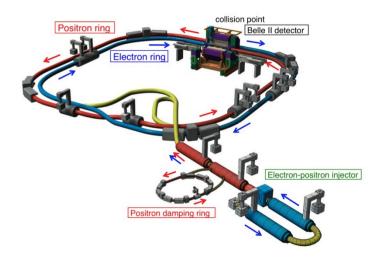
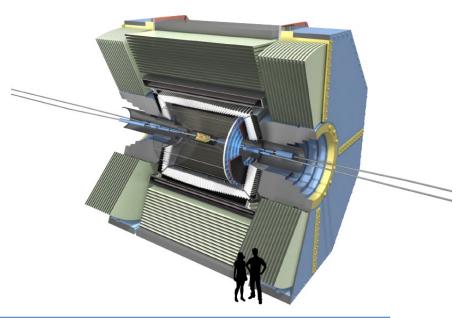
Report on WP1 activities (Belle II software and physics case)

Christoph Schwanda *Austrian Academy of Sciences*

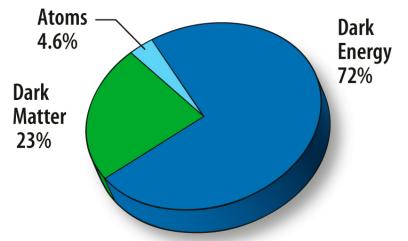


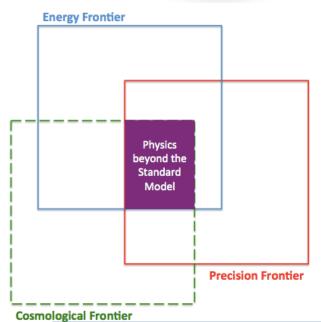

Introduction

 Belle II is particle physics experiment at KEK (Japan) that will explore the physics of B and charmed mesons and τ leptons from the year 2018 on

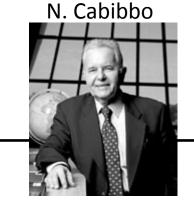
SuperKEKB

Belle II

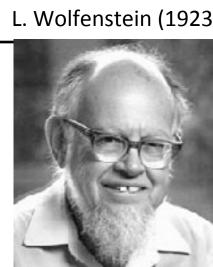


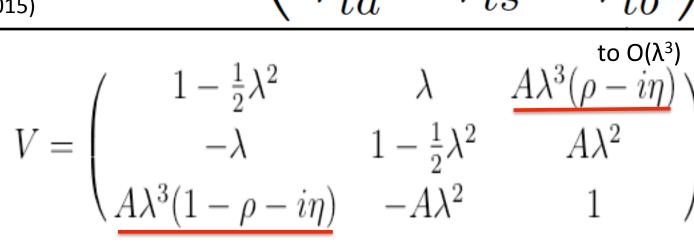


New Physics through precision


 Belle II is at the precision frontier – aims at accumulating 50 times more data than previous experiments (Belle/BaBar)

CKM Physics



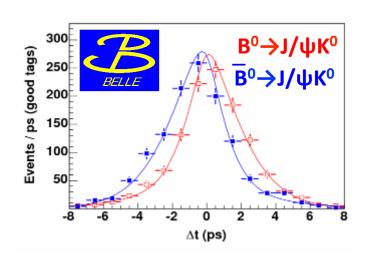


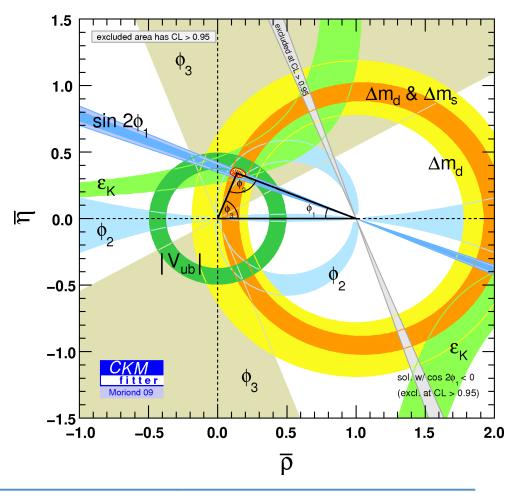
 $V_{\rm CKM} \equiv V_L^u V_L^{d\dagger}$

L. Wolfenstein (1923-2015)

The CKM unitarity triangle

Big Questions: Are determinations of angles consistent with determinations of the sides of the triangle? Are angle determinations from loop and tree decays consistent?

