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ENUBET is a project approved by the European Research Council (ERC) for a 5 
years (06/2016 – 06/2021) with an overall budget of 2 MEUR

ERC-Consolidator Grant-2015, no 681647 (PE2)
P.I.: A. Longhin
Host Institution: INFN

ENUBET
Enhanced NeUtrino BEams from kaon Tagging 

Expression of Interest planned for submission to CERN-SPSC this 
autumn. Allow official commitment of CERN collaborators, support for 
beam test campaigns. Visibility. Possibility for CERN NP. 

Collaboration (as for Sep. 2016): 
~ 40 physicists from 10 institutions: INFN, CERN, IN2P3, Univ. of Bologna, 
Insubria, MI-Bicocca, Napoli, Padova, Roma, Strasbourg

http://enubet.pd.infn.it

● Kick-off meeting in Padova, 23-24 June 2016
 https://agenda.infn.it/conferenceDisplay.py?confId=11574

https://agenda.infn.it/conferenceDisplay.py?confId=11574
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Tackling the flux uncertainty problem

Last 10 years: knowledge of  improved 

enormously (SCIBooNE, MiniBooNE, T2K, MINERvA) 

 Still:

● In particular for
e
data are sparse/old (Gargamelle, T2K, NOvA) being 

based on the beam contamination (no intense/pure sources of GeV 
e
). 

Ideal (but difficult) solution: D.I.F. of stored  as in nuSTORM/nuPIL
● 

e
 precious for CPV! 

● “derivation” from  “delicate” expecially @ low-E (sub-GeV)

● No absolute measurement with < 10% error.
● Main contribution: the flux systematics “wall” 

● Mitigations and flux constraints already in place:

● hadro-production experiments SPY, HARP, NA61
● interactions on electrons (but small rates and only @ high-E)

NuMI beam by MINERvA Coll.  
hep-ex//1607.00704
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Impact of 
precision on 

e


7%

M. Hartz @ NuFact 2015

Exotic: sterile neutrinos, non-standard 
interactions and 3 have a similar 
phenomenology → 

a precise knowledge of (
e
) vs E is needed to 

get a deeper insight of the underlying 
physics.

The systematic uncertainty should be 
controlled to < 1-2% to minimize the 
impact on the CPV discovery 
sensitivity. Probe smaller and smaller 
values of sin 

CP

NSI

3+1 

DUNE

HK

Monitored beam: build a neutrino source employing conventional 
technologies reaching a precision on the initial flux < 1%

De Gouvea et al.,  1605.0937 
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The ENUBET monitored beam

Hadrons (K, π) 
e

protons

e+

neutrino 
detector

K decays

● Fully instrumented decay region 

K+ → e+ ν
e 
π0 → large angle e+ 

● 
e
 flux prediction = e+ counting

Traditional beam
●  Passive decay region

● ν
e
 flux relies on ab-initio 

simulations of the full chain

● large uncertainties from 
hadro-production

↔ 

Monitored beam

● The idea behind existing /hadron monitors is extended to the ultimate step of 
monitoring (~ inclusively) the decays in which  are produced.

● Uncertainties from hadro-production, PoT, hadron beam-line efficiency 
(happening “before” the tagging) are “by-passed” by the tagging.
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Working principle and setup

● 1) Hadron beam-line: q-selection, focusing, transfer of /K+ to a 50 m long 
instrumented decay tunnel (e+ tagger)

● 2) e+ tagger: real-time, ''inclusive'' monitoring of decay products

● Profiting of “kinematics” and a good focusing (important!) we can have:
only K decay products (at large angles) being measured with + and  decaying at 
small angles and reaching the dump without hitting the instrumented walls. 

