DAQ for Hyper-K Water Cherenkov detectors

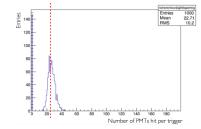
Tom Dealtry

Lancaster University associated with STFC-RAL

September 23, 2016

Outline

1 Software


- Simulation
- Low-energy triggering

2 Hardware

WCSim: simulating water Cherenkov detectors

- There were problems with the dark noise, digitizer, & trigger
 - Trigger efficiency too high at low energy
 - ★ Trigger used raw hits, instead of digits
 - Difficult to perform studies on digitizer/trigger effects

- Rewrote to fix issues, and made it modular
 - Can now easily study new triggers (& digitizers)
- Other improvements:
 - Overlay radioactivity on physics events
 - Upgrade from Geant4.9.x to Geant4.10.x

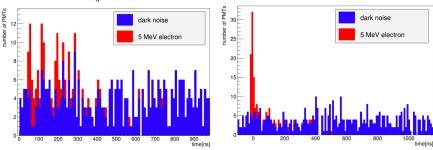
Data source	Event rate	Hits/event	Raw data rate
Dark noise	10 kHz	1 (per tube)	5 GB/s
Low energy backgrounds	10 kHz	25	3 MB/s
Cosmic muons	100 Hz	40,000	50 MB/s
Beam	1 Hz	0	0 MB/s
Calibration	2 Hz	40,000	2 MB/s
Pedestal	1 Hz	40,000	2 MB/s

- Dark noise dominates the raw data
 - Want to reduce this as much as possible, without sacrificing physics
 - Leads to cheaper DAQ system
 - ★ Less hardware: easier to scale
 - * Less storage: 5 GB/s = 18 TB/hour = 13 PB/month
 - * Less CPU time to reconstruct events / analyse the dataset

How SK triggers: NHITS

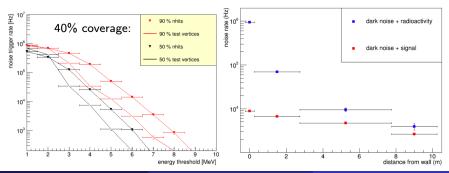
- Count number of hits in a sliding time window
 - Window size pprox max light travel time across detector
- L1 If NHITS > threshold, issue trigger
- L2 If NHITS > a lower threshold, perform full reconstruction to decide to trigger

	SK	HK 14%	HK 40%
Max light travel time (ns)	200	400	400
NPMTs	11146	14728	44028
PMT dark rate (kHz)	4.2	8.4	8.4
Noise hits in trigger decision window	~ 9	\sim 49	\sim 148


- There are so many background hits in HK 40%!
- Are there clever ways to trigger without performing full reconstruction?

Test-vertices L2 trigger

diaitized times


- Populate detector with cylindrical array of test-vertices $(\Delta L = 5 \text{ m})$
- For each vertex, apply photon time-of-flight correction, then proceed with NHITS-like trigger
 - \blacktriangleright Reduces trigger time window: 400 ns \rightarrow 20 ns
 - ~vertex reconstruction to kill dark noise
 - ★ 5 MeV e^- vertex resolution: position 2.1 m; time 13 ns

corrected times

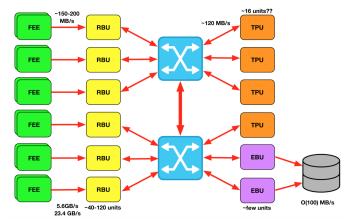
Test-vertices L2 trigger performance

- Process in real-time on ${\sim}100~{\rm GPUs}$
 - Currently <\$400,000 (should become cheaper)
- $\bullet\,$ For a given noise trigger rate, the test-vertices algorithm lowers the trigger threshold by ${\sim}1~\text{MeV}$
- Can cut PMT radioactivity by rejecting events with reconstructed vertices at detector edges
 - ▶ Suppress 87% PMT radioactivity with 30% total volume loss

Tom Dealtry (Lancaster / STFC-RAL) DAQ for Hyper-K Water Cherenkov detectors

Outline

Software

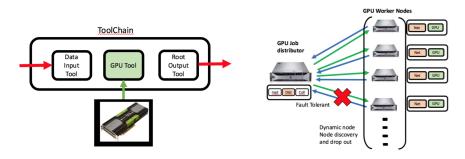

- Simulation
- Low-energy triggering

2 Hardware

3 Summary

DAQ reference design

- Physics studies used as input to design
 - Ongoing, two-way process


FEE: Front-End Electronics RBU: Readout Buffer Unit

TPU: Trigger Processing Unit EBU: Event Building Unit

Tom Dealtry (Lancaster / STFC-RAL) DAQ for Hyper-K Water Cherenkov detectors

DAQ framework

- Many options for a DAQ framework
 - artdaq, MIDAS, written ourselves, ...
- Currently doing tests using ToolDAQ
 - Developed in UK for HK as a fault-tolerant, lightweight, DAQ framework
 - Currently being used by the ANNIE experiment
 - Designing HK & intermediate detector layout

- Improved WCSim
- $\bullet\,$ Studying some new L2 trigger algorithms for HK 40%
 - \blacktriangleright Test vertices lowers energy threshold by ${\sim}1~{
 m MeV}$
 - Other triggers are being studied
- TITUS should be easier
 - Fewer lower-noise (smaller) PMTs, but more cosmics
 - Will perform detailed studies when a combined near detector design has been chosen
- Have a baseline DAQ hardware design
- Weighing up pros & cons of different DAQ frameworks
 - Including our bespoke code (ToolDAQ)

September 23, 2016 11 / 11

DAQ design

Use physics studies & prototype measurements to design the DAQ

- Event rates and triggering
- Oetector readout requirements
- Oata storage
- Functionality
- Oetector monitoring
- Key aspects
 - Raw data rate
 - In particular raw data rate in the event of a local supernova
 - Triggered event data rate
 - This depends on where the triggers are implemented
 - $\star\,$ Firmware of the electronics and/or in the DAQ computer
 - Triggered architecture
 - What firmware etc will we use.

- 1. Event types and triggering
 - Successfully access the majority of physics of interest.
 - a Have the ability to handle event rates.
 - Solution Discard non-physics events using a trigger.
 - Sufficient local storage/processing to deal with events from a local supernova.

2. Detector readout requirements

- I Handle incoming data from multiple compartments.
- 2 Deal with cross-compartment triggers.
- Readout rate will depend on where the triggers are implemented i.e. in electronics firmware or on a backend system.
- Design includes a setup such that if one node fails it will automatically run on another node. Investigate cloud like setup?

- 3. Data storage
 - Transfer of data from the DAQ machines to disk.
 - Transfer of data offsite.
 - Run numbering scheme.

- 4. Functionality
 - Should be easy to use for non-experts.
 - Have the ability to run compartments independently (e.g. for calibration).
 - Sead out of additional calibration information.

5. Detector monitoring

- Successfully access the majority of physics of interest.
- a Have the ability to handle event rates.
- Solution Discard non-physics events using a trigger.
- Sufficient local storage/processing to deal with events from a local supernova.
- Near time checks will have to be made on the incoming data to ensure that the detector is performing satisfactorily.
- Monitoring of electronics/PMTs e.g. temperature, voltage etc. This should use a separate readout stream to the data.