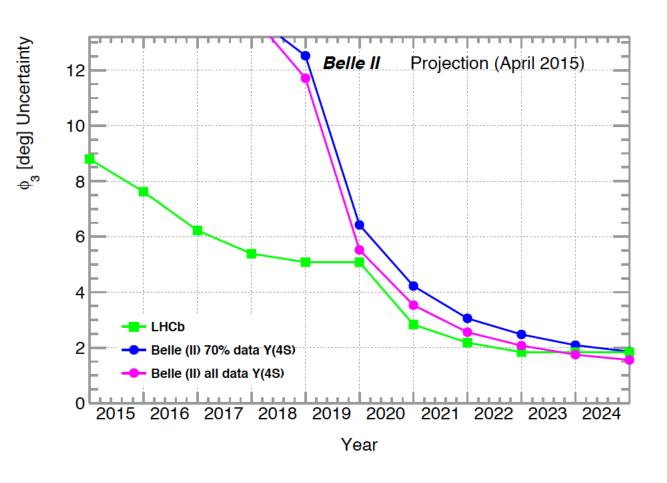



Belle/BaBar: a success story

Discovery of *CP* violation in the B meson system (2001)

Rate of the decay B^0 (B^0) $\rightarrow J/\psi K^0$ as a function of the decay time difference of the two Bs in Y(4S) \rightarrow BB events

Confirmation of CKM unitarity (~2005)

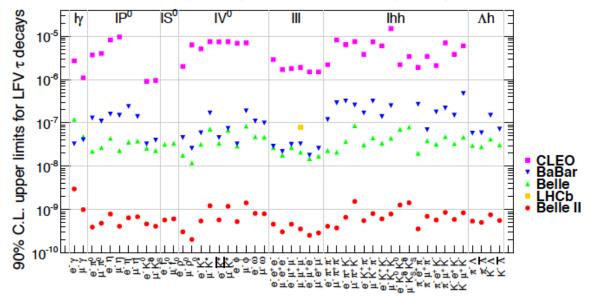


Will CKM unitarity hold at Belle II?

The angle γ/ϕ_3 A fierce competion between Belle II and LHCb

Rare decays, charm physics,

Observable	Expected th.	Expected exp.	Facility		
	accuracy	uncertainty			
CKM matrix					
$ V_{us} [K \rightarrow \pi \ell \nu]$	**	0.1%	K-factory		
$ V_{cb} $ $[B \rightarrow X_c \ell \nu]$	**	1%	Belle II		
$ V_{ub} [B_d \rightarrow \pi \ell \nu]$	*	4%	Belle II		
$\sin(2\phi_1) \left[c\bar{c}K_S^0\right]$	***	$8 \cdot 10^{-3}$	Belle II/LHCb		
ϕ_2		1.5°	Belle II		
ϕ_3	***	3°	LHCb		
CPV					
$S(B_s \rightarrow \psi \phi)$	**	0.01	LHCb		
$S(B_s o \phi \phi)$	**	0.05	LHCb		
$S(B_d \rightarrow \phi K)$	***	0.05	Belle II/LHCb		
$S(B_d \rightarrow \eta' K)$	***	0.02	Belle II		
$S(B_d \rightarrow K^*(\rightarrow K_S^0\pi^0)\gamma))$	***	0.03	Belle II		
$S(B_s o \phi \gamma))$	***	0.05	LHCb		
$S(B_d \rightarrow \rho \gamma))$		0.15	Belle II		
A_{SL}^d	***	0.001	LHCb		
A_{SL}^s	***	0.001	LHCb		
$A_{CP}(B_d \rightarrow s\gamma)$	*	0.005	Belle II		
rare decays					
$\mathcal{B}(B \to \tau \nu)$	**	3%	Belle II		
$B(B \rightarrow D\tau\nu)$		3%	Belle II		
$\mathcal{B}(B_d \to \mu\nu)$	**	6%	Belle II		
$\mathcal{B}(B_s o \mu \mu)$	***	10%	LHCb		
zero of $A_{FB}(B \to K^* \mu \mu)$	**	0.05	LHCb		
$\mathcal{B}(B \to K^{(*)}\nu\nu)$	***	30%	Belle II		
$\mathcal{B}(B \to s\gamma)$		4%	Belle II		
$B(B_s \rightarrow \gamma \gamma)$		$0.25 \cdot 10^{-6}$	Belle II (with 5 ab ⁻¹)		
$B(K \rightarrow \pi \nu \nu)$	**	10%	K-factory		
$\mathcal{B}(K \to e\pi\nu)/\mathcal{B}(K \to \mu\pi\nu)$	***	0.1%	K-factory		
charm and τ					
$\mathcal{B}(\tau \to \mu \gamma)$	***	$3 \cdot 10^{-9}$	Belle II		
$ q/p _D$	***	0.03	Belle II		
$arg(q/p)_D$	***	1.5°	Belle II		