● This allows:
✔ tolerable rates and irradiation (< 500 kHz/cm2, ~ 1.3 kGy)
✔ full/continuous control of all produced 

e
 

✗ contribution of 
e 
from  decays is < 2% using a “short” decay tunnel

✔ control of  from K (can be separated from - using their radial distribution)
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88 mrad

Decay kinematics and tagger acceptance

K+

+

● Good acceptance for K decays thanks to the large 
emission angle (~ m

K
)

● Golden channel for 
e
 : K+ → e+

e
0 (K

e3
, BR ~ 5%)


e

● Baseline design:
p = 8.5 GeV/c ± 20%,  < 3 mrad 
over 10 10 cm2, L = 50 m
→ trade-off to get E in R.O.I, few 


e 
from  decays, limited K loss in 

the beam-line, good e/ separation, 
reduced costs.

Radial energy deposition (all decay modes)

FLUKA

e+

0


Angular distribution of emitted 
positrons from K

e3
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Role of other K decays

+

+






+
+

0



+
+

-

+
+



0



+



0 

+

+

63 %

21 %

6 %

2 %

3.2%

● Hadronic K decays (~ overall rate) 
can be also used to infer the 

e
 flux 

correcting for the ratio of leptonic and 
hadronic branching ratios (can be 
considered a “silver sample”)

● On the other hand +/0 from K+ can 
mimic an e+  and “pollute” the K

e3
 

golden sample 
→ possible to discriminate with:
● 1) calorimetric longitudinal profile 

of energy deposition
● 2) tagging vertices by timing:

σ
t 
O(100 ps) ~ σ

zVTX
 O(1m) 

veto fake e+ from K+ → π+π-π+ and 
K+ → π+π0 reconstructed vertices
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The e+ tagger challenges

+ 
background

e+signal
● extended source of ~ 50 m
● grazing incidence 
● significant spread in the initial direction

The decay tunnel: a harsh environment
● particle rates: > 200 kHz/cm2

● backgrounds:  pions from K+ decays
Require to veto 98-99 % of them

Moreover: 

Max rate 
(kHz/cm2)

μ+ 190

γ 190

π+ 100

e+ 20

all 500

Injecting 1010 + in a 2 ms spill → 

, , , e+)
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● Considering we need 1.94 × 1013 K+ for ν
e

CC with a 500 t  detector at 100 m 

asking for 104 ν
e

CC implies: 

● 0.5-5 × 1020  PoT Well within present performances! A few years of run.
● ~ 2 × 108 spills. More challenging/unconventional. A possible scheme is

● multi-Hz slow resonant extraction + multi Hz-horn 
● R&D and machine studies are planned

Hadron beam-line: scenario A 
● Magnetic horns. Good collection. Pulsed devices. 
● t

impulse
 < 10 ms (Joule heating, I ~ O(100) kA)

● tagger rate limit is hit injecting 1010 π+ in 2 ms 
● Considering typical horn collection efficiencies this corresponds to             

0.3-2.5 × 1012 PoT/spill depending on E
p 
(spills with relatively “few” protons)

A possible structure at the SPS: 
a train of twenty10 ms long 
spills with 1.2  protons 
each spanning 2 s of the flat top 
(=50% SPS emptying).  …  20 ...

2 s flat top

10 ms 90 ms

1.2  p
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SHiP: arXiv:1504.04956

Hadron beam-line: scenario B 
● Static focusing: large aperture radiation-hard quadrupoles.
● Disadvantage: loss of acceptance w.r.t. horn-based focusing.

● PoT to get 104 ν
e

CC: 0.5-7 × 1021 O(~10 ×) more but still feasible. 

Can be compensated by (data taking × detector mass)
● Far from tagger maximal rates
● R&D on static focusing beam-line to maximize the collection 

efficiency (~ increase “useful” hadrons/PoT). 
● the single resonant slow extraction over O(s) times is less 

challenging than the multi-Hz version. Synergies with the needs of 
SHiP proposal at CERN. 
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Going beyond: ''time tagged'' beams

Accidental tag probability using 1010  hadrons/burst: A ~ 2  107 /T
extr

 
T

extr
= 1s (~ 1 observed e+ / 30 ns) + δ = 1 ns → A = 2 %  OK !

