RD_FA: Iniziativa nuovi acceleratori

Biagio Di Micco

B. Di Micco

Premesse

- L'INFN ha aperto in passato una sigla P-ILC per il finanziamento di attività di R&D per un linear collider, e+e-, che possa raggiungere energie fino ad 1 TeV, in particolare la sigla si concentrava sull'R&D di un rivelatore di vertice;
- Negli ultimi due anni la comunità scientifica si sta interrogando in generale sul post- LHC (HL-LHC): varie ipotesi sono al momento sul campo:
 - pp incremento del campo magnetico massimo da 8.3T a ~16-20T
 1) installazione di una nuova macchina nel presente anello di LHC per raggiungere energie fino a 33 TeV;

2) costruzione di un nuovo tunnel da 100 km per raggiungere l'energia di ~ 100 TeV

e+e-

- Linear Collider

ILC costruzione a step successivi da 250 GeV a 1 TeV (Giappone, decisione nel 2018);
 CLIC: costruzione con tecnologie ad alto gradiente di accelerazione fino a 3 TeV;

- Circular Collider

1) acceleratore da 50/55 km come Higgs factory (CepC);

2) acceleratore da ~100 km come Higgs factory, Tera-Z [produzione di Z ad altissima luminosita' (~1000 x LEP)], scan fino a 2 m_{top} .

^{µ+µ-} interesse rinnovato ultimamente per collisori µ+µ-, per produzione risonante µ+µ-→h (misura massa e larghezza dell'Higgs, e come alternativa ad e+e- ~ TeV)

RD_FA

RD_FA: Sviluppo per acceleratori futuri (coordinatore nazionale: F. Bedeschi).

- L'idea è raccogliere tutte le attività di studio sugli acceleratori futuri in un'unica sigla, in essa confluiscono attività di studi su proiezioni di Fisica, di progettazione di rivelatori ma anche R&D di rivelatori specifici, non nel loro design finale ma come implementazione di tecnologie/idee note nei TDR degli acceleratori futuri.
- La sigla è pertanto suddivisa in workpackages:
 - 1. Studi di fisica e simulazioni
 - Padova (P. Azzi) e^+e^- , Bari (N. De Filippis), Bologna (P. Giacomelli) pp \rightarrow hh \rightarrow ZZbb,
 - Frascati (M. Testa), Roma Tre (M. Biglietti, B. Di Micco, A. Farilla) pp →hh → WWbb
 - 2. MDI Machine Detector Interface
 - 3. Pixels e short strips
 - 4, MPGD (Micro Pattern Gas Detector) per RICH e TPC (Time Proportional Chambers)
 - **5**. DCH Drift Chamber
 - 6. Silicon Trackers
 - 7. MPGD per muon systems
 - 8 Muon colliders

Bologna: Braibant, Giacomelli, Bellagamba, Boscherini (basato su rivelatori a GEM)

In fase di osservazione: Frascati (Bencivenni, GEM), Roma Tre (Micromega)

Attuali richieste

Struttura								
	missioni	consumo	trasporti	manutenzione	inventario	apparati	TOTALI	attività
BARI	5.00						5.00	mis.
BOLOGNA	12.50						12.50	mis.
CATANIA								
FERRARA	13.50	13.00	2.00	4.00		20.00	52.50	mu coll. TB
LECCE	12.00	12.00					24.00	drift tubes FE acq.
FRASCATI	29.50	4.00				15.00	48.50	mu coll. TB
MILANO	12.50	5.00					17.50	strip HVCMOS
PADOVA	25.00	20.00				20.00	65.00	test su pos, mu ch
PERUGIA	12.50						12.50	miss
PISA	12.50						12.50	miss
PAVIA	7.50						7.50	miss
ROMA 1	12.00	2.00					14.00	mu coll TB
ROMA 3	7.50	1.00			15.00		23.50	spazio disco per sim
TRIESTE	17.50	27.50			8.50		53.50	
Totali	179.50	84.50	2.00	4.00	23.50	55.00	348.50	

Attività su FCC sono principalmente di analisi e simulazioni (missioni per meetings, mentre un'importante attività hardware per test-beam è iniziata sui muon colliders)

Specificita'

- Sviluppi mirati a una specifica applicazione. e.g.
 - Dual readout calorimeter system for high energy pp colliders
 - Cluster counting drift chamber for e+e- colliders
- Perfezionamento e ingegnerizzazione detectors basati su tecnologie gia' note
- Ottimizzazione configurazioni sulla base di simulazioni e obiettivi di fisica
- Partecipazione alla realizzazione di CDR/TDR per future macchine

