

Status and potentialities of the JUNO experiment

Vito Antonelli

INFN Milano and Department of Physics Milano University On behalf of the JUNO Collaboration

XVII International Workshop on Neutrino Telescopes

Venice, 13-17 March '17

The mass hierarchy

• From experiments

(see e.g. JHEP 1701 (2017) 087; arXiv: 1703.04471[hep-ph] and NPB 00 (2016) 1)

 $\Delta m_{21}^2 = (7.37 \pm 0.17) \times 10^{-5} \text{eV}^2$ (Solar + KL)

$$\left|\Delta m_{31(32)}^2 = (2.52 \pm 0.04) \times 10^{-3}\right| \,\mathrm{eV^2}$$

(Atmospheric + LBL)

• Two possible scenarios

The mass hierarchy determination

□ <u>Mass hierarchy (MH) important for</u>:

Discrimination between different models Beyond the Standard Model

> Potential discovery of experiments (e.g. $0v2\beta$, CP violation)

$$\square \underline{\text{Relatively large } \theta_{13}} (\underline{\sin^2(2\theta_{13} \cong 0.08 - 0.09)})$$

$$\bigcup$$

Study of oscillation probability corrections dependent on MH "sign"

Inverse β decay of $\overline{\nu_e}$ reactor with medium baseline (Original idea by Choubey, Petcov, Piai (PRD68 (2003) 113006))

Mass hierarchy and reactor antineutrinos

•
$$\overline{\nu_e}$$
 survival probability: $\Delta m_{ij}^2 = m_i^2 - m_j^2$

$$P_{ee} = 1 - \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2\left(\frac{\Delta m_{21}^2 L}{4 E}\right) - \sin^2(2\theta_{13}) \left(\cos^2\theta_{12} \sin^2\left(\frac{\Delta m_{31}^2 L}{4 E}\right) + \sin^2\theta_{12}\left(\frac{\Delta m_{32}^2 L}{4 E}\right)\right)$$

• The last term (sensitive to the mass hierarchy), can be written as:

$$\frac{1}{2}\sin^2(2\theta_{13})\left\{1 - \left[1 - \sin^2\left(2\theta_{12}\right)\sin^2\left(\frac{\Delta m_{21}^2 L}{4 E}\right)\right]^{1/2}\cos\left(2\left|\frac{\Delta m_{ee}^2 L}{4 E}\right| \pm \varphi\right)\right\},\$$

 $\Delta m_{ee}^2 = (\cos^2(\theta_{12}) \,\Delta m_{31}^2 + \sin^2(\theta_{12}) \,\Delta m_{32}^2) \text{ and }$

 $\sin \varphi$ and $\cos \varphi$ denote combinations of mass and mixing parameters of the 1-2 sector.

• The sign of φ term is positive for NH and negative for IH \rightarrow

Fastly oscillating term, opposite for the 2 hierarchies, superimposed to the **general oscillation pattern**

Spectrum dependence upon the Mass Hierarchy

Observed energy spectrum has a small dependence on the hierarchy (in addition to other oscillation parameters).

The JUNO option

- JUNO (Jiangmen Underground Neutrino Observatory): "multipurpose" reactor $\overline{v_e}$ experiment, under construction near Kaiping (South China).
- **Baseline** from reactors (10 nuclear cores) to detector about 53 km: **optimized in the region of the maximum 1-2 oscillation**