Using such long extractions prevents* using O(ms) pulsed focusing devices (horns, 
scenario A) but could be feasible with a static based focusing with DC elements 
(quadrupole triplets, bending magnets, scenario B) 
*T

extr
 = 2 ms (1 e+ / 70 ps) even δ = 50 ps gives A = 50%.



e+ ν
e

CC

Time coincidence of 
ν

e

CC and e+       |δt - Δ/c| < δ

δ = combined t-resolution (e+ tagger and  detector) 

● Event time dilution → Time-tagging
● Associating a single  interaction to a tagged e+ with a 
small “accidental coincidence” probability through time coincidences
● E

ν
 and flavor of the neutrino know ''a priori'' event by event.

Superior purity. Combine E
ν
 from decay with the one deduced from the interaction. 
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 detector and 
e
CC rates 

104 ν
e

CC

● At 100 m from the hadron window
● A 500 t mass (e.g. ICARUS@Fermilab , 

Protodune SP/DP @CERN)

<E> = 3 GeV, FWHM ~ 3.5 GeV

● Interesting region of long baseline future 
projects is covered

● Further tuning foreseen to go even lower 
in energy preserving an acceptable 
positron purity


e 

 

● tagger geometrical acceptance: 
85% of 

e
CC with a tagged e+ 

(15 % in the forward ''hole'')  
● 1.95 × 1013 K+/ν

e

CC

● Radial profiles at the  detector 

20 m

DUNE

HK



 

ENUBET, A. Longhin                                                        JENNIFER meeting 22/09/2016, QMUL London UK 14

New opportunities
The ENUBET technology is well suited for 
short baseline experiment where the 
intensity requirement are less stringent. 
Major applications include:

● A new generation of cross section 
experiments operating with a  source 
controlled at the < 1% level. A unique 
tool for precision oscillation physics and a 
new opportunity for the cross-section 
community

● A phase II sterile neutrino search, 
especially in case of positive signal from 
the Fermilab SBL program/reactor 
experiments

● The first step towards a time-tagged  
beam

NB. (
e
) is a “green field”

 ENUBET 

(
e
)

1% sys. + 1% overall stat. errors 
(10.000 

e
CC) Eur. Phys. J. C75 (2015) 155
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The ENUBET roadmap
● Construction of a 3 m section of the instrumented decay tunnel (tagger prototype)
● Test beams at CERN-PS T9 and INFN-LNF
● Assessment of systematics with a full simulation supported by test beam results
● Design of the beam-line for collection/transport/focusing of hadrons in the tagger
● Design and test of suitable proton extraction schemes (CERN-SPS)

Tagger simulation
example (FLUKA)

Tagger prototype
PS-T9 test beam (2015)

Beamline design early studies

SPS resonant 
slow extraction

→ The complete picture to move forward to a full scale experiment
By-products in calorimetry (new low-cost, ultra-compact detectors) and accelerator 
physics (novel extraction schemes for fixed-target, beam-dump experiments)

(G4beamline)
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The ENUBET roadmap (contd.)

Proving a tagged neutrino beam for cross-sections is ENUBET's 
primary goal (“monitored beam”). Test beam activities based at the CERN-
PS East area.

In the last phase of the project 
time synchronization could be 
tested at the EHN1 CERN neutrino 
platform:
                                   

with beam halo  and low-angle cosmic rays

ENUBET tagger prototype      ↔    LAr (WA105, proto-DUNE w. scint. light) 
                                                          Small scale WCh prototypes 
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    Tagger design 

Conventional beam-pipe 
replaced  by active 
instrumentation → 

1) Calorimeter (“shashlik”) 
● Ultra-Compact Module (UCM) 

2) Integrated -veto 
● plastic scintillators or 
● large-area fast avalanche photodiodes
● other fast detectors options

R&D on 
innovative 
detectors/ 

photosensors

K+ e+

→ rejection

2) integrated -veto

1) compact calorimeter with
longitudinal segmentation

UCM 
e

  →  rejection 
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Full simulation: e/ separation
GEANT4 simulation. 
Reject simultaneously + and 0

Takes into account pile-up related 
restrictions in the event building. 

