XVII International Workshop on Neutrino Telescopes, 13 - 17 March 2017, Venice, Italy

MORE RESULTS FROM THE EXPERIMENT

Matteo Tenti (INFN - BO) on behalf of the **OPERA** Collaboration

INFN

Istituto Nazionale di Fisica Nucleare

140 physicists, 11 countries, 28 institutions

✓ Looser selection analysis $\checkmark \Delta m_{32}^2$ measurement update $\sqrt{v_{e}}$ search update ✓ sterile neutrinos

ERA

 \checkmark μ annual modulation

[CERN-SPSC-2000-028, 2000]

The Oscillations Project with Emulsion TRacking Apparatus

16 March 2017

2

The v_{τ} detection technique

M. Tenti - XVII International Workshop on Neutrino Telescopes, 13 - 17 March 2017, Venice, Italy

The OPERA detector

- Target Tracker
- 31 XY doublets of 256 scintillator strips planes

Tracking of the target region **Brick selection** Calorimetry

- 2 RPC planes rotated by 42.6°
- 6 stations of 4-fold drift tubes layers

μ Identification + charge and momentum measurements

16 March 2017

M. Tenti - XVII International Workshop on Neutrino Telescopes, 13 - 17 March 2017, Venice, Italy

Event reconstruction

16 March 2017

M. Tenti - XVII International Workshop on Neutrino Telescopes, 13 - 17 March 2017, Venice, Italy

Vertex hunting in the brick

0) tracks tagged in the CS films followed upstream to stopping point

1) 1 cm³ volume centered in the stopping point scanned and tracks reconstructed

- 2) cosmic ray tracks (from a dedicated exposure) used for the fine alignment of films
- 3) passing through tracks discarded, the vertexing algorithm reconstructs the vertex
- 4) Short-lived particle decays identified (decay search)

$\nu_{\mu} \rightarrow \nu_{\tau}$ background characterization

Monte Carlo simulation benchmarked on control samples

v_τ appearance discovered

The 5 years long CNGS run

- 1.8 × 10²⁰ p.o.t. collected (80% of the design)
- 19505 v interactions in the emulsion targets.
- 5 candidate events fulfill kinematical selection [S/B ratio ~10]

Observed Data: 4 hadronic + 1 muonic candidates

	Expected		
Channel	background	Expected signal	Observed
$\tau \rightarrow 1h$	0.04 ± 0.01	0.52 ± 0.10	3
$\tau \rightarrow 3h$	0.17 ± 0.03	0.73 ± 0.14	1
$\tau ightarrow \mu$	0.004 ± 0.001	0.61 ± 0.12	1
$\tau \rightarrow e$	0.03 ± 0.01	0.78 ± 0.16	0
Total	0.25 ± 0.05	2.64 ± 0.53	5

Signal Background Modelization

- Multichannel (uncorrelated) counting model based on Poisson Statistics
- Gaussian for Background Uncertainties

$$\mathcal{L} = \prod \text{Pois}(n_i, \mu s_i + b_i) \text{ Gaus}(b_{0i}, b_i, \sigma_{bi})$$

 $\mu \rightarrow$ strength of the signal (parameter of interest) with $\mu = 0$: background-only hypothesis and $\mu = 1$: nominal signal+background

test statistics: i) Profile Likelihood Ratio; ii) Fisher's rule ($\mu = 0$) .

Background-only hypothesis:

- p-value = 1.1×10^{-7}
- excluded at 5.1 σ significance

Compatibility with 3ν oscillation: $\hat{\mu} = 1.8^{+1.8}_{-1.1}$ at 90% C.L

Probability of less likely data: 17% based on total number 6.4% if channels considered

The five v_{τ} candidates observed

Loosing v_{τ} event selection

- Loose kinematical cuts:
 - Minimum selection to limit contribution from had. int. and large angle scattering bkg
 - Negligible additional background from K/π decays

Variable	au ightarrow 1h	$\tau \to 3h$	$\tau \to \mu$	$\tau ightarrow e$
$z_{dec}~(\mu m)$	$<\!\!2600$	$<\!\!2600$	$<\!\!2600$	$<\!\!2600$
$ heta_{kink} (rad)$	> 0.02	> 0.02	> 0.02	> 0.02
$p_{2ry} \ (GeV/c)$	>1	>1	> 1	> 1
$p_{2ry}^T \ (GeV/c)$	> 0.15	/	> 0.1	> 0.1

- Boost Decision Tree
 - Use kinematical, topological variables and their correlations
 - Selection optimized, FOM: efficiency x purity

Expected Background	Expected Signal	Observed	
1.86 ± 0.5	5.88 ± 1.18	10	

- Increased statistics of the ν_τ sample: x2
 Reduction of S/B from ~10 to ~3
- ⇒ Improvement in ∆m²₂₃ measurement (first measurement in appearance mode)

[Phys. Rev. Lett. 115, 121802 (2015)]