Updated list of JUNO members

Country	Institute				
Armenia	Yerevan Physics Institute	China	Wu Yi U.	Pakistan	PINSTECH (PAEC)
Belgium	Universite libre de Bruxelles	China	Wuhan U.	Russia	INR Moscow
Brazil	PUC	China	Xi'an JT U.	Russia	JINR
Brazil	UEL	China	Xiamen University	Russia	MSU
Chile	PCUC	China	NUDT	Slovakia	FMPICU
Chile	UTFSM	Czech	Charles U.	Taiwan	National Chiao-Tung U.
China	BISEE	Finland	University of Oulu	Taiwan	National Taiwan U.
China	Beijing Normal U.	France	APC Paris	Taiwan	National United U.
China	CAGS	France	CENBG	Thailand	NARIT
China	ChongQing University	France	CPPM Marseille	Thailand	PPRLCU
China	CIAE	France	IPHC Strasbourg	Thailand	SUT
China	DGUT	France	LLR Palaiseau	USA	UMD1
China	ECUST	France	Subatech Nantes	USA	UMD2
China	Guangxi U.	Germany	Forschungszentrum Julich ZEA2		
China	Harbin Institute of Technology	Germany	RWTH Aachen U.	」 = 71	members
China	IHEP	Germany	TUM		members
China	Jilin U.	Germany	U. Hamburg		
China	Jinan U.	Germany	IKP FZJ		
China	Nanjing U.	Germany	U. Mainz		
China	Nankai U.	Germany	U. Tuebingen		
China	NCEPU	Italy	INFN Catania		
China	Pekin U.	Italy	INFN di Frascati		Observers
China	Shandong U.	Italy	INFN-Ferrara		partmont of Physics
China	Shanghai JT U.	Italy	INFN-Milano	1. De	
China	IMP-CAS	Italy	INFN-Milano Bicocca	Jyv	askyla University, (Finland)
China	SYSU	Italy	INFN-Padova	2	the standard of the standard second
China	Tsinghua U.	Italy	INFN-Perugia	2. Ins	stitute of Electronics and
China	UCAS	Italy	INFN-Roma 3	Со	mputer Science, (Riga, Latvia
China	USTC	_			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
China	U. of South China				

The JUNO detector

The JUNO experiment

JUNO main features

Medium baseline (53 km); high statistics required
 Large detector mass and proximity to several reactors

Reduction of the cosmogenic background
II
Rock overburden about 720 m and a muon veto system

Milestones of the analysis

- Discrimination of NH and DH from global fit and comparison of χ^2

of the best fit points for the 2 hierarchies.

Crucial points

Sensitivity (detector mass) and E resolution to distinguish the right solution For E resolution equal or better than $3\%/\sqrt{E: hierarchy discrimination at 3-4 \sigma}$ C.L. (see the JUNO Yellow Book:, J. of Phys. G: Nucl. Part. Phys. 43 (2016) 030401)

□ Main advantages:

- JUNO looks at vacuum oscillations and, therefore, it doesn't suffer from the uncertainty on Earth density profile and the ambiguity of CP-violating phase.
- > It does not depend on the θ_{13} value (affecting only the amplitude of the corrections) and depends only mildly on the 3-4 flavor pattern.

The JUNO main goals

□ <u>Mass hierarchy determination</u>

□ **Mixing parameters precision measurement**

□<u>Supernova</u> burst & diffuse supernova <u>neutrinos</u>

Geoneutrinos

Solar & atmospheric **<u>neutrino</u>** studies

□ Other measurements: search for sterile neutrinos and for nucleon decays; indirect dark matter searches; other exotic searches

Mass hierarchy sensitivity at JUNO The MH sensitivity is expressed in terms of: $\Delta \chi^{2}_{MH} = \left[\chi^{2}_{MIN} (NH) - \chi^{2}_{MIN} (IH) \right], \text{ with}$ $\chi^{2}_{Rea} = \sum_{i=1}^{N_{bins}} \frac{\left[M_{i} - T_{i} \left(1 + \sum_{k} \alpha_{ik} \varepsilon_{k}\right)\right]^{2}}{M_{i}} + \sum_{k} \frac{\varepsilon_{k}^{2}}{\sigma_{k}^{2}},$

$$\begin{split} M_i &= measured \, \nu \text{ events in the bin;} \quad T_i = no \text{ osc. predicted events;} \quad \sigma_k = \text{syst. uncertainty;} \\ \epsilon_k &= pull \text{ ;} \quad \alpha_{ik} = \text{fraction of event contribution of } k^{th} \text{ pull to } i^{th} \text{ bin} \end{split}$$