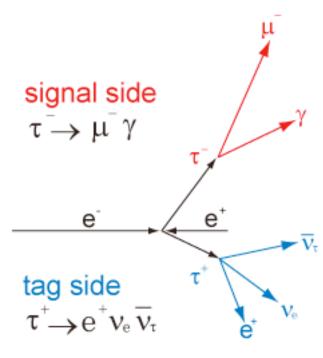
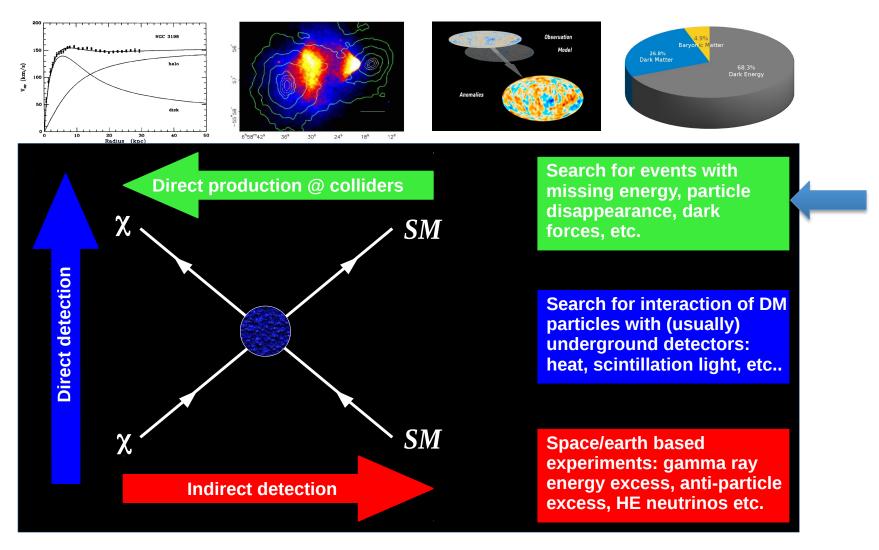

Tau lepton flavour violation

FIG. 5: LFV UL (90% C.L.) results from CLEO, BaBar and Belle, and extrapolations for Belle II (50 ab⁻¹) and LHCb updgrade (50 fb⁻¹).

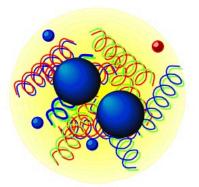
Belle II will push many limits below 10⁻⁹; LHCb has very limited capabilities.