Measurement of Δm^2_{23}

$$egin{aligned} N_{
u_{ au}} \propto \int \phi(E) \sin^2\left(rac{\Delta m_{32}^2 L}{4E}
ight) \epsilon(E) \sigma(E) dE \ \propto (\Delta m_{32}^2)^2 L^2 \int \phi(E) \epsilon(E) rac{\sigma(E)}{E^2} dE \end{aligned}$$

 $\left(\frac{L}{\langle E \rangle}\right)_{opera} \sim 43 \text{ km/GeV}$

 $\left(\frac{L}{\langle E \rangle}\right)_{PEAK} \sim 500 \text{ km/GeV}$

 Δm_{23}^2 "Steep" Δm_{23}^2 dependence **OPERA** (τ appearance) preliminary **OPERA** (τ appearance) \rightarrow counting based measurement PRL 115 (2015) 121802 DAYA-BAY PRL 112 (2014) 061801 90% C.L. interval T2K by Feldman & Cousins method PRL 112 (2014) 181801 MINOS PRL 112 (2014) 191801 $\Delta m_{23}^2 = [1.98 - 3.95] \, 10^{-3} \, \text{eV}^2$ PDG 2016 (assuming full mixing) 2 3 $\Delta m_{23}^2 [10^{-3} \text{ eV}^2]$

Peculiar event

\mathbf{v}_{e} analysis

- OPERA detector granularity allows e.m. shower id $\rightarrow v_e$ search.
- A **dedicated procedure**, balancing time need vs efficiency.

16 March 2017

M. Tenti - XVII International Workshop on Neutrino Telescopes, 13 - 17 March 2017, Venice, Italy

Sterile neutrino search

Some experimental results may hint to an additional massive (~1 eV²) sterile neutrino

Mixing described by 4 x 4 matrix

$$\begin{bmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{\tau} & U_{s3} & U_{s4} \end{bmatrix} \begin{bmatrix} v_e \text{ appearance} \\ v_\mu \text{ disappearance} \\ v_\tau \text{ appearance} \\ \text{NC disappearance} \end{bmatrix}$$

OPERA can test the sterile neutrino hypothesis looking for deviations from predictions of the standard flavors oscillations probability.

Predictions of the 3+1 model evaluated with GLOBES

- Δm_{21}^2 fixed to *PDG* value
- Gaussian prior on Δm²₃₁ (*PDG* mean and sigma)
- Matter effects: constant Earth crust density (PREM onion shell model) [Phys. Earth Planet. Interiors 25 (1981) 297]
- $\Delta m_{41}^2 > 0$ favored by $\sum m_{\nu}$ result from cosmological surveys [A&A 594, A13 (2016)]
- Profiled likelihood ratio λ (nuisance parameter profiled out)
- Representation: $U = R_{34}R_{24}\hat{R}_{23}R_{14}\hat{R}_{13}\hat{R}_{12}$

... with ν_τ

16 March 2017

M. Tenti - XVII International Workshop on Neutrino Telescopes, 13 - 17 March 2017, Venice, Italy

... with v_{τ}

[OPERA note 175] [JHEP 1506 (2015) 069]

16

... with ${oldsymbol v}_{e}$

 ν_e energy distribution used to obtain exclusion region on:

$\Delta m_{41}^2 vs sin^2 2\theta_{\mu e}$

with $\sin^2 2\theta_{\mu e} = 4 |U_{\mu 4}|^2 |U_{e 4}|^2$

 v_e beam dependence on oscillation parameters (no constant background)

... with u_e

Annual µ rate modulation

M. Tenti - XVII International Workshop on Neutrino Telescopes, 13 - 17 March 2017, Venice, Italy

Conclusions

- Discovery of $v_{\mu} \rightarrow v_{\tau}$ appearance in the CNGS neutrino beam: 5.1 σ
- Loose selection analysis to increase the number of v_τ candidates ⇒ improve OPERA measurement of Δm²₂₃ (first measurement in appearance mode)
- Muon-less double decay event has been reported. Favored interpretation v_{τ} CC interaction with charm production
- $v_{\mu} \rightarrow v_{e}$ oscillation search
- Constraints on sterile neutrinos from $\nu_{\mu} \rightarrow \nu_{e}$ and $\nu_{\mu} \rightarrow \nu_{\tau}$ with the 3+1 flavor model
- Non-oscillation Physics: annual modulation of atmospheric muons
- <u>PERSPECTIVES</u>: Exploit OPERA unique feature of identifying all three flavors:
 - v_{τ} appearance
 - v_e appearance
 - v_{μ} disappearance

to constrain oscillations parameters with one single experiment

Thank you for your attention!

