

TZK: RECENTS RESULTS AND PROSPECTIVE

Gabriella Catanesi

Istituto Nazionale di Fisica Nucleare (INFN) Bari – Italy

London, September 22th 2016

Neutrino Oscillations

If mass and weak eigenstates are different:

- Neutrino is produced in weak eigenstate
- It travels a distance L as a mass eigenstate
- It will be detected in a (possibly) different weak eigenstate

Bruno Pontecorvo 1969

$$V_{\mu} \longrightarrow V_{\mu}, V_{e} \text{ or } V_{\tau}$$

$$V_{1}, V_{2}, V_{3}$$

$$\begin{pmatrix} v_{\mu} \\ v_{x} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \end{pmatrix} P(v_{\mu} \rightarrow v_{x}) = \sin^{2}(2\theta)\sin^{2}\left(\frac{1.27\Delta m^{2}L}{E_{v}}\right)$$

Evidence for neutrino oscillations (Super-Kamiokande @Neutrino '98)

Summary Evidence for V_{u} oscillations $V_{u} \rightarrow V_{u}$ $q_{0} \neq C.L.$ $v_{v} \rightarrow V_{u}$ $q_{0} \neq C.L.$ $v_{v} \rightarrow V_{u}$

Y. Fukuda et al., PRL 81 (1998) 1562

The Pontecorvo-Maki-Nakagawa-Sakata (PMNS) Matrix (before 2011)

Neutrino sources

- Natural sources (solar and atmosferic)
- Reactor v
- Accelerator v («Long Baseline»)

Everything changed in 2011/2012

28 events observed over 4.92 ± 0.55 bkgs $\rightarrow 7.3\sigma$ excess First Confirmation of 'Appearance phenomenon' w/ > 5σ significance.

Word's bigger LBL neutrino experiment

~400 physicists, 58 institutions, 11 nations, 3 continents

Breakthrough prize 2015 (Nishikawa-san +T2K collaboration) for their role in the discovery and study of neutrino oscillation.

The Tokai to Kamioka (T2K) Experiment

Super-K Detector

- The T2K experiment searches for neutrino oscillations in a high purity v_{μ} beam
- A near detector located 280 m downstream of the target measures the un-oscillated neutrino spectrum
- The neutrinos travel 295 km to the Super-Kamiokande water Cherenkov detector
- v_e appearance
- ν_µ disappearance
- δ_{cp}
- X-section + exotics

J-PARC Accelerator

Near Detector

- 30 GeV proton beam generated by J-PARC Main Ring (MR) directed to the graphite target
- Secondary pions collected and focused by the magnetic horns
 - ν beam: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ (Forward horn current)
 - $\overline{\nu}$ beam: $\pi^- \rightarrow \mu^- + \overline{\nu}_{\mu}$ (Reverse horn current)
- Uses off-axis method to make the spectrum peak at 600 MeV
 - Expected oscillation maximum at L=295 km

Near Detectors

ND280 (off-axis)

- **Magnet:** B = 0.2 T
- **TPC:** p measurement + particle-ID with dE/dx
- **FGD:** Fine-grained detectors (2 × 0.8 t) \rightarrow FGD1 (C), FGD2 (C+H₂O)
- SMRD: magnetized muon range detector
- P0D: pi-zero detector (Pb/brass-H2O-scintillator)
- ECal: electromagnetic calorimeter

INGRID (on-axis)

V_µ CC rate → monitor beam profile and stability
 Fe/Scintillator tracking calorimeter (16 Fe/Scint modules + 1 central one made of scintillator only)

ND280

TPC assembling

UA1 Magnet@CERN (beginning 80')

ND280 Installation

ANALYSIS STRATEGY

Near detectors observe the neutrinos prior to oscillations $\phi_v \cdot \sigma_v \cdot \epsilon_{NEAR}$

- Use near detector neutrino interactions to constrain flux x σ uncertainty across
 - different topologies
 - carbon and water targets (FGD1/FGD2)
 - "wrong sign" v_{μ} -CC in \overline{v} -mode beam