Results of the analysis

	Ideal	Core	e distr.	Shape	B/S (stat.)	B/S (shape)	$ \Delta m^2_{\mu\mu} $
Size	$52.5\mathrm{km}$	R	eal	1%	4.5%	0.3%	1%
$\Delta\chi^2_{ m MH}$	+16	-4		-1	-0.5	-0.1	+8
PRD 88, 013008 (2013)				TT!		With info or	· A
HKD 88,	013008 (2013)		disc	Hierar riminati	ion power	from LBI	n Δm ⁻ μμ Lexpts
Stati	stics only		disc	Hierar riminati 40	ion power	from LBI	$\Delta m_{\mu\mu}$ Lexpts

Mass and mixing parameters measurements with JUNO

Very high statistics and very good E resolution

Precision measurement of mass and mixing (at subpercent level for 3 oscillation parameters)

Oscillation Parameter	Current accuracy (global 1σ)**	Dominant experiment(s)	JUNO Potentiality
Δm^2_{21}	2.3%	KamLAND	0.59%
$\Delta m^2 = m_3^2 - rac{1}{2} \left(m_1^2 + m_2^2 ight) $	1.6%	MINOS, T2K	0.44%
$\sin^2(\theta_{12})$	~4-6%	SNO	0.67%

** See: Esteban et. al, JHEP 1701 (2017) 087 and F. Capozzi et al., arXiv: 1703.04471[hep-ph]

Supernova neutrino physics @ JUNO

- Huge amount of energy $(3x10^{53} \text{ erg})$ emitted in neutrinos (0.2 M_{\odot}) over long time range
- 3 phases equally important 3 experiments teaching us about astro- and particle-physics

Process	Туре	Events (< E_{ν} > = 14 MeV)
\bar{v}_e + p $\rightarrow e^+$ + n	СС	5.0 x 10 ³
$v + p \rightarrow v + p$	NC	1.2 x 10 ³
$v + e \rightarrow v + e$	ES	3.6 x 10 ²
$v + {}^{12}C \rightarrow v + {}^{12}C^*$	NC	3.2 x 10 ²
$v_e^{+12}C \rightarrow e^{-+12}N$	СС	0.9 x 10 ²
$\bar{v}_e^{+12}C \rightarrow e^{++12}B$	CC	1.1×10^2
N.B.: Other <e<sub>u> values</e<sub>	needed to be	considered for a complete picture

Expected events in JUNO for a typical SN distance of 10 kpc

We try to be able to handle Betelgeuse $(d \sim 0.2 \text{ kpc})$ resulting in $\sim 10 \text{ MHz}$

For details see J. Phys. G 43 (2016) no.3, 030401

Geo-neutrino physics @ JUNO (Geology _____ Physics)

□ Estimation of radiogenic contribution to the total heat power of the Earth (46±3 TW)

□ Measuring v from ²³⁸U and ²³²Th radioactive decay chains and testing Th/U rate

•Earth composition (abundance of radioactve elements) — Earth's models
 • Structure of the mantle and nature of mantle convection

- Radioactive content of the continental crust (Euranian plate)
- **JUNO advantages**: Size; Depth; Radiopurity.

□ Signal: $\overline{\nu_e}$ IBD (E > 1.806 MeV); 1 year of JUNO (~300 - 500 geo-n events) > (KL+BX+ Sno+)

Solar neutrinos with JUNO

JUNO advantages: LS high mass; E resolution ; Radiopurity

⁷Be neutrinos @JUNO

Expected spectra at JUNO for ideal radiopurity

- Required high radiopurity levels
- Main bckg: ²¹⁰Bi, ⁸⁵Kr, ²³⁸U, ⁴⁰K

⁸B neutrinos @JUNO

□ High p.e. yield → low E threshold, Good E resolution.