Principali workshop recenti 1/2

CEPC-SppC Study Group Meeting

CEPC: Circular Electron Positron Collider SppC: Super proton-proton collider http://indico.ihep.ac.cn/event/6149/ 2-3 September 2016 Beihang University - Cina

Stato: Governo cinese finanzierebbe 54 km 100% (ok per Higgs factory (e+e- @250 GeV + pp @ 70 TeV) cercano partner internazionali per ~ 100 km (> 100 TeV)

Costruzione: inizio: 2020-1, fine e+ e-: 2035

FCC Week 2016

http://fccw2016.web.cern.ch/fccw2016/ 11-15 April 2016 Rome - Italia

Stato: Presentazione TDR per il 2019 Costruzione: non prima del 2035 (fine HL-LHC) FCC-ee e FCC-hh nello stesso tunnel

possibile versione pp a 33 TeV usando tunnel di LHC

B. Di Micco

Principali workshop recenti 2/2

Discussion of the scientific potential of muon beams

https://indico.cern.ch/event/450863 18 November 2015 CERN- Geneve

Main problem: cooling

- Muons are produced by proton hitting a target, outcoming muons have large spread in position and momentum.
 Stochastic cooling (used for anti-proton) cannot be applied because too slow (muon decay before cooling..)
- Muon Ionization Cooling: main stream technique

Muons loose energy in the absorber and are accelerated only in the longitudinal direction to recover it (MICE is testing this idea)

- Rubbia proposal
 - substitue linear sructure with circular one in a circular accumulator, this allows to reach a stability condition for the emittance;
 - it is ok for p_T cooling but not for the beam energy spread (too high for an Higgs factory, $\Gamma_h = 4$ MeV): do a multi-stage process with passive cooling to reduce long. energy spread

- Production of cooled muons from $e^+e^- \rightarrow \mu^+ \mu^-$
 - M. Antonnelli, P. Raimondi, ...
 - use positron on plasma or on target to increase conversion yield (too low with conventional process)
 - Production of cooled muons from $\gamma \rightarrow \mu^+ \mu^-$
 - very preliminary
 - high energy γ beams from Laser Heavy lon knock-on.
- Production of cooled muons from laser excitation of muonium
 - stop standard muons to produce μ^+ -e⁻ atoms;
 - use laser to have a 1s-1p transition, then full excitation

B. Di Micco

B. Di Micco

hh production in the WWbb channel

(study presented at FCC week: B. Di Micco, M. Testa)

 select semi-leptonic channel to reduce multi-jet background respect to the full hadronic and keep a high branching fraction respect to dileptonic.

Use kinematic and angular properties to separate hh production from top pairs

Variable	Cut
p _r (bb)	> 230 GeV
∆Rbb	< 1.2
p _r (WW)	> 140 GeV
ΔR_{ww}	< 1.2
m _{ww}	< 130 GeV
m _{bb}	105 – 135 GeV

B. Di Micco

Object response in several pile-up conditions

LHC condition

FCC-hh condition

B. Di Micco

hh→WWbb, very preliminary.

			S.P.A.
3 ab ⁻¹ ,PU 50	Object selection	Final Selection	ε ¹⁰ 0
Signal	7084	803	2.5 10 ⁻³
Top bkg	5.4 10 ⁹	7.87 10⁵	
S/Top	1.31 10 ⁻⁶	1.02 10 ⁻³	

3 ab ⁻¹ ,PU 200	Preselection	Final Selection	3
Signal	5.4 10 ⁴	273	8.5 10 -4
Top bkg	3.6 10 ⁹	3.4 10 ⁵	
S/Top	1.5 10 ⁻⁵	8.0 10⁻⁴	

S/B and significance still far to be competitive,

need to implement advanced MVA techniques to push sensitivity up.

- La sigla RD_FA è stata attivata quest'anno
- L'obiettivo è raccogliere tutte le attività di progettazione e R/D per acceleratori futuri (appena un progetto viene definitivamente approvato si creaa una sigla autonoma)
- Obiettivo principale degli studi sono le potenzialità di Fisica, progettazione iniziale dei rivelatore, stima dei fondi necessari
- sono già state fatte richieste importanti per studi di R&D: soluzioni per acquisizione ad alto rate, progettazione di rivelatori in grado di lavorare in condizioni di alto pile-up, e test di tecnologie innovative;
- le scadenze più prossime: 2019 FCC TDR, 2020/2021 inizio costruzione di CEPC, test delle tecniche di muon cooling

Studi di Fisica a FCC-ee

Proiezioni di Fisica

m_W and Γ_W from threshold scale

B. Di Micco