Dark Matter direct searches

Giuliana Fiorillo Università degli Studi di Napoli "Federico II" & INFN Napoli

From Cosmology: Dark matter and dark energy Robert Caldwell & Marc Kamionkowski Nature 458, 587-589(2 April 2009) doi:10.1038/458587a

WIMPs galactic wind

WIMP direct detection

$\chi N \rightarrow \chi N$ elastic scattering off nuclei

M. Goodman, E. Witten, PRD 1985

 $\beta \approx 10^{-3}$ $m_{\chi} \approx 100 \text{ GeV}$

Low energy nuclear recoils (< 100 keV) Low rate (~1 event/ton/yr for σ =10⁻⁴⁷ cm²)

Ideal WIMP Detector

Large mass, long exposureLow threshold

Low radioactive bgGood bg discrimination

WIMP search sensitivity improvement in both directions: high and low masses

R. Gaitskell IDM2016

Available parameter space for WIMPs

• High mass

 no observations so far

Low mass

 a number of close contours and exclusion limits

NATURE PHYSICS DOI: 10.1038/NPHV8

Available parameter space for WIMPs

• High mass

 no observations so far

Low mass

 a number of close contours and exclusion limits

Reaching the Neutrino Floor

irreducible neutrino background (from coherent nuclear recoils) due to several astrophysical sources (Sun, atmosphere, and diffuse Supernovae)

Coherent neutrino scattering on Nucleus (CNS)

$$\nu_x + (A, Z) \rightarrow \nu_x + (A, Z)$$

M. Cadeddu

$$\frac{d\sigma^{CNS}(E_{\nu}, E_{r})}{dE_{r}} = \frac{G_{f}^{2}}{4\pi} Q_{w}^{2} m_{N} \left(1 - \frac{m_{N}E_{r}}{2E_{\nu}^{2}}\right) F^{2}(E_{r})$$

 $Q_w = N - (1 - 4\sin^2\theta_W)Z$

$$E_r^{max} = \frac{2E_\nu^2}{m_N + 2E_\nu}$$

A WIMP signal could almost perfectly be mimicked by solar and atmospheric neutrino backgrounds

How to defeat backgrounds

3-D localization of events
can provide self
fiducialization
→ background reduction

EDELWEISS (France) und CDMS (USA) Dark Matter

Ioniosation-Phonon

Active veto shield and fiducialization → identification of neutron recoils

High mass WIMPs: noble liquids

Light & Charge: DarkSide ArDM Light: MiniCLEAN DEAP-3600

Detector concepts

Single phase 4π scintillation Light

Dual phase TPC Light & Charge

Why noble liquids

- Large mass detectors

 scalability, fiducialization
- Multiple targets available: Xe, Ar
- Bright scintillators: Light Yield ~ 40 γ/keV → low threshold

Two detection channels: ionization charge scintillation light

different dE/dx from nuclear and electron recoils

→ background discrimination

PSD in argon

ER/NR discrimination

Ratio of charge to light in LXe Pulse shape discrimination in LAr

Exceptional discrimination $> 10^8$ (DarkSide)

Discrimination power ~ 10³ (PandaX)

Noble liquid dual phase TPC

LUX @ SURF LXe

- 48cm×48cm, 250 kg target
- in-situ NR calibration studies arXiv:1608.05381

New result August 2016

Phys. Rev. Lett. 118, 021303 (2017)

- $3.4 \ 10^4 \ \text{kg} \ \text{d} = 0.1 \ \text{t yr}$
- no signal excess
- 2.2 10⁻⁴⁶ cm² @ 50 GeV

PandaX-II @ CJPL LXe

- 60cm×60cm, 500 kg target
- 2nd largest running LXe TPC

New result July 2016

Phys. Rev. Lett. 117, 121303 (2016)

- 3.3 10⁴ kg d = 0.1 t yr
- no signal excess
- best limit above ~4.5 GeV

DarkSide-50 @ LNGS

- 36cm×436cm, 46 kg active target
- inside a LSci 30 t neutron veto and a 1 kt Water Cerrenkov muon veto

Latest result October 2015

Phys. Rev. D 93, 081101(R)

