

# **Report on B2TiP activities**

#### Christoph Schwanda (HEPHY Vienna)

JENNIFER Consortium General Meeting September 22, 2016, QMUL, London UK

# B2TiP concept

- The "Belle II Theory Interface Platform" is a joint theory-experiment effort to define the Belle II physics program
- B2TiP is organized in 9 working groups
- The charge of each WG is to identify the "golden modes", perform simulation studies and finally produce a chapter of the B2TiP report
- The activity is driven by a series of workshops

### **B2TiP WG structure**

| WG1 | Semileptonic & Leptonic B decays                               |
|-----|----------------------------------------------------------------|
| WG2 | Radiative & electroweak penguins                               |
| WG3 | $lpha$ ( $\phi_{	extsf{2}}$ ) and $eta$ ( $\phi_{	extsf{1}}$ ) |
| WG4 | $\phi_3$                                                       |
| WG5 | Charmless hadronic B decays                                    |
| WG6 | Charm physics                                                  |
| WG7 | Quarkonium-like states                                         |
| WG8 | Tau, low multiplicity and electroweak physics                  |
| WG9 | New Physics (models)                                           |

### **B2TiP workshop series**

- 1. October 30-31, 2014 @ KEK
- 2. April 27-29, 2015 @ Krakow
- 3. October 28-29, 2015 @ KEK
- 4. May 23-25, 2016 @ Pittsburgh
- 5. November 15-17, 2016 @ MIAPP Munich (editorial meeting)

plus the kickoff meeting June 16-17, 2014 @ KEK and a few focused meetings

# Achievements (by B2TiP Pittsburgh May 2016)

- Identified priority modes and benchmarks for each group
- Developed advanced physics analysis framework: capable of full analysis
- FEI (B reconstruction), flavour tagging, missing energy software ready
- 5/ab MC delivered, O(30) analysts preparing sensitivity studies
- Accurate feasibility studies performed
- Performance of the detector and software measured and iterating
- Working versions of trigger tools for low multiplicity analyses available

### Semileptonic & Leptonic WG 1&2 : <u>4 Full simulation</u> <u>studies</u> *including beam background*@B2TiP Pitt

| BR Stat Error [%] in 700 fb <sup>-1</sup>                     | Belle/<br>*Babar | B2BII MC | Belle II<br>MC5         |
|---------------------------------------------------------------|------------------|----------|-------------------------|
| $B \rightarrow \pi I \vee untagged, M. Lubej$                 | 1.9              | -        | 1.3                     |
| Bs $\rightarrow$ K I v untagged @Y(5S) A. Zupanc              | -                | 7.5      | -                       |
| $B \rightarrow \tau \vee$ Had tag, M. Merola                  | 38               |          | 34                      |
| $B \rightarrow K^{*+} \vee \vee$ Had tag Cut&Count, E. Manoni | *<2.9 · 10-4     |          | <3.7 · 10 <sup>-4</sup> |



• Analysis tools: Rest-of-Event, Untagged SL, FEI/Fullrecon, optimized  $\gamma/\pi^0$  selection

# WG3 Time Dependent CP Violation

Full simulation studies of 5 modes @ B2TiP Pitt.
 Belle II sensitivity improvements.

| Stat. Precision with 710 fb <sup>-1</sup>                   | SCP   |                 | ACP   |                 | ∆t [ps] resol. |                 |
|-------------------------------------------------------------|-------|-----------------|-------|-----------------|----------------|-----------------|
|                                                             | Belle | Belle II<br>MC5 | Belle | Belle II<br>MC5 | Belle          | Belle II<br>MC5 |
| B → K <sub>S</sub> K <sub>S</sub> K <sub>S</sub> , P. Jäger | 0.27  | 0.19            | 0.17  | 0.11            |                |                 |
| $B \rightarrow \eta'$ (η→γγ) K <sub>S</sub> , S. Lacaprara  | 0.15  | 0.12            | 0.10  | 0.09            |                |                 |
|                                                             |       |                 |       |                 |                |                 |
| B → Φ(KK) K <sub>S</sub> , A. Gaz                           |       |                 |       |                 | NA             | 0.75            |
| B → J/ψ Ks, L. Li Gioi                                      |       |                 |       |                 | 0.92           | 0.71            |
| $B \rightarrow π^0 π^0 (→ eeγ)$ , F. Abudinen               |       |                 |       |                 | NA             | 1.5             |

**Analysis tools**: mdst K<sub>S</sub>, flavour tagging, tag-vertex, continuum suppression.

**Homework**: K<sub>L</sub>, e tracks, QED background, B2BII direct cross-check **Theory**: Penguin pollution needs precision  $\Gamma(B^+)/\Gamma(B^0)$ .