TMVA multivariate analysis:
● E released in calorimeter
•  E in photon-veto doublets (3 layers).
•  Z between inner e.m. layer peak and the 1st 
photon-veto doublet.
• N. photon veto doublets upstream of the inner 
e.m. layer peak


geom


sel

e+ 90.7 % 49.0 %

+ 85.7 % 2.9 %

0 95.1 % 1.2 %

Former estimates from parametrizations 
confirmed with a realistic and 
cost-effective setup.

photon veto 
doublets

 inner e.m. layer
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The Ultra Compact Module 
(UCM)

spring 2016 
prototypes

1 Si-PM
1 WLS

Iron

9 SiPM signals 
are added to 
reduce R/O costs
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First test beam validation of UCM 
CERN-PS T9 test beam (July 2016). 12 ENUBET UCM modules (12 X

0
) 

exposed to pions and electrons from 1-5 GeV. HD Si-PM with 20 m cell size.

No dead zones, 
uniform long. sampling
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Results from UCM prototypes

Requirements for ENUBET:

● m.i.p. sensitivity w/o saturation for e.m. showers 
up to 4 GeV DONE

● E resolution < 25% / E½ DONE
● No role for “nuclear counter” effects (direct 

ionization of SiPM in the e.m. shower) DONE
● recovery time ~10 ns (sufficient to cope with pile-

up) → NOV 2016
● validation of MC for e/ separation → NOV 2016

19% stochastic term

Cheap, fast (<10 ns), 
Rad-hard technological 
solution
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Next test beam at CERN-PS T9

70 cm

● Sufficient length and presence of outer 
modules (hadron catcher) allows for e/ 
validation thanks to hadronic containment 
(56+18 UCM, 666 SiPM)
● Orientable cradle to study the effect of 

grazing incidence. 
● Test final readout with prototype custom 

fast digitizers
● Starting 2 November 2016
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Conclusions
● The precision era of  physics requires better control of its artificial sources 
● At the GeV limited knowledge on the initial flux: the dominant contribution to 

cross section uncertainties
● Such a limit can be reduced by one order of magnitude exploiting K+ → 0 e + 

e

● In the next 5 years ENUBET will investigate this approach and its application to a 
new generation of cross section, sterile and time-tagged neutrino experiments.

● The results obtained in 2015-2016 are very promising:
● Full simulation of the decay tunnel supports the effectiveness of the calorimetric 

approach for large angle lepton identification
● First prototypes demonstrate that shashlik calorimeters with longitudinal 

segmentation can be built without compromising energy resolution (19% at 1 GeV) 
and provide the requested performance

● The final goal of the ENUBET is to demonstrate that:
● a “positron monitored” 

e
 source based on K

e3
 can be constructed using existing 

beam technologies and can be implemented at CERN, Fermilab or J-PARC
● a 1% measurement of the absolute 

e
 cross section can be achieved with detector 

of moderate mass (500 ton)
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Thank you!
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All particles will intercept at least one doublet
A positron on average will cross 5 doublets

    = 7 cm

The photon-veto baseline option

Exploit 1 mip – 2 mip separation 

● Possible alternative/attractive solutions under scrutiny allowing a reduced material 
budget and superior timing.

● Test beams at Frascati: electronics response at high rates and low-E  e+,1 mip/2 mip

 Background from conversions from 0 emitted mainly in K
e2 

decays (K+ → + 0)
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The final prototype

Outer 
modules

Inner 
modules

SiPM + PCB

● Dimensions: 3 m  
● # SiPM: 34000
● Channels: 3800
● Weight: ~ 5 t
● WLS fiber length: ~10000 m
● Readout: custom waveform digitizers, 

2 ns granularity over ~10 ms

1 super-module

● 5 super-modules
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Pion decays induced backgrounds
● +→±creates the bulk of (~ 95%  @ 400 GeV)

