Status and Perspectives of Dark Matter annual modulation (annual modulation review + XMASS)

Masaki Yamashita Kamioka observatory, ICRR, The University of Tokyo

XVII International Workshop on Neutrino Telescopes March 13-17, 2017

Masaki Yamashita

DAMA/LIBRA Eur. Phys.J. C(2013) 73, JINST 2012 7 P03009

- DAMA(~100 kg) + LIBRA (~250 kg)
- •14cycle -> 1.33ton x yr
- •Annual Modulation 9.2 σ
- •Fit with all the parameters free:

DAMA/LIBRA Eur. Phys.J. C(2013) 73, JINST 2012 7 P03009

- DAMA(~100 kg) + LIBRA (~250 kg)
- •14cycle -> 1.33ton x yr
- •Annual Modulation 9.2 σ
- Fit with all the parameters free:
 -A = (0.0112 ± 0.0012) cpd/kg/keV
 -t0 = (144±7) days(152 d SHM)

DAMA/LIBRA Eur. Phys.J. C(2013) 73, JINST 2012 7 P03009

Direct Dark Matter Search (standard halo model)

Masaki Yamashita 5

Annual modulation signal

Contents

DAMA/LIBRA vs others Background? **Isospin violation**? Why not Nal(Tl)? DM-electron recoil signal? **Future prospects**

Muon induced background@Gran Sasso

 Annual modulation of the muon reported by Borexino
 LVD and MACRO.

Borexino collaboration, arXiv:1202.6403

Muon induced background

- •Annual modulation of the muon reported by Borexino LVD and MACRO.
- •Muon rate is depend on atmosphere temperature.
- Modulation amplitude is about 1.4%
- Several papers report about muon induced background.

Borexino collaboration, arXiv:1202.6403

Full Monte Carlo

PRL 114, 151301 (2015) J. Klinger and V. A. Kudryavtsev

- Propagate muons though LNGS rock.
- •Neutron production and transport by **GEANT4**
- Detector simulation for NaI(TI) array
- •Event analysis to sample single hit events.
- Conclusion
 - -3.5x10-5 counts/kg/day/keV => 0.3% of the measured
 - -Muon-induced neutrons can not explain the DAMA data.

from Vitaly Kudryavtsev Masaki Yamashita

Contents

DAMA/LIBRA vs others **Background**? Isospin violation ? Why not Nal(Tl)? DM-electron recoil signal? **Future prospects**

Isospin violation

A. Kurylov et al. Phys. Rev. D 69 (2004) 063503 J.L. Feng et al. PLB 703 (2011) 124

 $\Rightarrow \propto A^2$

$$\sigma_A = \frac{\mu_A^2}{M_*^4} \left[f_p Z + f_n (A - Z) \right]^2$$

Usually, we assume fp = fn Then,

Masaki Yamashita

17

fp: coupling to proton, fn for neutron

Isospin violation

A. Kurylov et al. Phys. Rev. D 69 (2004) 063503 J.L. Feng et al. PLB 703 (2011) 124

$$\sigma_A = \frac{\mu_A^2}{M_*^4} \left[f_p Z + f_n (A - Z) \right]^2$$

A: atomic mass Z: atomic number

fp: coupling to proton, fn for neutron

Usually, we assume fp = fn Then,

=> $\propto A^2$ If $f_n/f_p = -Z/(A - Z)$ e.g. z=54, A=131, fn/fp = -0.7 means DM doesn't like to scatter with Xe!

Isospin violation

A. Kurylov et al. Phys. Rev. D 69 (2004) 063503 J.L. Feng et al. PLB 703 (2011) 124

$$\sigma_A = \frac{\mu_A^2}{M_*^4} \left[f_p Z + f_n (A - Z) \right]^2$$

A: atomic mass Z: atomic number

fp: coupling to proton, fn for neutron

 $f_n/f_p = 1.0$

Usually, we assume fp = fn Then,

=>
$$\propto A^2$$

If $f_n/f_p = -Z/(A - Z)$
e.g. z=54, A=131, fn/fp = -0.7
means DM doesn't like to scatter with Xe!

19

$$f_n/f_p = -0.7$$

isospin violation (2016) arXiv:1609.03551v2, X. He et al + LUX and PandX-II in 2016

Positive signal regions are no longer viable after LUX and PandaX-II

Contents

DAMA/LIBRA vs others **Background**? **Isospin violation**? Why not Nal(Tl)? DM-electron recoil signal? **Future prospects**

Why not Nal(TI)?

