

The Belle II Pixel Detector

DEPFET Collaboration

The SuperKEKB Accelerator

The Belle II Detector

- Detector requirements
 - Light material
 - Vertexing capability
 - Particle identification
 - E.M. calorimetry
 - K^0_L and muon ID
 - Data handling capabilities

→ New detector: **Belle II**

The Belle II Pixel Detector

Belle II Vertex Detector Requirements

	Belle II PXD	
Occupancy	0.4 hits/µm²/s	
Radiation	2 Mrad/year	
	2.10 ¹² 1 MeV n _{eq} per year	
Duty cycle	1	
Frame time	20 µs	
Momentum range	Low momentum (< 1 GeV)	
Acceptance	17°-155°	
Material budget	0.21% X ₀ per layer	
Resolution	15 μm (50x75 μm²)	

- Modest resolution (15 µm), dominated by multiple scattering → Pixel size (50 x 75 µm²)
- Lowest possible material budget (0.2% X₀/layer)
 - Ultra-transparent detectors
 - Lightweight mechanics and minimal services

0.00

-0.5

0.0

polar angle, $cos(\theta)$

0.5

1.0

The DEPFET Ladder

cmarinas@uni-bonn.de

DCDB (Drain Current Digitizer) Analog frontend

UMC 180 nm Size $5.0 \times 3.2 \text{ mm}^2$ TIA and ADC Pedestal compensation Rad. Hard proved (20 Mrad)

PXD9: Belle II DEPFET Sensors

Hybrid 5 – Full System Demonstrator

- PXD9 small Belle II type matrix
 - Pixel pitch: $50x55 \ \mu m^2$
 - Thinned to 75 μm
 - Gate length: 5 μm
 - Thin gate oxide
 - 32x64 pixels readout
- Final readout chain
 - SwitcherB
 - DCDB
 - DHPT
 - DHH

ASICs Performance

• DCDB4.2

All channels show good linearity (INLpp < 8 ADU) All channels show low noise < 0.55 ADU Homogeneous gain map

ASICs Performance

• DHPT1.2: Proper data transmission after 10 m Infiniband cable

ASICs Performance

• Error free DCDB4.2-DHPT1.1 communication

Delay scan - hybrid5 - asicpair: 1

Belle II DEPFET Sensors

- Optimization of DEPFET voltages
 - Source measurements
 - Laser measurements

Belle II PXD Residuals

- Matrix tilted along column: multi-column clusters
- Expectation for single pixel readout: $RMS = 50 \ \mu m / \sqrt{12} \approx 14.5 \ \mu m$

PXD9: Belle II DEPFET Sensors

ALL results are satisfactory, as expected by design and also according to simulations:

ASICs performance: Noise, speed, ... Sensor: Charge collection, signal-to-noise, gain, residuals, ...

→ Not mentioned here: Irradiation campaigns, stability tests, other test vehicles...

DESY TB

- VXD common test beam in April 2016
- Small sector of the final sensors and ASICs*
 2 PXD + 4 SVD layers
- Complete VXD readout chain: HLT, monitoring, event building, PocketDAQ
- CO₂ cooling, slow control, environmental sensors
- Illumination with (up to) 6 GeV e⁻ under solenoid magnetic field (PCMAG)
- Alignment, tracking algorithms, ROI

 <u>Goal</u>: System integration and Phase 2 Commissioning

Belle II Vertex Detector

Silicon Vertex Detector (SVD)
4 layers of DSSD
r = 3.8 cm, 8.0 cm, 11.5 cm, 14 cm
L = 60 cm
~ 1 m²

Pixel Detector (PXD)
2 layers of DEPFET pixels
r = 1.4 cm, 2.2 cm
L = 12 cm
~ 0.027 m²

VXD Phase 2 Hardware

- Two PXD and four SVD layers
- +X direction, horizontal plane (highest background sensitivity)

Test Beam set up to mimic Phase 2 arrangement

Test Beam Set Up

PXD on the SCB

256 x 250 pixels	512 x 250 pixels	
 55 x 50 μm (L1) 	• 60 x 50 μm (L1)	
 70 x 50 μm (L2) 	• 85 x 50 μm (L2)	

A STATE OF CONTRACTOR OF CONTRACTOR

cmarinas@uni-bonn.de

VXD Assembly

0

cmarinas@uni-bonn.de

Integration into PCMAG

cmarinas@uni-bonn.de

6

PXD Hit Maps

Outer Backward

24

Threshold = $5 (\sim 1200 \text{ electrons})$ ٠

cmarinas@uni-bonn.de

PXD Signals

- The response from the matrix is rather uniform even without tuning. Modules just worked using operating parameters from Hybrid 5
- There is lot of room for improvements with better optimization of voltages and ASICs

PXD Efficiency

Efficiency >95%

Conclusion

- Full scale detector demonstrator: Sensor and ASICs OK
- 2 PXD layers fully operational with SVD: 'Final' Phase 2 hardware
 - High SNR and efficiency, residuals according to specs
 - Only possible with an operational DAQ system
 - Slow control and monitoring system ready
- Preparations for the BEAST commissioning phase started
- Mass detector production will follow

Schedule

Thanks

CONTRACTOR OF CONTRACTOR