- Internal, external, reactor bckg under control.
- Main problem: long lived spallation radioisotopes. Most dangerous ¹¹Be

MSW oscillation pattern Search for upturn in transition between

JUNO progress and schedule

Experimental hall overburden: 720 m (1900 mwe)

Vertical shaft progress: 513 m out of 630 m

Slope tunnel progress: 1055 m out of 1340 m

Juno central detector structure: acrylic sphere and stainless steel truss

- ➤ Acrylic thickness: 120 mm
- ➤ Acrylic panels: ~ 260 pieces
- > Total weight: ~ 600 t of acrylic and ~ 600 t of steel

Forming panel size: 3m x 8m x 120mm

- The problems of shrinkage and shape variation were resolved.
- The radioactivity level of panels checked and under control.

Highlights: LS Pilot plant

Steam

- Purify 20 ton LAB to test the overall design of purification system at Daya Bay. Replace the target LS in one detector
- Quantify the effectivities of subsystems Optical : >20m A.L@430nm?
- Radio-purity: 10^{-15} g/g (U, Th)?
- Determine the performances of sub-systems
 - Al₂O₃ column, distillation, gas striping, water extraction

Distillation and steam stripping system

Al₂O₃ column pilot plant installed in Daya Bay LShall

21

Installed at Daya Bay

Recent milestone: choice of PMT types

2 Large PMT producers selected: North Night Vision Technology (NNVT) and Hamamatsu

Characteristics	unit	MCP PMT (NNCV - IHEP)	R12860 (Hamamatsu)	Note
Electron Multiplier		Micro Channel Plate	Dynode	
Photocathode Mode		Reflection + Transmission	Transmission	
Quantum Efficiency (400nm)	%	26(T), 30 (T+R)	30 (T)	En Resolution
Relative Detection Efficiency	%	110	100	En Resolution
Single Photo-electron P/V		3+	3+	Reconstruction
Transient Time Spread	ns	12	3	Vertex
Rise Time / Fall Time	ns	R~2, F~10	R~7, F~17	
Anode Dark Count	Hz	~30 k	~30 k	Trigger
After Pulse Time Distribution	μs	4.5	4, 17	
After Pulse Rate	%	3	10	
Glass		Low-Potassium Glass	Hario-32	Background

JUNO's Double Calorimetry System...

Additional readout system (36000 3" PMTs): 2 independent readouts embedded within same detector (systematics control)

- (high precision calorimetry for ±Δm²) response aid to 20"
 PMTs for non-stochastic systematics (≤3% @ IMeV)
- (θ₁₂⊕δm²) <u>internal redundancy</u> oscillation parameter measurement: internal cross-check (<1% precision)
- (⁹Li background) enhanced µ-tracking for cosmogenic ion production tagging/vetoing on C (¹²B/⁹Li/⁸He)
- (supernova readout complementarity) double-readout to ensure unbiassed both energy and rate measurement
- (readout⊕trigger complementarity) complementary time resolution, dynamic range & trigger (position) information→ powerful event reconstruction

Many other ongoing tasks

- Read out electronics
- Electronics, cable, box, etc.
- Radioactivity measurements and screening
- Calibration
- Slow control: PMT, water, environmental monitoring & control
- DAQ
- Offline farm, data storage/data center, software, ...
- Development of MC and analysis tools
- Installation strategy
- **PMT testing**

Conclusions

MH determination: important open issue of neutrino physics impact on model building and experiments.

\Box Possibility of determining MH, by studying **IBD** of \overline{v}_e with medium baselines

- **JUNO** experiment: main **features and potentialities**
- □ Mass Hierarchy determination at JUNO
- **SN neutrino** physics at JUNO
- **Geoneutrinos** at JUNO
- □ Solar neutrinos at JUNO (⁷Be and ⁸B neutrinos)
- □ JUNO schedule and progress: excavation works, central detector, LS purification and testing, PMT (double calorimetry system), ...