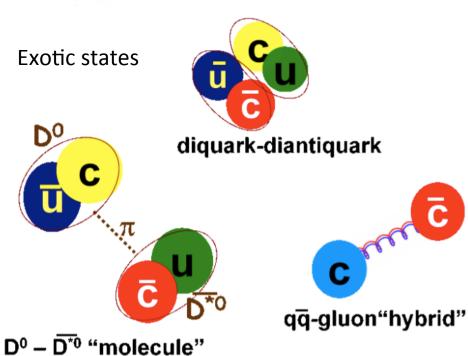
Example of the decay topology

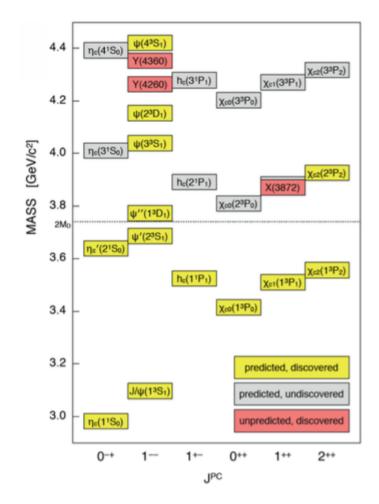


3e||e||

Searching for dark matter





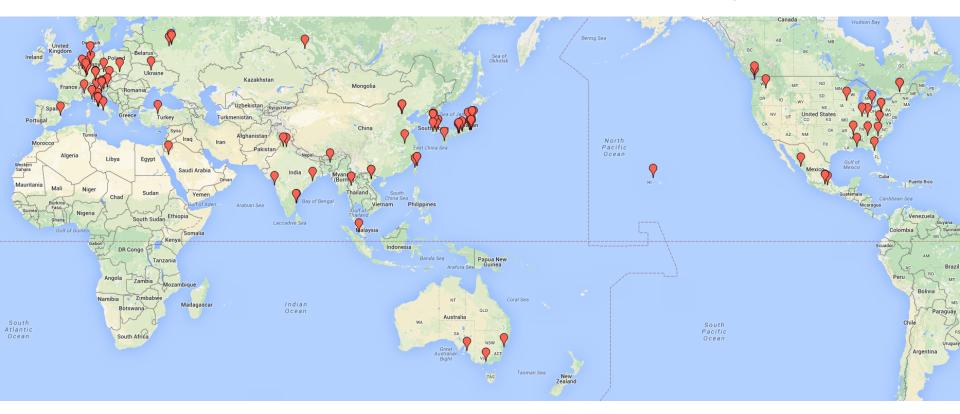


Quarkonium

Quarkonium-like states

Objectives of WP1

Exploit the physics potential of Belle II by


- Task 1.1: Developing the detector-related software (charged track reconstruction, alignment, particle identification, ...)
- Task 1.2: Implementing software tools for physics analysis
- Task 1.3: Identify the key measurements for Belle II (Belle II-theory interface platform)

Belle II collaboration map

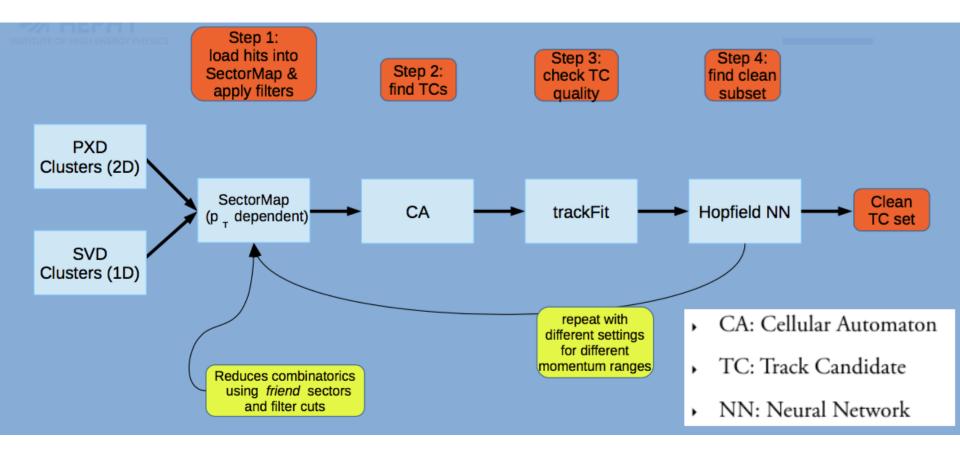
 100 Belle II institutions in 23 countries: WP1 typically uses secondments for attending collaboration meetings/workshops at KEK