Image taken using **OPERA nuclear emulsion film** with a pinhole hand made camera courtesy by Donato Di Ferdinando

Study of Charged Particle Multiplicity Distribution

Measure average $\langle n_{ch} \rangle$ and dispersion D_{ch} multiplicities for charged particles in order to

- Test phenomenological and theoretical models
- Provide data to tune MC event generators.
- Test KNO Scaling

Measurement of Δm^2_{23}

Accepted by PRL, arXiv:1507.01417

$$egin{aligned} N_{
u_{ au}} \propto \int \phi(E) \sin^2\left(rac{\Delta m_{32}^2 L}{4E}
ight) \epsilon(E) \sigma(E) dE \ \propto (\Delta m_{32}^2)^2 L^2 \int \phi(E) \epsilon(E) rac{\sigma(E)}{E^2} dE \end{aligned}$$

 $\left(\frac{L}{\langle E \rangle}\right)_{opera} \sim 43 \text{ km/GeV}$

 $\binom{L}{\langle E \rangle}_{PEAK} \sim 500 \text{ km/GeV}$

"Steep" Δm_{23}^2 dependence

 \rightarrow counting based measurement

90% C.L. intervals by Feldman & Cousins method

$$\Delta m_{23}^2 = [2.0 - 4.7] \, 10^{-3} \, \text{eV}^2$$

(assuming full mixing)

Location efficiency

 0μ -like and 1μ -like samples

[JHEP 11 (2013) 036]

Data-Monte Carlo comparison of the **location efficiency** as a function of the visible energy in the target scintillators

{∈loc} with MB analysis 0.9 0.8 0.7 0.6 0.5 2008-2009 control sample 0.4 0 μ data 0.3 1 μ data 0.2 0 μ MC sys.=(10-20)% 1 μ MC sys.=10% 0.1 300 400 500 700 800 900 1000 600 E{TT} (Mey) N. Mauri, ICNFP 2015

Hybrid detector:

a complex simulation! Reasonable agreement.

The prediction for the τ signal and backgrounds is based on efficiencies derived from the observed 0μ -like and 1μ -like samples

27 August 2015

Analysis of the emulsion films

16 March 2017

M. Tenti - XVII International Workshop on Neutrino Telescopes, 13 - 17 March 2017, Venice, Italy

25

Data sample

M. Tenti - XVII International Workshop on Neutrino Telescopes, 13 - 17 Warch 2017, Venice, Italy

variable	$\tau \to 1 h$	$\tau \to 3h$	$\tau \to \mu$	$\tau \to e$
lepton-tag		No μ or e at the	e primary vertex	
$z_{dec}~(\mu{ m m})$	[44, 2600]	< 2600	[44, 2600]	< 2600
p_T^{miss} (GeV/c)	$< 1^{\star}$	$< 1^{\star}$	/	/
ϕ_{lH} (rad)	$> \pi/2^{\star}$	$>\pi/2^{\star}$	/	/
p_T^{2ry} (GeV/c)	$> 0.6(0.3)^*$	/	> 0.25	> 0.1
$p^{2ry} (\text{GeV}/c)$	> 2	> 3	> 1 and < 15	> 1 and < 15
$\theta_{kink} \ (mrad)$	> 20	< 500	> 20	> 20
$m, m_{min} \; ({\rm GeV}/c^2)$	/	> 0.5 and < 2	/	/

variable

lepton-tag z_{dec} (µm) p_T^{miss} (GeV/c) ϕ_{lH} (rad) p_T^{2ry} (GeV/c) p^{2ry} (GeV/c) θ_{kink} (mrad, m, m_{min} (GeV/c²)

- the *flight length* with respect to the primary vertex;
- the missing transverse momentum at primary with respect to the beam direction;
- the transverse angle with respect to the beam direction between the tracks which end up in 1pr-like and 2pr-lik vertices, so called φ ;
- the *transverse daughters momentum* with respect to the parent direction;
- the *daughters momentum*, which is the module of total momentum of the daughters;
- the kink angle between parent and daughter;
- the *invariant mass* of the daughters, for which the daughters masses are assumed to be equal to the pion mass;

16 March 2017

M. Tenti - XVII International Workshop on Neutrino Telescopes, 13 - 17 March 2017, Venice, Italy

- the *daughter momentum* coming from the vertex;
- the daughter transverse momentum with respect to the parent direction; p_{2ry}^T
- the kink angle between parent and daughter;
- the *flight length* with respect to the primary vertex;

Variable	$\tau \to 1h$	$\tau \rightarrow 3h$	$ au o \mu$	au o e
$z_{dec}~(\mu m)$	$<\!\!2600$	$<\!\!2600$	$<\!\!2600$	<2600
$ heta_{kink} (rad)$	> 0.02	> 0.02	> 0.02	> 0.02
$p_{2ry} \ (GeV/c)$	>1	>1	>1	>1
$p_{2ry}^T \ (GeV/c)$	> 0.15	/	> 0.1	>0.1

 p_{2ry}

 $heta_{kink}$

 z_{dec}

Improvement on the background rejection

Large angle track detection

Undetected soft and large angle muons are the source of charm background Detection of particles and nuclear fragments in hadronic interactions

FTS

JINST 9 (2014) P12017

Large angle μ scattering

CNGS v_{μ} CC muons on Lead 1< p_{μ} <15 GeV/c

Large angle μ scattering

33

Background studies: hadronic interactions

Comparison of large data sample (π ⁻ beam test at CERN) with Fluka simulation —— check the agreement and estimate the systematic uncertainty

PTEP 9 (2014) 093C01

Nuclear fragments emission probability

Hadronic background: π test beam