Backup slides

Mass hierarchy study at JUNO

Parameters: m = 20 kt LS; Thermal power = 36 GW; Exposure time = 6 y (i.e. 2000 d)

Crucial point: energy resolution

$$\frac{\sigma_E}{E} = \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + b^2 + \left(\frac{c}{E}\right)^2} \cong \sqrt{\left(\frac{a}{\sqrt{E}}\right)^2 + \left(\frac{1.6 \text{ b}}{\sqrt{E}}\right)^2 + \left(\frac{c}{1.6 \sqrt{E}}\right)^2}$$

Statistics Non stochastic
Requirement:

$$\frac{\sigma_E}{\sqrt{E}} \le 3\% \longrightarrow \sqrt{a^2 + (1.6 \text{ b})^2 + \left(\frac{c}{1.6}\right)^2} \le 3\%$$

Overall LAB5 view at Daya Bay

Values of the mixing parameters from global fits with 3 flavors

	Normal Ordering (best fit)		Inverted Orde	Any Ordering	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.271 \rightarrow 0.345$
$\theta_{12}/^{\circ}$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$	$31.38 \rightarrow 35.99$
$\sin^2 \theta_{23}$	$0.441\substack{+0.027\\-0.021}$	$0.385 \rightarrow 0.635$	$0.587\substack{+0.020\\-0.024}$	$0.393 \rightarrow 0.640$	$0.385 \rightarrow 0.638$
$\theta_{23}/^{\circ}$	$41.6^{+1.5}_{-1.2}$	$38.4 \rightarrow 52.8$	$50.0^{+1.1}_{-1.4}$	$38.8 \rightarrow 53.1$	$38.4 \rightarrow 53.0$
$\sin^2 \theta_{13}$	$0.02166\substack{+0.00075\\-0.00075}$	$0.01934 \rightarrow 0.02392$	$0.02179\substack{+0.00076\\-0.00076}$	$0.01953 \rightarrow 0.02408$	$0.01934 \to 0.02397$
$\theta_{13}/^{\circ}$	$8.46\substack{+0.15 \\ -0.15}$	$7.99 \rightarrow 8.90$	$8.49^{+0.15}_{-0.15}$	$8.03 \rightarrow 8.93$	$7.99 \rightarrow 8.91$
$\delta_{\mathrm{CP}}/^{\circ}$	261^{+51}_{-59}	$0 \rightarrow 360$	277^{+40}_{-46}	$145 \rightarrow 391$	$0 \rightarrow 360$
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV^2}}$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	$7.03 \rightarrow 8.09$
$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV}^2}$	$+2.524^{+0.039}_{-0.040}$	$+2.407 \rightarrow +2.643$	$-2.514^{+0.038}_{-0.041}$	$-2.635 \rightarrow -2.399$	$ \begin{bmatrix} +2.407 \to +2.643 \\ -2.629 \to -2.405 \end{bmatrix} $

Table 1. Three-flavor oscillation parameters from our fit to global data after the NOW 2016 and ICHEP-2016 conference. The numbers in the 1st (2nd) column are obtained assuming NO (IO), *i.e.*, relative to the respective local minimum, whereas in the 3rd column we minimize also with respect to the ordering. Note that $\Delta m_{3\ell}^2 \equiv \Delta m_{31}^2 > 0$ for NO and $\Delta m_{3\ell}^2 \equiv \Delta m_{32}^2 < 0$ for IO.

Taken from Esteban et al. JHEP 1701 (2017) 087

TABLE I: Results of the global 3ν oscillation analysis, in terms of best-fit values for the mass-mixing parameters and associated $n\sigma$ ranges (n = 1, 2, 3), defined by $\chi^2 - \chi^2_{\min} = n^2$ with respect to the separate minima in each mass ordering (NO, IO) and to the absolute minimum in any ordering. (Note that the fit to the δm^2 and $\sin^2 \theta_{12}$ parameters is basically insensitive to the mass ordering.) We recall that Δm^2 is defined herein as $m_3^2 - (m_1^2 + m_2^2)/2$, and that δ is taken in the (cyclic) interval $\delta/\pi \in [0, 2]$.

