

Material	Daposition method	Deposition rate/film thickness	Substrate	Dapartad piezoelectric proparties
Material	Deposition metrod	unekness	temp. (C)	Reported prezoereeu ie properties
AlN/z-LiNbO ₃ [26] AlN/Pt(111) [19]	dc magnetron sputtering Pulsed dc magnetron sputtering	6 nm min ⁻¹ 0.4 μm	200 400	k = 0.14-0.17 $e_{31,f} = 1.0 \text{ pC m}^{-2}, d_{33,f} = 3.4 \text{ pC N}^{-1},$ $\tan(\delta) = 0.002, k = 0.23$
AIN [27]	Reactive sputtering	1 µm	300	$e_{31,f} = -0.58 \text{ pC m}^{-2},$ $d_{13,f} = 3.56 \text{ pC N}^{-1}, k = 0.25$
AlN/Si(111) [28]	Metal organic chemical vapor deposition	130-250 nm	1050-1190	$d_{33} = 5.47 - 6.56 \text{ pm V}^{-1}$
AIN/Si(111) [29]	Pulsed laser deposition	43-18 nm min-1	500-920	-
ZnO/Pt [30]	Sol-gel		650, 700	$d_{33} = 17,11 \text{ pm V}^{-1}$
2nO/glass (Corning 7059) [31]	RP magnetron sputtering	18 nm min ⁻¹	200	$\kappa = 0.25 - 0.26$
ZnO/Si(001) [32]	RF magnetron sputtering	22 nm min ⁻¹	Room temperature	-
ZnO/glass [33] PZT/Pt(111)/Ti/ SiO ₂ /Si [34]	Pulsed laser deposition Chemical solution method	45.8 nm 0.25–6 μm	250 700 (Sinter)	$-e_{31,f} \simeq -7 \text{ pC m}^{-2}, d_{33,f} = 150 \text{ pC N}^{-1},$ $\tan(\delta) = 0.05-0.02$
PZT/LSMO/Si [35]	Hybrid powder sol-gel	$\sim 5 \mu m$	800 (Sinter)	$d_{33,\ell} = 340 \text{ pC N}^{-1}, \tan(\delta) = 0.02$
PZT/Si/SiO ₂ /Ti/ TiO ₂ /Pt [36]	Diol-based chemical solution deposition	4.1 μm	-	$e_{31,f} = 7.29 \text{ pC m}^{-2}, \tan(\delta) = 0.023$
PZT/Ti/SiO ₂ /	Pulsed laser deposition	$1-3 \ \mu m$	700	-
Si(100) [37]			S. Tadigada	apa, K. Mateti, Meas. Sci. Technol., 20, (20
	eidering low	cost dor	ocition	processes for:
	isidening iow-	-cost dep	051101	i piùcesses iui.
lead zirco	onate titanate	(PZT) filn	ns with t	thickness 10÷100 μm
		(1 2 1) 1111		αποκτισ35 το. του μπ

- Introduction and Motivation
- Piezoelectric Resonant Sensors with Contactless Interrogation
- Piezoelectric Energy Harvesting from Vibration and Motion
- Conclusions
- Back to the roots

V.Ferrari