WP1 results

- Secondments
 - Total secondments: 259 days (8.6 months)
 - Started secondments (until August 2016): 15
 - Planned months (until August 2016): 19

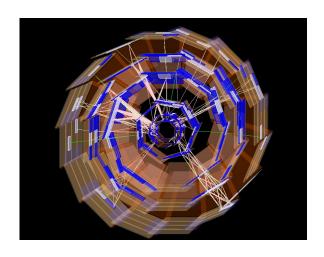
	INFN	НЕРНҮ	IFJ PAN	UKP	JSI	METU	CNRS
Seconded days	114	31	64	0	26	0	24
Planned (month)	5	2	3	2	3	2	2

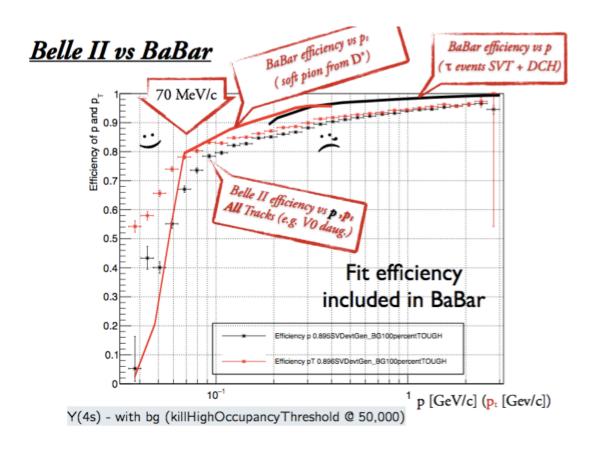
 Deliverables D1.1 (offline workshop) and D1.2 (Belle II tutorials) achieved in time



[HEPHY]

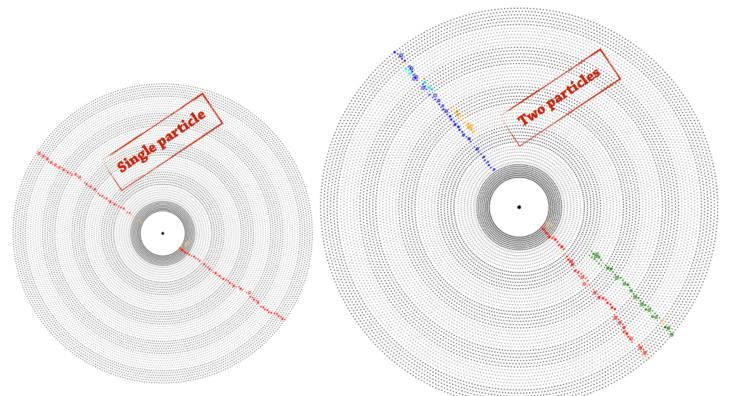
VXDTF – track finder for low momentum particles





VXDTF performance

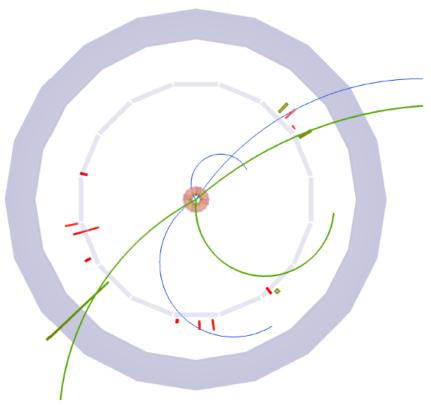
Used for the analysis of the April 2016 testbeam data taken at DESY



Legendre track finder for CDC

The new CDC track finder is able to identify tracks on cosmic rays events with an efficiency close to 100% (i.e. each triggered event contains at least one track). A few interesting events with more than one particles are also correctly reconstructed. All the CDC hits are represented.

The hits belonging to the same track are in same color.



Full event interpretation

C. Pulvermacher (PhD thesis http://doi.org/10.5445/IR/1000050704

(b) A correctly reconstructed tag-side $B^- \to D^{*0} e^- \bar{\nu}_e$ decay (with $D^{*0} \to D^0 \pi^0$ and $D^0 \to K^- \pi^+$). A low-energetic final-state-radiation photon from the D^0 decay was missed.

