

Neutrino Cross-Section Measurements at T2K

Matthew Malek (on behalf of the T2K Collaboration) 16th March 2017 XVII International Workshop on Neutrino Telescopes

The T2K Experiment

Matthew Malek @ NuTel 2017

16 Mar 2017

Off-Axis Design

3

T2K

16 Mar 2017

T2K Data Taking

P.O.T. = Protons On Target

Beam power continuously improving!

Current power ~470 kW (2017) is double 2014 value of ~225 kW

The Near Detector Suite

The ND280 detector sits 2.5° off-axis along the line to Super-K

- Tracking via two Fine-Grained Detectors (FGD) sandwiched between three Time Projection Chambers (TPC)
- Also calorimeters and muon detectors
- Carbon and water targets
- 0.2 T magnetic field

The INGRID detector sits on-axis (0°)

- Carbon and iron targets
- Monitors beam direction
- Tracks beam rate

Neutrino Fluxes @ ND280

Forward Horn Current

Reverse Horn Current

v Interactions @ T2K

16 Mar 2017

Matthew Malek @ NuTel 2017

7

Event Topologies

8

T2K

16 Mar 2017

On-Axis Results from INGRID

v_µ CCQE on Carbon

Uses the proton module in front of central INGRID module

v_µ CCQE on Carbon

Uses the proton module in front of central INGRID module Data divided into samples based on topology and energy

16 Mar 2017

v_µ CCQE on Carbon

Uses the proton module in front of central INGRID module Data divided into samples based on topology and energy

Data cannot distinguish between NEUT & GENIE

Published in PRD 91:112002 (2015)

16 Mar 2017

ν_{μ} CC-inclusive on Iron

Exploits different fluxes in different INGRID modules

ν_{μ} CC-inclusive on Iron

Exploits different fluxes in different INGRID modules Fit cross section using different event topologies

ν_{μ} CC-inclusive on Iron

Exploits different fluxes in different INGRID modules Fit cross section using different event topologies

Published in PRD 93:072002 (2016)

Extends energy range; no disagreement w/ models

16 Mar 2017

Off-Axis Results from ND280

Primary channel used in T2K oscillation analyses

- Use FGD1 as a CH target alongside TPC for tracking
- Interactions with correlated nucleons are important
 - Use models from Martini and Nieves
- Two analyses with different selection & cross-section extraction
 - Fit with additional samples to extend phase space
 - Bayesian unfolding in restricted phase space

Primary channel used in T2K oscillation analyses

 Result: Flux-integrated double-differential CC0π cross section in final state muon kinematic variables [p_µ, cos(θ_µ)]

5.73 x 10²⁰ P.O.T. in Neutrino mode

Published in PRD 93:112012 (2016)

16 Mar 2017

Primary channel used in T2K oscillation analyses

- Result: Flux-integrated double-differential CC0π cross section in final state muon kinematic variables [p_µ, cos(θ_µ)]
- Compared to Martini et al. Model with and without 2p2h

Primary channel used in T2K oscillation analyses

- Result: Flux-integrated double-differential CC0π cross section in final state muon kinematic variables [p_µ, cos(θ_µ)]
- Compared to Martini et al. Model with and without 2p2h

POD CCOπ on Water

• Isolate CC0 π events that (a) start in the π^0 detector (P0D), and also (b) have a muon enter the TPC for tracking:

- Collect P0D data in both water-in and water-out modes
- Subtract water-out from water-in to get cross section on water

The

University Of Sheffield.

POD CCOπ on Water

 Result: Flux-integrated double-differential CC0π cross section on water in final state muon kinematic variables [p_µ, cos(θ_µ)]

POD CCOπ on Water

 Result: Flux-integrated double-differential CC0π cross section on water in final state muon kinematic variables [p_µ, cos(θ_µ)]

16 Mar 2017

ND280 CC1 π^+ Cross Sections

We can exploit the tracking capabilities of the ND280 to reconstruct more complicated final states:

- **CC1** π^+ events have two MIP-like tracks
 - Muon and pion kinematics can be measured
 - Possible to identify pions via Michel electrons in FGD
 - Veto multi- π events from extra tracks and π^0 veto from the electromagnetic calorimeter (ECAL)

Measuring these additional channels improves our understanding of neutrino cross sections, including:

- FGD1 \rightarrow Carbon cross section
- FGD2 \rightarrow Water cross section
- Coherent production

$CC1\pi^+$ X-section on Carbon

5.6×10^{20} P.O.T. in Neutrino mode

Bayesian unfolding used, with control samples for backgrounds

16 Mar 2017

$CC1\pi^+$ X-section on Water

- Create carbon-enriched and water-enriched samples in FGD2 based on reconstructed vertex
- Use Bayesian unfolding (w/ BG subtraction)

5.6 x 10²⁰ P.O.T. in Neutrino mode

Published in PRD 95:012010 (2017)

16 Mar 2017

Coherent π^+ Production

A search was conducted for coherent π^{+} production on carbon.

- In coherent production, v interacts with full nucleus (not indiv. nucleons) \rightarrow only the lepton and pion will leave the nucleus in the final state
 - Look for a lack of vertex activity to select coherent production
 - Look for excess of events at low 4-momentum transfer to nucleus
- $-|t| = |(q-p_{\pi})^{2}|$ 0.5nucleus $p_{\mu,\pi} > 180 \text{ MeV } p_{\pi} < 1.6 \text{ GeV } \theta_{\mu,\pi} < 70^{\circ}$ Data using RS model # Events / bin width (GeV/c²) RS (nominal) flux avo 0.45RS (nominal) cross section 70F External B.G. K2K 0.4 SciBooNE CC Other v, CC DIS 60F cm² / (MINERVA 0.35 CC Resonance v CC QE 50 0.3+ Data 0.25 4030 0.15 200.110 0.05 0.6 0.7 0.8 0.9 0.2 0.3 0.4 0.5 2.5 0.5 1.5 Reconstructed |t| (GeV/c²)² neutrino energy / GeV

Published in PRL **117**:192501 (2016)

Low t excess obs. at $2.2\sigma \rightarrow$ lower than models

Antineutrinos @ ND280

Select highest momentum positive track (μ^+) from FGD-TPC:

- Quality cuts, particle ID, and veto cuts are then applied
- A control sample is used to minimize protons
 - Can be difficult to distinguish from muons at 1 2 GeV

4.29 x 10¹⁹ P.O.T. in Antineutrino mode

\bar{v}_{μ} CC-Inclusive on Carbon

Analysis uses FGD1 data in RHC (\overline{v}) mode

16 Mar 2017

$\overline{\nu}_{\mu}$ CC-Inclusive on Carbon

Results are differential cross sections in muon momentum & angle

T2K Run 5c = 4.29×10^{19} P.O.T. in Antineutrino mode

Summary & Conclusions

- The T2K Near Detector suite can make precision cross-section measurements, as a supplement to its primary role in the oscillation analysis
- Cross-section results from T2K's neutrino mode are available now in both inclusive and exclusive channels

• Antineutrino cross-section measurements are being analysed, and first results are starting to emerge

• Many more cross-section results to come!

Thank you for listening!

16 Mar 2017

