)	200	400	400
NPMTs	11146	14728	44028
PMT dark rate (kHz)	4.2	8.4	8.4
Noise hits in trigger decision window	~ 9	${\sim}49$	~ 148

- There are so many background hits in HK 40%!
- Are there clever ways to trigger without performing full reconstruction?

Test-vertices trigger

- Populate detector with cylindrical array of test-vertices $(\Delta L = 5 \text{ m})$
- For each vertex, apply photon time-of-flight correction, then proceed with NHITS-like trigger
 - Reduces trigger time window: 400 ns \rightarrow 20 ns
 - ~vertex reconstruction to kill dark noise
 - \star 5 MeV e^- vertex resolution: position 2.1 m; time 13 ns

corrected times

10 / 17

Test-vertices trigger performance

- Process in real-time on ${\sim}100~{\rm GPUs}$
 - Currently <\$400,000 (should become cheaper)
- $\bullet\,$ For a given noise trigger rate, the test-vertices algorithm lowers the trigger threshold by ${\sim}1~\text{MeV}$
- Can cut PMT radioactivity by rejecting events with reconstructed vertices at detector edges
 - ▶ Suppress 87% PMT radioactivity with 30% total volume loss

Other trigger ideas

- In time channel ratio (ITC)
 - Cut on ratio of hits in two 'small' and 'large' time windows
 - May be useful for SK, but not for 40% HK
- Multivariate trigger (TMVA)
 - Use lots of variables
 - Promising with MC
 - $\star~90\%$ dark noise rejection @ 92% 3–4 $\rm MeV$ efficiency
 - But...trigger systematics may be horrendous
 - ★ Use as a testing ground for new variable ideas

Outline

1 Hyper-Kamiokande & TITUS

Software

- Simulation
- Low-energy triggering

3 Hardware

4 Summary

DAQ design

Use physics studies & prototype measurements to design the DAQ

- Event rates and triggering
- Oetector readout requirements
- Oata storage
- Functionality
- Oetector monitoring
- Key aspects
 - Raw data rate
 - In particular raw data rate in the event of a local supernova
 - Triggered event data rate
 - This depends on where the triggers are implemented
 - $\star\,$ Firmware of the electronics and/or in the DAQ computer
 - Triggered architecture
 - What firmware etc will we use.

DAQ reference design

DAQ framework

- Many options for a DAQ framework
 - artdaq, MIDAS, written ourselves, ...
- Currently doing tests using ToolDAQ
 - Developed in UK for HK as a fault-tolerant, lightweight, DAQ framework
 - Currently being used by the ANNIE experiment
 - Designing HK & intermediate detector layout

Summary

- Improved WCSim
- $\bullet\,$ Studying some new trigger algorithms for HK 40%
 - Test vertices lowers energy threshold by ${\sim}1~{
 m MeV}$
 - ITC ratio doesn't help in high-photocoverage tank with high-noise PMTs
 - Using TMVA for new ideas
- TITUS should be easier
 - Fewer lower-noise (smaller) PMTs, but more cosmics
 - Will perform detailed studies when a combined near detector design has been chosen
- Have a baseline DAQ hardware design
- Weighing up pros & cons of different DAQ frameworks
 - Including our bespoke code (ToolDAQ)

TMVA trigger training variables

- For each event
 - Take $1000 \, \mathrm{ns}$ from the first physics hit
 - ★ Noise-only: use a small offset
 - Calculate each of the following 26 variables:
- NHITS
- β_{14} (see slide 20)
- Solar anisotropy ratio (see slide 21)
- RMS of hit times
- Mean & RMS of:
 - Charge
 - Hit PMT position (θ , r, z)
 - ► Angle between each pair of hits ((0,0,0) is the third position) ★ θ , $\cos(\theta)$, $P_2(\theta)$, $P_3(\theta)$, $P_4(\theta)$, $P_5(\theta)$ (see slide 20)
 - Solar anisotropy distance (see slide 21)

SNO β variables

- Take cosine of angle between each pair of hits
 - Use detector centre as third point

• Use Legendre polynomials: $\beta_k = \langle P_k(\cos \theta_{ij}) \rangle$; $i \neq j$

• $P_0(x) = 1$ • $P_1(x) = x$ • $P_2(x) = \frac{1}{2} (3x^2 - 1)$ • $P_3(x) = \frac{1}{2} (5x^3 - 3x)$ • $P_4(x) = \frac{1}{8} (35x^4 - 30x^2 + 3)$ • $P_5(x) = \frac{1}{8} (63x^5 - 70x^3 + 15x)$

• $\beta_{14} = \beta_1 + 4\beta_4$ used for selecting signal @ SNO

- Good separability
- Ease of parameterisation of the Gaussian-like distribution
- May need to account for the cylinderical geometry
 - e.g. separate out the endcaps from the sides

Solar anisotropy

- Split the detector in two equal halves
 - Use known direction to Sun & detector centre to define plane
- e direction correlated with ν_e direction
 - Expect more hits on PMTs opposite the Sun

- Solar anisotropy ratio
 - Ratio of NHITS in forward/background halves
- Solar anisotropy distance distribution
 - Signed perpendicular distance of each PMT to the plane
- Won't work for other low energy events, but...
 - Supernovae: dedicated trigger
 - Neutrons: correlated in time/space with other events

Backups

- 1. Event types and triggering
 - Successfully access the majority of physics of interest.
 - a Have the ability to handle event rates.
 - Solution Discard non-physics events using a trigger.
 - Sufficient local storage/processing to deal with events from a local supernova.

2. Detector readout requirements

- I Handle incoming data from multiple compartments.
- 2 Deal with cross-compartment triggers.
- Readout rate will depend on where the triggers are implemented i.e. in electronics firmware or on a backend system.
- Design includes a setup such that if one node fails it will automatically run on another node. Investigate cloud like setup?

- 3. Data storage
 - Transfer of data from the DAQ machines to disk.
 - Transfer of data offsite.
 - Run numbering scheme.

- 4. Functionality
 - Should be easy to use for non-experts.
 - Have the ability to run compartments independently (e.g. for calibration).
 - Sead out of additional calibration information.

5. Detector monitoring

- Successfully access the majority of physics of interest.
- I Have the ability to handle event rates.
- Solution Discard non-physics events using a trigger.
- Sufficient local storage/processing to deal with events from a local supernova.
- Near time checks will have to be made on the incoming data to ensure that the detector is performing satisfactorily.
- Monitoring of electronics/PMTs e.g. temperature, voltage etc. This should use a separate readout stream to the data.