	FHC		RHC	
	\mathcal{V}_{μ}	\overline{v}_e	\mathcal{V}_{μ}	$\overline{\mathcal{V}}_{e}$
φ	3.6	3.7	3.7	3.8
σ	4.1	5.2	4.1	5.4
SK	4.2	3.5	3.9	4.0
PREFIT	11.9	12.6	12.7	14.3
TOTAL	5.1	6.8	5.1	7.4

Neutrino Flux @ Nd280 100 MeV/c) + Data - Data 🔶 Data Events/(100 MeV/c 0005 220 ¥ 200⊨ postfit postfit postfit v CCQE v CCQE v CCQE 2 180 v CC 2p-2h v CC 2p-2h v CC 2p-2h СС0π CC1π CCNπ 160 250 CC Res 1π VCC Res 1π v CC Res 1π 140 F 1500 120E v CC Coh 1π ν CC Coh 1π ν CC Coh 1π 200 100 150 v CC Other v CC Other v CC Other 1000 v NC modes v NC modes v NC modes 100 500 ⊽ modes ⊽ modes ⊽ modes 1500 2000 2500 3000 3500 4000 4500 5000 Muon momentum (MeV/c) 1500 2000 2500 3000 3500 3500 4000 4500 5000 Muon momentum (MeV/c) 1000 1500 2000 2500 3000 3500 4000 4500 5000 Muon momentum (MeV/c) *v*-mode *v*-mode • 6 *v*-mode samples (FGD1,2) 5.8x10²⁰ POT - Data - Data postfit postfit ്ള് 250 V CCQE v CCQE μ^+ N-track • *v_μ* CC0π, CC1π, CCnπ μ^+ 1-track 200 non-CCQE v non-CCQE • 8 *v*-mode samples (FGD1,2) 2.8x10²⁰ POT 150 🗕 V CCQE **⊽** CCQE 100 • \overline{v}_{μ} CC 1-track, CC N-track + v_{μ} "wrong sign" ⊽ non-CCQE ▼ non-CCQE • simultaneous fit of µ momentum/angle: 7000 8000 9000 10000 Muon momentum (MeV/c) 2000 3000 4000 5000 2000 3000 4000 5000 6000 7000 8000 9000 10000 Muon momentum (MeV/c) • FGD1 (all plastic) and FGD2 (water+plastic) - Data - Data postfit postfit • Flux parameters increase by ~15% v CCQE v CCQE μ^{-} 1-track Cross sections ~consistent with input μ^{-} N-track 30 non-CCQE non-CCQE 25 • P-value = 8.6% V CCQE **⊽** CCQE • Reduce uncertainties fron 12-15% to 5-8% v non-CCQE 7000 8000 9000 10000 Muon momentum (MeV/c) 7000 8000 9000 10000 Muon momentum (MeV/c) 2000 3000 2000 3000 4000 5000

One of the 10.000 photosensors of SK

as an electron is < 1%

$\nu_{\mu} \text{ and } \overline{\nu}_{\mu} \text{ disappearance results}$

Constraints on the atmospheric parameters: θ_{23} and Δm^2_{31}

World-leading measurement of sin² θ₂₃
 Results continue to be consistent with maximal mixing/oscillation
 No significant differences between V and V

	NH	IH	
sin²θ ₂₃	$0.532_{-0.068}^{+0.046}$	$0.534_{-0.007}^{+0.043}$	
IΔm ² ₃₂ I (×10 ⁻⁵ eV ² /c ⁴)	$254.5_{-8.4}^{+8.1}$	$251.0^{+8.1}_{-8.3}$	

 θ_{13} and δ_{cp}

- T2K-only result consistent with the reactor measurement

- Favors the
$$\delta_{cp} \sim -\frac{\pi}{2}$$
 region

Results: δ_{CP} confidence regions

T2K + Reactor θ_{13} (PDG 2015)

Feldman-Cousins critical $\Delta\chi^2$ values for 90% C.L.

CP conservation ($\delta_{CP} = 0, \pi$) excluded at 90% C.L.

