Cosmic acceleration: new results and perspectives from galaxy surveys

Luigi Guzzo

Dipartimento di Fisica - Universita' Statale di Milano

& National Institute of Astrophysics (INAF)

Work presented here has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration, under grant agreement no 291521

Galaxy redshift surveys: a major pillar of the cosmological model...

State of the art:

- SDSS-III BOSS (e.g. Alam+ 2016)
- WiggleZ (Blake+ 2014)
- **VIPERS** (Guzzo+2014, Scodeggio+ 2017)

Future:

- SDSS-IV eBOSS (ongoing)
- DESI (2019-)
 - Euclid (2020+)

(arXiv 1611.07048)

01.0

The clustering power spectrum: a probe of the underlying cosmology

Baryonic Acoustic Oscillations: a standard ruler to measure H(z)

Inhomogeneities in the Cosmic Microwave Background

Fluctuations on all scales: however, one characteristic angular scale emerges

Baryonic Acoustic Oscillations in the CMB

BAO in galaxy redshift surveys: first detected in 2005

0.4

-0.5

150

150

SDSS: Eisenstein et al 2005

2016: Final measurement from BOSS-DR12

(BOSS Collaboration 2016, arXiv:1607.03155)

Baryonic Acoustic Oscillations: measure H(z) from redshift surveys

(BOSS Collaboration 2016)

Cosmic (quasi) concordance

A is too small and fine-tuned: an evolving equation of state w(a)?

Parameterizing our ignorance:

$$w(a) = w_0 + w_a(1-a)$$

 $[a = \text{scale factor of the Universe} = (1+z)^{-1}]$

(BOSS Collaboration 2016, arXiv:1607.03155)

But Lambda [or dark energy w(z)] is not the end of the story...

Modify gravity theory [e.g. $R \rightarrow f(R)$]

"...the Force be with you"

Growth rate of structure probes modified gravity

Guzzo et al., Nature 451, 541 (2008)

Growth produces motions: galaxy peculiar velocities

$$\vec{\nabla} \cdot \vec{v} = -a\delta Hf$$

Growth produces peculiar velocities, which manifest themselves in galaxy redshift surveys as <u>redshift-space</u> <u>distortions</u>

(Kaiser 1987)

Growth produces peculiar velocities, which manifest themselves in galaxy redshift surveys as <u>redshift-space</u> <u>distortions</u>

redshift space

(Kaiser 1987)

Testing gravity with redshift-space distortions

VIPERS PDR-2 (Pezzotta+ 2017; de la Torre+ 2017; Hawken+ 2017; Mohammad+ 2017; Wilson 2017)

Testing gravity with redshift-space distortions (Alam, Ho & Silvestri 2016) 0.89 Planck+ eCMASS Planck+ $f\sigma_8(z)$ 0.75**----**Planck + eCMASS + $f\sigma_8(z)$ - $\Lambda CDM (\chi^2 = 8.4)$ **BZ** ($\chi^2 = 7.0$) wCDM ($\chi^2 = 7.4$) — Chameleon ($\chi^2 = 9.6$) $w_0 w_a$ CDM ($\chi^2 = 7.7$) - - - eChameleon ($\chi^2 = 4.6$) 0.73 0.66 $o\Lambda \text{CDM}$ ($\chi^2=7.8$) $f(R) (\chi^2 = 13.7)$ 0.57目 م [%]رُ 1.48∳ Ω_m^γ ($\chi^2=7.5$) € 0.57 GR 0.39 0.42 0.30 0.25 0.45 0.85 0.65 \boldsymbol{z} 0.26 0.253 0.289 0.325 0.361 0.397 Ω_m

Galaxy clustering: a primary probe to answer the high-level questions...

- Nature of Dark Matter ?
- Nature of Dark Energy ?
- Behaviour of gravity at the largest scales (did Einstein have final word)?
- Physics of the initial conditions (inflation) ?
- Neutrino mass ?

Implications for physics

→ the Standard Model of cosmology (∧CDM)
→ the Standard Model of particle physics

- An ESA mission with extra contribution by national agencies (France & Italy among main contributors as lead countries of parent DUNE +SPACE projects)
- Euclid Consortium Lead: Yannick Mellier (IAP)
 - 1.2 m telescope
- Visible imaging (1 band)
- Infrared imaging (Y,J,H)
- Infrared slitless spectroscopy
- Launch 2020
- 15,000 deg² survey
- Images for 2x10⁹ galaxies
- Spectra for ~5 x 10⁷ galaxies (0.9<z<1.8)

Euclid NISP spectroscopy simulations (2015)

Sims by P. Franzetti, B. Garilli, A. Ealet, N. Fourmanoit & J. Zoubian

Expansion history H(z) from BAO to ~1% precision

Euclid Consortium

Growth rate from RSD to $\sim 1\%$ precision

Euclid Consortium

Weak gravitational lensing: cosmic tomography

Euclid Consortium

Combining galaxy clustering and weak lensing

 Test for modified gravity combining CFHTLens imaging with VIPERS final data release PDR-2 (de la Torre + VIPERS Team 2017): Slip parameter

...while waiting for Euclid

Improve modelling and understanding of galaxies...

VIPERS galaxies encoded using (U-B) rest frame colour

- Understand galaxy formation in dark matter halos
- Understand *galaxy bias:* use galaxies properly to precisely infer cosmological parameters

Account for all existing components: neutrinos!

Carbone et al., DEMNUni simulations, largest existing n-body simulations including massive neutrino component (Carbone et al. 2016). Need particular care in setting initial conditions (Zennaro+ arXiv:1605.05283)

^{erc}DARK**%**[LIGHT

The name of the game

A brilliant future ahead for cosmology with galaxy surveys: by 2030 we'll have >50 million redshifts measured, over huge volumes down to z=2 (Euclid, DESI, but also SKA, etc). This makes systematic errors the real limit

OBSERVATIONAL BIASES

- e.g. Low SNR slitless spectra (Euclid): confusion, completeness, purity → all these can be position dependent on the sky!
- Observational mask, uneven exposures, etc
- Do not plan galaxy surveys just for cosmology! Leave door open for new techniques (e.g. voids, requiring high sampling), or selection of optimal sub-samples of galaxies

MODELLING

- How do my galaxy tracers sample the dark-matter distribution? DM-baryon connection (bias)
- We like it linear, however reality is **non-linear** if we want to maximise signal
- We work in **redshift space**: we have turned this to our advantage, yet need to keep improving RSD models (e.g. de la Torre & Guzzo 2012, Bianchi et al. 2014, 2016)
- Modelling is easier if we choose the right galaxy population (Mohammad+ 2017)
- We are working at 1% precision. Need to include all ingredients → **neutrinos!** (e.g. Carbone+ 2017)