-No experiments could confirm/deny DAMA/LIBRA result for a long time by NaI (TI)

-The reason is no one could get pure NaI(TI) as good as DAMA/LIBRA crystal, especially for 40K and 210Pb.

Why not Nal(TI)?

-No experiments could confirm/deny DAMA/LIBRA result for a long time by NaI (TI)

-The reason is no one could get pure NaI(TI) as good as DAMA/LIBRA crystal, especially for 40K and 210Pb.

-But recently, the R&D for making pure NaI(TI) crystal have been carrying out by several group.

- COSINE-100,

40K below DAMA, 210Po ~ DAMA,

	Mass (kg)	Powder Type	⁴⁰ K (ppb)	²³⁸ U (ppt)	232 Th (ppt)	²¹⁰ Po (mBq/kg)			
Crystal 1	8.26	Powder B	43.4 ± 13.7	< 0.02	$1.31 {\pm} 0.35$	3.20 ± 0.04			
Crystal 2	9.15	Powder C	82.7 ± 12.1	< 0.12	$<\!\!0.63$	$2.06 {\pm} 0.03$			
Crystal 3	9.16	WIMPScint-II	41.1 ± 6.8	< 0.04	$0.44{\pm}0.19$	$0.76 {\pm} 0.02$			
Crystal 4	18.01	WIMPScint-II	$39.5 {\pm} 8.3$		< 0.3	$0.74{\pm}0.01$			
Crystal 5	18.28	Powder C	$86.8 {\pm} 10.8$		$2.35 {\pm} 0.31$	2.06 ± 0.02			
Crystal 6	12.5	WIMPScint-III	12.2 ± 4.5	< 0.018	$0.56 {\pm} 0.19$	$1.52{\pm}0.02$			
Crystal 7	12.5	WIMPScint-III	18.8 ± 5.3		< 0.6	$1.54{\pm}0.02$			
Crystal 8	18.28	Powder C	56.15 ± 8.1		<1.4	$2.05 {\pm} 0.02$			
DAMA			<20	0.7 - 10	0.5 - 7.5	< 0.5			

total 2-4 x DAMA's avo

COSINE-100 NaI(TI) crystal from R. Maruyama

Current & Planned Nal(Tl) Experiments

from Reina Maruyama

DM-ICE

PRD 95 032006 (2017) E. Barbosa de Souza et al.

- the detector was deployed at the geographic South Pole in December, 2010.
- Two 8.47 kg crystals (originally used in the NAIAD)
- 2457 m (2200 m.w.e.) overburden from the Antarctic ice.
- the first search for annual modulation dark matter signal with Nal(Tl) detectors in the Southern Hemisphere.

Contents

DAMA/LIBRA vs others **Background**? **Isospin violation**? Why not Nal(Tl)? DM-electron recoil signal? **Future prospects**

Interaction with dark matter

<complex-block>

fast neutron WIMP (SUSY, KK ...)

fast neutron WIMP (SUSY, KK ...)

The signal is in electron recoil ?

Masaki Yamashita

DM - electron recoil models

•Signal is not a nuclear recoil.

•e.g.

no loop-induced nuclear recoil - axial vector interaction

 \cdot photon emission from excited DM

(Luminous dark matter)

modulation signal

 \cdot axion like particle can not be candidate

because σ ~1/v , dm flux ~ v.

·DAMA/LIBRA vs LXe

Energy deposit ~ 3 keV energy deposit.
 (from DAMA/LIBRA)

•Event rate is similar for Xe(z=54) and lodine (z=53)

 modulation analysis is not depend on the halo model.

Modulation search by LXe (electron recoil signal)

XENON100@LNGS Two-phase Xe TPC

Two phase PMT arrav

Single phase

30

XMASS experiment

山古街地

832kg LXe

茂住

MICU

Kamioka mine Gifu, Hida city, Ikenoyama

Kamland super Kamiokande

ICRR, UTokyo

SAM

KAGRA

KMAS

SG

CLIO

Masaki Yamashita

-#III

新潟方面

THIT

-φ10m x 10m ultra pure water shield with 20 inch x 70 PMTs for muon veto

XMASS-I detector

- XMASS-I has very large mass (832 kg) LXe detector and unique detector which is operated in single phase.

- Largest light yield (15 PE/keV) among the $\underbrace{\overleftarrow{\square}}_{\overleftarrow{\square}}$ dark matter detector (4 π photo-coverage)

- very large exposure.