B2TiP

- The "Belle II Theory Interface Platform" is a joint theory-experiment effort to define the Belle II physics program
- B2TiP is organized in 9 working groups
- The charge of each WG is to identify the "golden modes", perform simulation studies and finally produce a chapter of the B2TiP report
- The activity is driven by a series of workshops

B2TiP WG structure

WG1	Semileptonic & Leptonic B decays
WG2	Radiative & electroweak penguins
WG3	α (ϕ_2) and β (ϕ_1)
WG4	$ \phi_3 $
WG5	Charmless hadronic B decays
WG6	Charm physics
WG7	Quarkonium-like states
WG8	Tau, low multiplicity and electroweak physics
WG9	New Physics (models)

B2TiP workshop series

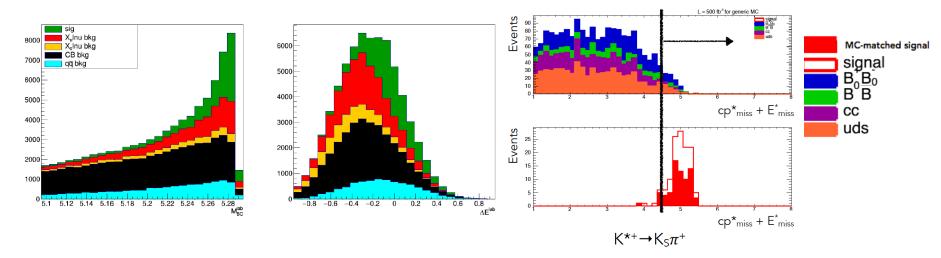
- 1. October 30-31, 2014 @ KEK
- 2. April 27-29, 2015 @ Krakow
- 3. October 28-29, 2015 @ KEK*)
- 4. May 23-25, 2016 @ Pittsburgh*)
- 5. November 15-17, 2016 @ MIAPP Munich (editorial meeting)

plus the kickoff meeting June 16-17, 2014 @ KEK and a few focused meetings

*) co-funded by JENNIFER

Achievements (by May 2016)

- Identified priority modes and benchmarks for each group
- Developed advanced physics analysis framework: capable of full analysis
- FEI (B reconstruction), flavour tagging, missing energy software ready
- 5/ab MC delivered, O(30) analysts preparing sensitivity studies
- Accurate feasibility studies performed
- Performance of the detector and software measured and iterating
- Working versions of trigger tools for low multiplicity analyses available



• Semileptonic & Leptonic WG 1&2: 4 Full simulation studies *including beam background*@**B2TiP Pitt**

BR Stat Error [%] in 700 fb ⁻¹	Belle/ *Babar	B2BII MC	Belle II MC5
B → π I v untagged, M. Lubej	1.9	-	1.3
Bs → K I v untagged @Y(5S) A. Zupanc	-	7.5	-
B → τ v Had tag, M. Merola	38		34
B → K*+ v v Had tag Cut&Count, E. Manoni	*<2.9·10 ⁻⁴		<3.7·10 ⁻⁴

• Analysis tools: Rest-of-Event, Untagged SL, FEI/Full-recon, optimized γ/π^0 selection

WG3 Time Dependent CP Violation

• Full simulation studies of 5 modes @ **B2TiP Pitt.**Belle II sensitivity improvements.

Stat. Precision with 710 fb ⁻¹	Scp		A _{CP}		Δt [ps] resol.	
	Belle	Belle II MC5	Belle	Belle II MC5	Belle	Belle II MC5
B → K _S K _S , P. Jäger	0.27	0.19	0.17	0.11		
B → η' (η → $\gamma\gamma$) K _S , S. Lacaprara) K _S , S. Lacaprara 0.15		0.10	0.09		
$B \rightarrow \Phi(KK) K_S, A. Gaz$					NA	0.75
B → J/ψ K _S , L. Li Gioi					0.92	0.71
B → π^0 π ⁰ (→eeγ), F. Abudinen					NA	1.5

Analysis tools: mdst K_S, flavour tagging, tag-vertex, continuum suppression.