- WG4 (Φ<sub>3</sub>/γ) and 6 (Charm) <u>4 full simulation based studies</u> *a* B2TiP Pitt
  - $\Phi_3$  from  $B \rightarrow D[K_S \pi \pi] K^{\pm}$ , I. Watson
  - D semileptonics, J. Bennett
  - D tagging, G. de Pietro
  - D mixing and CPV, A. Schwartz, G. Casarosa

#### Preparation for first data

L1 Trigger Menu for Low Multiplicity Physics evaluated with L1 emulator.

https://d2comp.kek.jp/record/314/files/BELLE2-NOTE-PH-2015-011.pdf

Preparing for systematic uncertainty measurements <u>https://d2comp.kek.jp/record/345/files/BELLE2-NOTE-PH-2016-001.pdf</u>

# B2TiP report status (as a B2TiP May 2016)

| Section                              | Exp editor(s)                   | Theory editor(s)                         | Support<br>Documents | Draft/Outline | Svn | ~ Draft status (April 2016)                              | Rev      | iew<br>us | Pages, Figures,<br>Tables |
|--------------------------------------|---------------------------------|------------------------------------------|----------------------|---------------|-----|----------------------------------------------------------|----------|-----------|---------------------------|
| Full Document                        |                                 |                                          | 1, 2, 3              |               | T   |                                                          |          |           |                           |
| 1. Introduction & Data sets          | Urquijo                         | Kou                                      |                      |               |     | 60%, theory part missing                                 | •        |           |                           |
| 2. Belle II Detector                 | Urquijo, Krizan                 | •                                        |                      |               |     | 50%, update from Krizan coming                           | •        |           |                           |
| 3. Simulation                        | Ferber                          | •                                        |                      |               |     | 80%                                                      | 69       |           |                           |
| 4. Reconstruction                    | Bennett                         |                                          | 1,2                  |               | T   | 30%, need input on tracking, neutrals, v0, beamspot, eID | •        |           |                           |
| 5. Analysis software                 | Li Gioi, Zupanc,<br>Goldenzweig |                                          | 1                    |               |     | Rough outline (base on several theses)                   | 8        |           |                           |
| 6. Theory overview                   | •                               | Nierste                                  |                      |               | R   | 40%                                                      | •        |           |                           |
| 7. WG1: Semileptonic &<br>Leptonic B | De Nardo, Zupanc                | Kronfeld, Tackmann,<br>Watanabe          | 1                    |               | R   | Rough outline                                            | 2        |           |                           |
| 8. WG2: Radiative and EWP B          | Ishikawa, Yamaoka               | Feldman, Haisch                          | 1                    |               | T   | 20%                                                      | •        |           |                           |
| 9. WG3: Time dependent CPV<br>B      | Gaz, Li Gioi                    | Zupan, Mishima                           |                      |               | ī   | Outline                                                  | <u>@</u> | <b>↑</b>  |                           |
| 10. WG4: Phi 3                       | Libby                           | Blanke, Grossman                         | 1                    |               |     | 20%                                                      | •        |           |                           |
| 11. WG5: Hadronic B                  | Goldenzweig                     | Beneke, Chiang                           | 1                    |               | R   | 20%                                                      | •        |           |                           |
| 12. WG6: Charm                       | Casarosa, Schwartz              | Petrov, Kagan                            |                      |               |     | Outline                                                  | 2        |           |                           |
| 13. WG7: Quarkonium                  | Fulsom, Shen, Mizuk             | Hanhart, Kiyo, Polosa,<br>Prelovsek      | 1, 2, 3, 4, 5        |               |     | 30%, charmonium only, no simulation                      | •        |           |                           |
| 14. WG8: Low multiplicity & tau      | Ferber, Hayasaka                | Passemar, Hisano                         | 1, 2, 3, 4           |               | T   | 20%                                                      | •        |           |                           |
| 15. WG9: New physics                 | Bernlochner, Sato               | Nierste, Silvestrini, Kamenik,<br>Lubicz |                      |               |     | Detailed outline                                         | 8        |           |                           |
| 16. Summary                          | Urquijo                         | Kou                                      |                      |               | T   |                                                          |          |           |                           |