- 2616 kg d exposure
- no signal excess
- 2.0 10⁻⁴⁴ cm² @ 100 GeV

Noble liquid dual phase TPC

LUX results combined I.I 10⁻⁴⁶ cm² at 50 GeV

LAr reaching ton scale

MiniCLEAN @ SNOLAB

- 500 kg active LAr, single phase
- Detector atmospheric liquid argon fill underway
- technology demonstrator: light yield, background levels, position reconstruction,...
- Planned ³⁹Ar spiked data for PSD R&D at 10⁻¹⁰ level

ArDM @ LSC

- 850kg active LAr, 500 kg fiducial, dual phase
- Summer 2015: completed first physics run (single phase)
- Summer 2016: Upgraded for double phase operation preparation Run II

LAr single phase: DEAP-3600 @ SNOLAB

- Acrylic vessel 1.7m diameter, 3.6 ton LAr
- 255 inner PMTs and 48 muon veto PMTs
- Running stably with 3260 kg LAr
- ³⁹Ar beta decays; IBq/kg of natural Ar
- Need 10¹⁰ rejection based on PSD
- Background and WIMP search analysis on-going
 Physics result expected soon

LXe single phase: XMASS @ KAMIOKA

- 832 kg (100 kg FV) single phase LXe
- 4π coverage, 642 PMT, 15PE/ keV
- low threshold (0.5 keVee)
- no NR rejection
- data taking since > 3 yrs
- Multi purpose experiment
 - Light Mass WIMP
 - \cdot Solar Axion
 - Super-WIMPs
 - Modulation
 - Double electron capture
 - Supernova etc

Next step: XMASS1.5

- further reduction of BG (Material screening, distillation etc.)
- Reach < 10⁻⁴⁶ cm² for SI interaction of WIMPs with 1x10⁻⁵ counts/day/kg/keVee BG rate see next talk by M. Yamashita 19

XENONIT/XENONnT @ LNGS

Target/Detector:

 3.5 (8) ton XeTPC in water Cherenkov muon veto.
 Infrastructure and

Cryogenic Plants:

 designed for XENONIT and its upgrade to XENONnT

Status:

 XENONIT taking dark matter data since end 2016. Resources in place for XENONnT phase to start in Spring 2019

Next future: LZ @ SURF

- 50 × larger than LUX
- I0t total LXe mass, 7t active target, 5.6t fiducial target
- Gadolinium loaded liquid scintillator veto in acrylic tanks
- Received final construction approval from the DOE in February, 2017
- TDR to the arXiv this week
- Start of operation in 2020 (pushing to advance to 2019)

LZ sensitivity

H. Nelson

DarkSide-20k @ LNGS

- 30 ton total, 20 ton fiducial, argon from underground wells, depleted in radioactive ³⁹Ar
- inside a 8m diameter SS sphere filled with boron-loaded liquid scintillator, serving as active neutron veto
- inside a 15m diameter 16m tall water tank, as active muon veto
- radiopure construction
- 15m² SiPM sensors (low radioactivity, increased LY)
- Scalable design for application to larger scale detector

Start of operation in 2021

DarkSide-20k sensitivity

Low mass WIMPS: low threshold detectors

Comparison of experiments is model dependent.

Light mass DM is not a standard WIMP: it may have large ER interactions or isospin violating interactions or velocity and angular momentum dependencies

Cryogenic Crystals

E deposition \rightarrow temperature rise $\Delta T \sim \mu K \rightarrow$ requires detectors at mK

- Crystals: Ge, Si, CaWO₄, Nal
- T-sensors:
 - ► superconductor thermistors (highly doped superconductor): NTD Ge → EDELWEISS
 - ▶ superconducting transition sensors (thin films of SC biased near middle of normal/SC transition):TES → CDMS, CRESST

Q&H: SuperCDMS @ SOUDAN

- 15 Ge iZIP detectors (9 kg) operated at 50 mK
- Data taken from 2012 to 2014: about 2500 kg-days of raw exposure
- Multiple Analyses
 - CDMSLite Phys. Rev. Lett. 116, 071301, 2016
 - Low Threshold Phys. Rev. Lett. 112, 241302, 2014
 - High Threshold (Analysis still blinded, expect to unblind soon!)

CDMSlite: Trading off NR/ER discrimination for Low Threshold 625 g iZIP detector operated at a relatively high bias voltage to amplify the phonon signal by Neganov-Luke effect on charge signal

- 70 kg d exposure
- Vb=69V, 56 eVee threshold, 14 eVee resolution.