●  detector must have good 
e
 PID: reject NC 0 in the 

e
CC sample

● 2-body decay, m ~ m
+ ~ 4 mrad → few in the tagger, easy to reject

●  D.I.F : suppressed L >> L(decay tunnel)

● 3-body but m ~ 0.2 m
K
 → e+

DIF
 ~ 28 mrad (e+

Ke3 
~ 88 mrad)

● 
e, 

CC,DIF ~ 3.3% → ~ all 
e
 are from K

e3

D
U
M
P

+

+




tagger

D
U
M
P

+

+

tagger

e+


e



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(
e
) from () ?

0) ) is also poorly known due to flux systematics

1) Lepton universality in weak interactions is not the full story:
✔ Uncertainties from the interplay of 

● radiative corrections
● nucleon form factors 

● F
P
, F

V
1,2, F

A
, second class currents

● alteration of kinematics due to mass

Day, McFarland, Phys. 
Rev. D86 (2012) 052003

→ Differences between () and (
e
) ()

● can be significant (10-20%) espec. at low-E
● with different energy trends for  and 
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Working packages
WP1: beam-line 
Precise layout of the 
hadron beam. Study of the 
injection schemes.

WP2: tagger prototype 
Feasibility of tagging under realistic 
conditions with the desired 
background and systematics 
suppression. Radiation hardness.

WP3: electronics and readout 
testing the readout performances of 
the front-end electronics for horn-
based (< 10 ms proton extraction) or 
static (1s proton extraction) focusing 
systems.

WP4: photon veto 
and timing system 
validating the timing accuracy of 
the tagger and the photon veto 
e+/π0 separation. Vertex 
reconstruction inside the tunnel. 
Pave the way to “tagged neutrino 
beams” (time synchronization 
studies with existing LAr or water 
Cherenkov prototypes).

WP5: systematic 
assessment. Overall flux 
systematics reachable by the 
exploiting  the e+ rate and the 
impact on a direct measurement 
of the σ(ν

e
CC ). Tagger simulation.
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Choosing the K±/π± momentum and tunnel length

K+ decays
μ+ decays in flight

High momentum

Benefits:  
● small loss in the transport line 
● improved e/π separation

Costs: 
● E(ν

e
) above the R.O.I.

● longer decay region

L = 100 mL = 50 m

1) keeping the tunnel ''short''
2) increasing the K±/π± energy  

increases ν
e
 from K

e3
 with few ν

e
 from μ D.I.F.

Current scenario p = 8.5 GeV/c ± 20%
L = 50 m

 e 
/



Momentum of parent mesons (K, ) (GeV/c)

A trade-off: further 
optimization in ENUBET
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Hadronic modules
Electro-magnetic modules

e+ (signal) topology

0 (background) topology

+ (background) topology

e+ tagger: background rejection

Hit modules
Key point: 
● longitudinal sampling
● perfect homogeneity → integrated light-readout
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Towards the first tagged 
e
 beam

e+ taggerHadron beam-line Neutrino detector

K/ 

protons
K+ decay

e+ 
e

A schematic setup to implement this idea: 

● Hadron beam-line: collects, focuses, transports K+ to the e+ tagger
● e+ tagger: real-time, ''inclusive'' monitoring of produced e+

Hadron collimation: 
allows having only decay 
products in the tagger. 
→  tolerable rates
→  good S/N

proton dump

Positron tagging: uncertainties from K hadro-production, PoT, hadron beam-
line efficiency become irrelevant for the 

e
 flux prediction

p = 8.5 GeV ± 20%
< 3 mrad
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Demonstrate experimentally that a new-
concept 

e 
source, with  10 better 

precision is feasible 

→ (
e 
) 1% sys. + 1% overall stat. 

errors (10.000 events) in realistic terms

The ENUBET goals and program

What's peculiar with ENUBET: 
● a compelling, new physics case: a beam 

design optimized for (
e
)

● taking advantage of the progress in fast, 
cheap, radiation-hard detectors

NB. (
e
) is to date a “green field”