DAMA/LIBRA 1.33 ton year vs XMASS

0.82 ton year

2013/11/20 - 2015/03/29 data was used

for the analysis.

anconordo doing and nork (Emr).									
Experiment	$ \vec{\mathbf{E}} $ (V/cm)	S1 _{thr} (PE)	$LY_{Co}(\frac{PE}{keV})$	$E_{\rm thr}~({\rm keV})$					
ZEPLIN-III	3400	2.6	1.3	$2.8^{+0.5}_{-0.5}$					
XENON10	730	4.4	3.0	$2.5^{+0.4}_{-0.3}$					
XENON100	530	3.0	2.3	$2.3^{+0.4}_{-0.3}$					
XMASS	0	4.0	14.7	$1.1^{+0.4}_{-0.2}$					

L. Baudis et al. PhysRevD.87.115015 Masaki Yamashita

WIMP case

time variation data was fitted by

- •2013 Nov 2015 March (359.2 live days)
- 0.82 ton x year (DAMA/LIBRA 1.33 ton x year
 assuming WIMP spectrum
- 2D fitting (time and energy bin)
- DAMA/LIBRA region is mostly excluded by annual modulation search.
 <4.3 x 10⁻⁴¹ cm² (90% CL) @ 8GeV

$$R_{i,j}^{\text{ex}} = \int_{t_j - \frac{1}{2}\Delta t_j}^{t_j + \frac{1}{2}\Delta t_j} \left(C_i + \sigma_{\chi n} \cdot A_i(m_{\chi}) \cos 2\pi \frac{(t - t_0)}{T} \right) dt$$

Ai: amplitude Ci: constant σ_{χ} : WIMP-nucleus cross section m_{χ} :WIMP mass t0:152.5 day T : 1 year

Model Independent Case

Abe et al. (XMASS collaboration) Phys Lett. B (2016)272

Model independent analysis :

- No sign for SUSY particle at LHC so far.
- •No sign in direct detection for more than decade.
- •important to look for variety candidate.
- Annual modulation signal is searched for without any model assumption.
- Amplitude (Ai) and Constant (Ci) are free parameter.
- Slightly negative amplitude was observed.

Significance was evaluated with test statistic (10,000 sample) and no significant modulated signal has been observed. (1.8 σ)

$< (1.7-3.7)x10^{-3}x10^{-3}$ counts/day/kg/keVee in

2-6keVee (0.5keVee bin width). (90 CL, Bayesian)

$$\begin{aligned} R_{i,j}^{\text{ex}} &= \int_{t_j - \frac{1}{2}\Delta t_j}^{t_j + \frac{1}{2}\Delta t_j} \begin{pmatrix} C_i + A_i \cos 2\pi \frac{(t - t_0)}{T} \end{pmatrix} dt \\ & \text{free in energy bin} \end{aligned}$$
$$\chi^2 &= \sum_{i}^{E_{bins}} \sum_{j}^{t_{bins}} \left(\frac{(R_{i,j}^{\text{data}} - R_{i,j}^{\text{ex}} - \alpha K_{i,j})^2}{\sigma(\text{stat})_{i,j}^2 + \sigma(\text{sys})_{i,j}^2} \right) + \alpha^2, \end{aligned}$$

Current Status (modulation)

XMASS: <(1.7-3.7)x10⁻³ counts/day/kg/keVee CL90 in 2-6keVee. XENON100 (electronic signal): (1.67+-0.73) x 10⁻³ counts/day/keVee (2.0-5.8 keV)

disagree at 5.7σ

Contents

DAMA/LIBRA vs others **Background**? **Isospin violation**? Why not Nal(Tl)? DM-electron recoil signal? **Future prospects**

Near Future prospects

DAMA/LIBRA upgrade (another 7 cycles)

- high QE 35.1% at 420nm
- Energy threshold
- ·2keV -> 1keV(5.5-7.5 ph.e./keV-> 6- >10 ph.e./keV)
- a better energy resolution
- · a better noise/scintillation discrimination
- less radioactivity

•COSINE-100 sensitivity will reach DAMA/LIBRA for 2 years of data. (started 2016. Sep)

·XMASS

- continuously taking data and almost another two years of data in hand with 1 keVee threshold and will be reported soon.
- •XENON1T is on going and it is expected to be lowest background with largest target mass (1ton).

Eur. Phys.J. C(2013) 73, JINST 2012 7 P03009

Summary

- Isospin violation can not solve the DAMA vs others in standard halo WIMP model.
- Very active R&D on radio-pure Nal(Tl) by several groups and the site locations are in north/south semi-sphere.
- XENON100 and XMASS results contradicts with DAMA/LIBRA even for DM via recoil electron models.
- We expect to see update result from DAMA/LIBRA with 1keVee threshold as well as XMASS this year.

Thank you