Homework: K_L , e tracks, QED background, B2BII direct cross-check **Theory**: Penguin pollution needs precision $\Gamma(B^+)/\Gamma(B^0)$.

- WG4 (Φ_3/γ) and 6 (Charm) <u>4 full simulation based studies</u> **@ B2TiP Pitt**
 - Φ_3 from $B \to D[K_S \pi \pi] K^{\pm}$, I. Watson
 - D semileptonics, J. Bennett
 - D tagging, G. de Pietro
 - D mixing and CPV, A. Schwartz, G. Casarosa

Preparation for first data

L1 Trigger Menu for Low Multiplicity Physics evaluated with L1 emulator.

https://d2comp.kek.jp/record/314/files/BELLE2-NOTE-PH-2015-011.pdf

Preparing for systematic uncertainty measurements https://d2comp.kek.jp/record/345/files/BELLE2-NOTE-PH-2016-001.pdf

B2TiP report status (as a B2TiP May 2016)

Section	Exp editor(s)	Theory editor(s)	Support Documents	Draft/Outline		~ Draft status (April 2016)	Review status	Pages, Figures, Tables
Full Document			1, 2, 3		T			
1. Introduction & Data sets	Urquijo	Kou			T	60%, theory part missing	=	
2. Belle II Detector	Urquijo, Krizan	•			T	50%, update from Krizan coming	=	
3. Simulation	Ferber	-		A	T	80%	€	
Reconstruction	Bennett	-	1,2		Ī	30%, need input on tracking, neutrals, v0, beamspot, eID	=	
5. Analysis software	Li Gioi, Zupanc, Goldenzweig	-	1			Rough outline (base on several theses)	@	
6. Theory overview		Nierste			T	40%	=	
7. WG1: Semileptonic & Leptonic B	De Nardo, Zupanc	Kronfeld, Tackmann, Watanabe	1		T	Rough outline	®	
8. WG2: Radiative and EWP B	Ishikawa, Yamaoka	Feldman, Haisch	1		T	20%	<u> </u>	
9. WG3: Time dependent CPV B	Gaz, Li Gioi	Zupan, Mishima			T	Outline	<u></u>	
10. WG4: Phi 3	Libby	Blanke, Grossman	1		T	20%	<u> </u>	
11. WG5: Hadronic B	Goldenzweig	Beneke, Chiang	1		T	20%	=	
12. WG6: Charm	Casarosa, Schwartz	Petrov, Kagan			T	Outline	②	
13. WG7: Quarkonium	Fulsom, Shen, Mizuk	Hanhart, Kiyo, Polosa, Prelovsek	12345	A	ī	30%, charmonium only, no simulation	=	
14. WG8: Low multiplicity & tau	Ferber, Hayasaka	Passemar, Hisano	1, 2, 3, 4		Ī	20%	<u> </u>	
15. WG9: New physics	Bernlochner, Sato	Nierste, Silvestrini, Kamenik, Lubicz		A	n	Detailed outline	②	
16. Summary	Urquijo	Kou		A	T			

B2TiP timeline

- 2016 key dates
 - May B2TiP Pittsburgh presentation of 1/ab to 5/ab studies
 - June MC6 production based on software release 7 (removal of legacy tracking, more beam background processes); to be used in some studies
 - July First draft of each chapter sent for soft review VERSION 1
 - September Deadline for response from reviewers
 - Oct 31 Hard deadline for delivery of chapters for review prior to the MIAPP B2TiP workshop – VERSION 2
 - Nov 15-17 B2TiP Editorial meeting
 - Dec-Feb Editing and review; we will discourage new contributions in this period – FINAL VERSION
- Journal submission: March 31, 2017

Summary

- The Belle II experiment has a rich physics case and will study decays of B and charmed mesons and tau leptons from 2018
- WP1 is helping the exploitation of Belle II physics through supporting offline-software development, implementation of analysis tools and the B2TiP activity
- WP1 secondments are proceeding within schedule, deliverables D1.1 (offline workshop) and D1.2 (Belle II tutorials) have been achieved
- The preparation of the B2TiP report is on its way, aiming for journal submission by the end of March 2017