ERC program: 2 pillars 
● e+ tagger prototype validated at test beams 
● a detailed design for the hadron beam-line

The complete picture to 
move to a full experiment

By-products 
● calorimetry → new low-cost, ultra-compact detectors
● accelerator physics → novel extraction schemes for fixed-target, beam-dump exp.
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D
U
M
P

The golden channel: K+ → 0 e + 
e

K+

e+


e

tagger

● Golden sample: good acceptance 
for e+ from K

e3
 thanks to the 

large emission angle (~ K mass)

● L >> L(decay tunnel) 
e, 

CC,DIF ~ 3.3%

 → ~ all 
e
 are from K

e3
 

Angular distribution of e+ from K
e3

0



88 mrad
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Hadron beamline with horn focusing

Simple 
conversion

Simple 
conversion

* J-PARC > 1.5 x 1021 PoT
CNGS = 1.8 x 1020 PoT

   NuMI = 1.1 x 1021 PoT
1.94 × 1013 K+ / ν

e

CC 
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Tagged neutrino beams: the origins 
The ''forbidden dream'' of neutrino physicists: 

● L. Hand, 1969, V. Kaftanov, 1979 (/K → 

)

● G. Vestergombi, 1980, R. Bernstein, 1989 (K →
e
)

● S. Denisov, 1981, R. Bernstein, 1989 (K
e3

)

 B. Pontecorvo, Lett. Nuovo Cimento, 25 (1979) 257

What's new with ENUBET: 
● a compelling and new physics case: a beam design optimized for (

e
)  

● taking advantage of the progress in fast, cheap, radiation-hard detectors
● using K+ → e+ 0 

e
 (K+

e3
 decays) 

Literature:

● L. Ludovici, P. Zucchelli, hep-ex/9701007 (K
e3

)

● L. Ludovici, F. Terranova, EPJC 69 (2010) 331 (K
e3

)
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Systematics on the ν
e
 flux

Sources Size

Statistical error < 1 %

K production yield Irrelevant (e+ tag)

Secondary transport efficiency Irrelevant (e+ tag) 

Integrated PoT Irrelevant (e+ tag)
Geometrical efficiency and fiducial mass < 0.5%. PRL 108 (2012) 171803 [Daya Bay]

3-body kinematics and mass < 0.1%. Chin. Phys. C38 (2014) 090001 [PDG]

Branching ratios < 0.1%. Irrelevant (e+ tag) except for bckg. estim.

e/π separation To be checked directly at test beam
Detector backg. From NC π0 events < 1%. EPJ C73 (2013) 2345 [ICARUS]

Detector efficiency < 1%. Irrelevant for CPV if the target is the same 
as for the long baseline experiment

The positron tagging eliminates the most important source of systematics but 
can we get to 1%? Very likely, to be demonstrated by ENUBET
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Both issues not critical

→  5% pile-up 
probability (= RSΔt

tag
)

Pile-up  

Not decayed π, K do not intercept the tagger “by 
construction”. Pile-up mostly from overlap between a  
K

μ2
 and a candidate e+

Recovery time, Δt
tag 

= 10 ns

Rate, R = 0.5 MHz/cm2

Tile surface, S ~ 10 cm2

Possible mitigation: veto (also offline) mip-like and punch-through particles using the longitudinal 
segmentation of the tagger + eventually a μ catcher

Radiation
Only contribution comes from K/π decay products. Thanks to bending of the 
secondaries, non-interacting protons or neutrons are not dumped in the tagger. 
   Livetime integrated dose < 1.3 kGy (~100 kGy for CMS forward ECAL)

e+ tagger: pile-up and radiation 
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Unconventional: many (108), short (2 ms) 
pulses with few protons (< 3 1011)

 The hadron beam-line challenge

Focusing system Proton extraction from accelerator

A: pulsed device (magnetic horn)

 B: static devices (DC magnets) O(1s) long slow extractions

Short transport line to prevent early decays
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