SuperCDMS @ SNOLAB

- Setup holds up to ~260 kg detectors
- Initial payload includes mix of standard and HV detectors (25kg Ge, 3.6kg Si total)
- Shielding includes water tanks (n), lead (γ), poly (n from inner parts)
- Planned data taking 2020 2024

	iZIP		HV	
	Ge	Si	Ge	Si
Number of detectors	10	2	8	4
Exposure	56	4.8	44	9.6
Voltage bias	6	8	100	100
Threshold energy (eV)	272	166	40	78

L&H: CRESST @ LNGS

heat bath

heat bath

- Scintillating CaWO₄ crystals
- Target crystals operated as cryogenic calorimeters (~15mK)
- Separate cryogenic light detector to detect the scintillation light signal

CRESST-II:

- 300 g crystal
- 307eV nuclear recoil threshold
- world-leading result below 1.7GeV/c2
- first experiment to explore masses in the sub-GeV range

CRESST-III

- Detector layout optimized for low-mass dark matter
- clean self-grown crystals
- small crystal of (20×20×10)mm³ (25g)
- I00eV threshold design goal
- small light detector (20×20)mm³

- 6 modules with threshold <100eV running at LNGS
- Threshold design goal exceeded

CRESST-III projected sensitivity

P. Gorla

New scintillating crystal: COSINUS @ LNGS

R&D towards first Nal detector with particle discrimination via second and independent channel

- first successfully operated Nal cryogenic calorimeter did prove feasibility of building a cryogenic Nal detector
- reaching performance of existing scintillating bolometers
 - can answer the question whether the DAMA/ LIBRA (Nal) modulation signal is nuclear recoils or interactions with the electrons → exposure of only few 10 kg-days needed
 - with higher target mass: COSINUS technique also suited for modulation detection

Simulated background for an exposure: 100 kg d

- Nal energy resolution σ =200 eV
- Nal energy threshold I keV
- at least 4% of deposited energy detected in form of light
- light detector baseline noise σ =10 eV

Other low mass/threshold techniques

Low mass/threshold: CDEX @ CJPL

- Point-contact HPGe detector (PCGe)
- Low energy threshold (~ 100eVee), very good energy resolution, easy to scale up
- I kg pPCGe detector, Nal(TI) as anti-Compton detector
- CDEX-I result January 2016 PRD93, 092003, 2016
- 336 d kg dataset, no signal excess
- allowed region implied by CoGeNT probed and excluded with an identical detector target

CDEX-10 and CDEX-IT planned

CDEX Space at CJPL-II

34

Low mass/threshold: DAMIC @ SNOLAB

- High resistivity, fully depleted CCD, \approx 40 cm², 675 µm thick, 5.8 g each
- Very low energy threshold (~ 60eVee), Exquisite spatial resolution: particle id, surface bkg. rejection, bkg. measurements
- DAMIC result July 2016 PRD94, 082006 (2016)
- 0.6 kg d exposure, demonstrates sensitivity DAMIC100 @ SNOLAB
- 40 g, bkg < 5 dru
- results in late 2017

DAMICIK

- expected limit for I year running of a I kg detector, assuming a bkg of 0.1 dru
- \approx kg detector with sub-eV resolution
- will improve limits on DM-electron scattering by 6 orders of magnitude!

Spin-dependence: PICO @ SNOLAB

- Superheated bubble chambers operated in thermodynamic conditions at which they are virtually insensitive to gamma or beta radiation.
- Acoustic emission for discrimination between alpha decay and NR
- PICO-60 spin-dependent limit February 2017 arXiv:1702.07666
- detector recommissioned after cleaning procedure to remove particulate contamination
- 52 kg of C_3F_8 , 1167 kg d exposure
- 3.3 keV thermodynamic threshold, no single-scatter NR candidates
- 3.4 10^{-41} cm² @ 30 GeV
- world-leading constraints in the WIMPproton spin-dependent sector, 17x improvement from previous PICO results

Summary & Conclusions

- Complementarity of experiments
 - Both low and high mass regions
 - >I experiments with similar sensitivity to confirm signals
 - Variety of targets to understand couplings
- Massive targets and long exposures
- Low threshold
 - high yields + good calibration
- Low radioactive background
 - good background rejection
- Through the neutrino floor
 - directional measurements?

Thank you