# Simulation chapter

- Generators
- Magnetic field
- Background simulation



| Physics process              | Cross section [nb]         | Cuts                                                 | Reference    |
|------------------------------|----------------------------|------------------------------------------------------|--------------|
| $\Upsilon(4S)$               | $1.05 \pm 0.10$            | -                                                    | [1]          |
| $u\bar{u}(\gamma)$           | 1.61                       | -                                                    | KKMC         |
| $d\bar{d}(\gamma)$           | 0.40                       | -                                                    | KKMC         |
| $s\bar{s}(\gamma)$           | 0.38                       | -                                                    | KKMC         |
| $c\bar{c}(\gamma)$           | 1.30                       | -                                                    | KKMC         |
| $e^+e^-(\gamma)$             | $300 \pm 3$ (MC stat.)     | $10^{\circ} < \theta_{e's}^{*} < 170^{\circ}$ ,      | BABAYAGA.NLO |
|                              |                            | $E_{e's}^* > 0.15 \text{ GeV}$                       |              |
| $e^+e^-(\gamma)$             | 74.4                       | e's ( $p > 0.5$ GeV) in ECL                          | -            |
| $\gamma\gamma(\gamma)$       | $4.99 \pm 0.05$ (MC stat.) | $10^{\circ} < \theta^{*}_{\gamma's} < 170^{\circ}$ , | BABAYAGA.NLO |
|                              |                            | $E_{\gamma's}^{*} > 0.15 \text{ GeV}$                |              |
| $\gamma\gamma(\gamma)$       | 3.30                       | $\gamma$ 's (p > 0.5 GeV) in ECL                     | -            |
| $\mu^+\mu^-(\gamma)$         | 1.148                      | -                                                    | KKMC         |
| $\mu^+\mu^-(\gamma)$         | 0.831                      | $\mu$ 's ( $p > 0.5$ GeV) in CDC                     | -            |
| $\mu^+\mu^-\gamma(\gamma)$   | 0.242                      | $\mu$ 's (p >0.5GeV) in CDC,                         | -            |
|                              |                            | $\geq 1 \gamma (E_{\gamma} > 0.5 \text{GeV})$ in E   | CL           |
| $\tau^+\tau^-(\gamma)$       | 0.919                      | -                                                    | KKMC         |
| $\nu \overline{\nu}(\gamma)$ | $0.25 \times 10^{-3}$      | -                                                    | KKMC         |
| $e^+e^-e^+e^-$               | $39.7 \pm 0.1$ (MC stat.)  | $W_{\ell\ell} > 0.5 \text{GeV}$                      | AAFH         |
| $e^+e^-\mu^+\mu^-$           | $18.9\pm0.1$ (MC stat.)    | $W_{\ell\ell} > 0.5 \text{GeV}$                      | AAFH         |
|                              |                            |                                                      |              |



### **Reconstruction chapter**



• Tracking, calorimeter reconstruction, charged particle identification, neutral particle identification ( $\gamma$ ,  $\pi^0$ , K<sub>L</sub>)

# Analysis tools

| 1.1        | Intro                   | oduction                       | 1  |  |  |  |  |
|------------|-------------------------|--------------------------------|----|--|--|--|--|
| <b>1.2</b> | Particle reconstruction |                                |    |  |  |  |  |
| <b>1.3</b> | Vert                    | ex reconstruction              | 1  |  |  |  |  |
|            | 1.3.1                   | Vertex finding algorithms      | 1  |  |  |  |  |
|            | 1.3.2                   | Primary vertex                 | 2  |  |  |  |  |
|            | 1.3.3                   | B-tag vertex $(\Delta t)$      | 2  |  |  |  |  |
|            | 1.3.4                   | Fit of the Decay Chain         | 4  |  |  |  |  |
| 1.4        | Con                     | tinuum Suppression             | 4  |  |  |  |  |
|            | 1.4.1                   | Event topology                 | 4  |  |  |  |  |
|            | 1.4.2                   | Performance                    | 4  |  |  |  |  |
| 1.5        | Flav                    | or Tagger                      | 4  |  |  |  |  |
|            | 1.5.1                   | Definitions                    | 4  |  |  |  |  |
|            | 1.5.2                   | Tagging Categories             | 5  |  |  |  |  |
|            | 1.5.3                   | Workflow and Algorithms        | 5  |  |  |  |  |
|            | 1.5.4                   | Performance                    | 5  |  |  |  |  |
| <b>1.6</b> | Full                    | Event Interpretation           | 5  |  |  |  |  |
|            | 1.6.1                   | Physics Motivation             | 5  |  |  |  |  |
|            | 1. <b>6.2</b>           | Hadronic, Semileptonic and In- |    |  |  |  |  |
|            |                         | clusive Tagging                | 7  |  |  |  |  |
|            | 1.6.3                   | Hierarchical Approach          | 8  |  |  |  |  |
|            | 1.6.4                   | Training modes                 | 9  |  |  |  |  |
|            | 1.6.5                   | Calibration                    | 11 |  |  |  |  |
| Bib        | liogra                  | phy                            | 11 |  |  |  |  |

# **B2TiP timeline**

- 2016 key dates
  - May B2TiP Pittsburgh presentation of 1/ab to 5/ab studies
  - June MC6 production based on software release 7 (removal of legacy tracking, more beam background processes); to be used in some studies
  - July First draft of each chapter sent for soft review –
    VERSION 1
  - September Deadline for response from reviewers
  - Oct 31 Hard deadline for delivery of chapters for review prior to the MIAPP B2TiP workshop – VERSION 2
  - Nov 15-17 B2TiP Editorial meeting
  - Dec-Feb Editing and review; we will discourage new contributions in this period FINAL VERSION
- Journal submission: March 31, 2017

# Summary

- B2TiP is an effort to identify physics opportunities at Belle II together with the theory community
- This process has converged in a series of 4 workshops so far
- The B2TiP document has evolved a lot between Pittsburg May 2016 and now – soft review process
- The final version is expected for the November 2016 workshop in Munich