Parameter	Ordering	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5}~{\rm eV^2}$	NO, IO, Any	7.37	7.21 - 7.54	7.07 - 7.73	6.93 - 7.96
$\sin^2 \theta_{12}/10^{-1}$	NO, IO, Any	2.97	2.81 - 3.14	2.65 - 3.34	2.50 - 3.54
$ \Delta m^2 /10^{-3} \text{ eV}^2$	NO	2.525	2.495 - 2.567	2.454 - 2.606	2.411 - 2.646
	IO	2.505	2.473 - 2.539	2.430 - 2.582	2.390 - 2.624
	Any	2.525	2.495 - 2.567	2.454 - 2.606	2.411 - 2.646
$\sin^2 \theta_{13} / 10^{-2}$	NO	2.15	2.08 - 2.22	1.99 - 2.31	1.90 - 2.40
	IO	2.16	2.07 - 2.24	1.98 - 2.33	1.90 - 2.42
	Any	2.15	2.08 - 2.22	1.99 - 2.31	1.90 - 2.40
$\sin^2 \theta_{23}/10^{-1}$	NO	4.25	4.10 - 4.46	3.95 - 4.70	3.81 - 6.15
	IO	5.89	$4.17-4.48 \oplus 5.67-6.05$	$3.99-4.83 \oplus 5.33-6.21$	3.84 - 6.36
	Any	4.25	4.10 - 4.46	$3.95-4.70\oplus5.75-6.00$	3.81 - 6.26
δ/π	NO	1.38	1.18 - 1.61	1.00 - 1.90	$0 - 0.17 \oplus 0.76 - 2$
	IO	1.31	1.12 - 1.62	0.92 - 1.88	$0 - 0.15 \oplus 0.69 - 2$
	Any	1.38	1.18 - 1.61	1.00 - 1.90	$0 - 0.17 \oplus 0.76 - 2$

Taken from F. Capozzi et al. arXiv: 1703.04471[hep-ph]

Results of the old (201 6) fit from the Bari group

Table 1: Results of the global 3ν oscillation analysis, in terms of best-fit values and allowed 1, 2 and 3σ ranges for the 3ν mass-mixing parameters. See also Fig. 1 for a graphical representation of the results. We recall that Δm^2 is defined as $m_3^2 - (m_1^2 + m_2^2)/2$, with $+\Delta m^2$ for NH and $-\Delta m^2$ for IH. The CP violating phase is taken in the (cyclic) interval $\delta/\pi \in [0, 2]$. The last row reports the (statistically insignificant) overall χ^2 difference between IH and NH.

Parameter	Hierarchy	Best fit	1σ range	2σ range	3σ range
$\delta m^2 / 10^{-5} \text{ eV}^2$	NH or IH	7.37	7.21 – 7.54	7.07 – 7.73	6.93 – 7.97
$\sin^2 \theta_{12} / 10^{-1}$	NH or IH	2.97	2.81 - 3.14	2.65 - 3.34	2.50 - 3.54
$\Delta m^2 / 10^{-3} \text{ eV}^2$	NH	2.50	2.46 - 2.54	2.41 - 2.58	2.37 - 2.63
$\Delta m^2 / 10^{-3} \text{ eV}^2$	IH	2.46	2.42 - 2.51	2.38 - 2.55	2.33 - 2.60
$\sin^2 \theta_{13} / 10^{-2}$	NH	2.14	2.05 - 2.25	1.95 – 2.36	1.85 – 2.46
$\sin^2 \theta_{13} / 10^{-2}$	IH	2.18	2.06 - 2.27	1.96 - 2.38	1.86 - 2.48
$\sin^2 \theta_{23}/10^{-1}$	NH	4.37	4.17 - 4.70	3.97 – 5.63	3.79 – 6.16
$\sin^2 \theta_{23} / 10^{-1}$	IH	5.69	$4.28-4.91 \oplus 5.18-5.97$	4.04 - 6.18	3.83 - 6.37
δ/π	NH	1.35	1.13 - 1.64	0.92 – 1.99	0 - 2
δ/π	IH	1.32	1.07 - 1.67	0.83 – 1.99	0 - 2
$\Delta \chi^2_{I-N}$	IH-NH	+0.98			

Taken from Capozzi et al, NPB 00 (2016) 1