Toy MC: for NH and true $\delta_{CP} = -\pi/2$ the probability for excluding $\delta_{CP} = 0$ or π at 90% C.L. is 19.6% and 17.3% respectively

90% Confidence Interval:

δ_{CP} = [-3.13, -0.39] assuming NH
 δ_{CP} = [-2.09, -0.74] assuming IH

Analysis Improvements

Development of new event reconstruction algorithm for SK

- Better π^0 rejection (done)
- Better vertex resolution:

ICHEP 2016

- Fid. vol. cut from ID wall
 - $-2m \rightarrow 1m$ (being studied)
 - -~20% gain
- Better PID $\rightarrow \pi/\mu$ separation in SK.

Beam Upgrade

Secondary Beamline Upgrade Schedule

T2K aim to reach the number of approved POT (7.8×10²¹) in ~2021.

Begin phase II in ~2021 up to 2026, before expected start of Hyper-K (~2026)

Beam performance upgrades:

- Approved main ring power supply upgrade & horn current increase (250 kA → 320 kA) in 2018 → 750 kW
- Accelerator & beamline upgrade (double the spill frequency) in 2021 → 1.3 MW

T2K phase II (T2K-II) Data Taking : 2020-2025

Upgrading T2K: near detectors

- High stats of T2K-II motivate reduction of systematics
- T2K Task Force formed to improve existing ND280 detector
 - Active water detector elements
 - Expand phase space (high zenith-angle tracks)
 - Lower momentum thresholds
 - Third view of vertex detector

Active target with large angular acceptance (WAGASCI/3-axis FGD)

- Goal : CDR-like document describing the preferred configuration for an ND280 upgrade to be delivered Fall 2016
 - Based on a quantitative evaluation of the performance
- Boundaries : to be installed around 2020, within the ND280 pit, reusing the magnet facility

arXiv:1002.2680 [hep-ex]

Significant discrepancies on proton multiplicity and momentum distributions

Need low momentum thresholds to reduce xsec systematics

Important difference lie below threshold for liquid detectors

- •T2K has pioneered (~1 bar) gas TPCs for accelerator neutrinos
- •Need a path to high pressures for sufficient statistics
- Generic to next generation LBL experiments

Federico Sanchez talk

Intermediate Detector (* WP4)

TITUS

- Located 2.5° off-axis in same direction as Tochibora at 1.8 km
- Gd-loading for neutron detection
- Magnetized muon range detector
- Long geometry for high momentum muon containments

NuPRISM

- Tall detector covers 1.0°-4.0° off-axis angles for studying energy dependence of neutrino interactions
- Located at 1-1.2 km baseline

Process for a single detector design with off-axis spanning coverage and Gd-loading is started

Far Detector Upgrade

- The reconstruction performance of Super-K is steadily improved.
 - \cdot The FitQun program to reconstruct the Cherenkov rings. The π^0 background in T2K was reduced to 1/3.
- The upgrade of Super-K (called SK-Gd) is under development to • improve the neutron detection capability that is used to identify anti-neutrino events. A 0.2% concentratio olinium will be dissolved in a Super-K tank if all the requ re cleared.
- **Physics Target**
 - · Relic Supernova Neutrinos
 - · Neutrino versus Anti-neutrino Separation

Thank you !

New Horizontal TPCs

Resistive Bulk Micromegas

• Several advantages (charge spread, intrinsic spark protection)

NEXT STEPS

ILC TPC R/O electronics

Very thin FieldCage

- ✓ Design Report of the ND280 upgrade by the end of the year
- ✓ 2017: detailed design of the detectors/setting up the project and funding
- ✓ 2017-18 Neutrino Platform tests (with HPTPC)
- ✓ 2018-2020 construction/installation

TITUS Detector

Gd Doping

• 0.1% Gd₂(SO₄)₃ allows tagging of final state nucleons

- Clear n signals can be modified by nuclear effects: re-scattering, charge exchange, and absorption in the nuclear media
- Statistical information remains powerful approach for H₂O
- Cross section measurements

TPC performances

- Three large TPC for the T2K near detector
- The first large TPC using MPGD
- ~9 m**2 equipped with bulk Micromegas detect
- Playing a key role in the study of the neutrino fl interactions (charge, momentum and dE/dx PIE
- Space resolution : 0.6 mm
- Momentum res. 9% at 1 GeV
- dE/dx: 7.8 % (MIP)

10

