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DUNE Overview 2

● Will measure ᶟe appearance and ᶟᶞ disappearance in a 
wideband ᶟ beam at a 1300 km baseline

● Access to CP violation, mass hierarchy, and neutrino mixing 
parameters in a single experiment

● Large, underground detector also gives access to nucleon 
decay,  supernova burst ᶟ, and other interesting physics



DUNE Collaboration 3

~1000 collaborators from 160 institutions in 30 nations



● LBNF Neutrino Beam (Long Baseline Neutrino Facility):
○ DOE/Fermilab hosted project with international participation
○ LBNF houses, and delivers beam to, detectors built by DUNE collaboration

● Horn-focused beam line similar to NuMI beam line
○ 60-120 GeV protons from Fermilab's Main Injector
○ 200 m decay pipe at ~5.8° pitch, angled at South Dakota (Sanford Underground 

Research Facility - SURF)
○ Initial power: 1.2 MW (@120 GeV); plan to upgrade to 2.4 MW
○ Beam design has been optimized for oscillation sensitivity
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Beam



● DUNE will also have a near detector
○ Constrain systematic uncertainties in oscillation measurements
○ Precisely measure initial fluxes of neutrinos in the beam
○ Measure multiple neutrino cross sections

● Multiple designs under consideration
○ Liquid Argon TPC
○ High Pressure Gas Argon TPC
○ Fined-grained straw-tube tracker
○ Hybrid designs
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Near Detector



● 40-kt (fiducial) liquid argon TPC (LArTPC) at 4850L of SURF
● Four 10-kt (fiducial) modules
● First module will be a single phase LArTPC
● Modules installed in stages; modules not necessarily identical
● Photon detection system
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 Far Detector

MicroBooNE LArTPC Event Display

See SBN talk by J. 
Mousseau on Thursday
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DUNE Timeline

2017: Far Site 
Construction Begins

2018: protoDUNEs at 
CERN

2021: Far Detector 
Installation Begins

2024: Physics Data 
Begins (20 kt)

2026: Neutrino 
Beam Available



DUNE Physics Program
Long-baseline Oscillation Physics
Nucleon Decay
Supernova Burst ᶟ 
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νe Appearance

Large value of sin2(2θ13) 
allows significant νe 
appearance sample

νe appearance 
amplitude depends on 
θ13, θ23, δCP, and matter 
effects

Measure all four in a 
single experiment! 

-π/2
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Matter & CP Asymmetry
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Matter asymmetry very 
important for long-baseline 

experiments!

Charged-current coherent forward 
scattering on electrons:

This CC process occurs for ᶟe only; 
ᶟᶞ and ᶟᶦ have only NC 
interactions with electrons

In the Normal Hierarchy (NH), the 
matter effect increases 
appearance probability for 
neutrinos and suppresses it for 
antineutrinos

1300 km



Matter & CP Asymmetry
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δCP= -90°, IH
or

δCP= -20°, NH

Degeneracy between CP and matter asymmetry for 
1st oscillation node at short baseline



Matter & CP Asymmetry
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Longer baseline breaks degeneracy between CP and matter 
asymmetry. Optimal baseline: ~1300 km

Wideband beam also helps break degeneracy.

Baseline 
Optimization 

Study
arXiv:1311.0212



Oscillation Sensitivity Overview

● GLoBES-based simultaneous 
fit to four FD samples

● Optimized beam-line
● GENIE event generator
● Reconstructed spectra 

predicted using expected 
detector response 
parameterized at the single 
particle level

● Order 1000 νe appearance 
events in ~7 years of equal 
running in neutrino and 
antineutrino mode

● Normalization systematics on 
signal & backgrounds

● GLoBES configurations 
arXiv:1606.09550
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Staging

Experiment will be built in stages, so our oscillation 
sensitivities reflect this staging plan:

■ Year 1 (2026): 20-kt FD with 1.07 MW (80-GeV) beam and initial ND constraints
■ Year 2 (2027): 30-kt FD
■ Year 4 (2029): 40-kt FD and improved ND constraints
■ Year 7 (2032): upgrade to 2.14 MW (80-GeV) beam (technically limited schedule)
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Exposure
(kt-MW-years)

Exposure
(Years)

171 5

300 7

556 10

984 15



CP Violation Sensitivity

Width of band corresponds to 90% CL variations in value of θ23 
based on NuFit 2016 fit values

Includes normalization systematics and results are profiled over 
oscillation parameter uncertainties, MH, and octant
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Normal Inverted



Top of band: Nominal analysis including external constraints
Bottom of band: θ13 and θ23 constraints removed 

DUNE has sensitivity to measure all three oscillation parameters (θ13, 
θ23, δCP) and matter effects in a single experiment!

 

CP Violation Sensitivity
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Normal Inverted

Width of band corresponds to 90% CL variations in value of θ23 
based on NuFit 2016 fit values

Includes normalization systematics and results are profiled over 
oscillation parameter uncertainties and octant

Mass Hierarchy Sensitivity
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Top of band: Nominal analysis including external constraints
Bottom of band: θ13 and θ23 constraints removed 

Reach ~7° (16°) resolution in 10 years for δcp=0° (-90°)   

 

δCP Resolution
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Yellow regions represent 90% CL contours from NuFit 2016

Significant improvements on oscillation parameter constraints

 

2-D Parameter Sensitivity
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Near NuFit 
2016 

Best-fit



Width of band corresponds to 90% CL variations in value of θ23.

δcp=-ᶢ/2 or 50%, 75% of δcp values covered at indicated significance

 

CP Violation Sensitivity vs Time
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7 yrs 10 yrs



Interesting measurements will be made throughout the DUNE 
beam-physics program

 

Sensitivity vs Time
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1 yrs

5 yrs

7 yrs

2 yrs

DUNE CDR



Systematics

● CPV measurement 
statistically limited for 
~100 kt-MW-years

● Sensitivities are based on 
GLoBES calculations in which 
the effect of systematic 
uncertainty is approximated 
using uncorrelated signal & 
background normalization 
uncertainties.
○ ᶟᶞ  = ᶟᶞ  = 5%
○ ᶟe = ᶟe = 2%

● Uncertainty in ᶟe appearance 
sample normalization must be 
~5% ⊕ 2% to discover CPV in a 
timely manner

● Near detector designed to 
meet these standards
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Proton Decay

● Test of fundamental symmetries
○ Matter-antimatter asymmetry requires 

baryon number non-conservation 
(Sakharov)

○ Baryon number conservation is 
observed, so far, but there is no known 
reason why this must be so

● Well-motivated Grand Unification 
Theory models suggest proton decay 
may exist and be observable
○ GUTs make specific predictions about 

proton decay modes and branching 
fractions that can be tested in DUNE
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Sensitivity to Nucleon Decay

Detector requirements

● Low background rate
○ Cosmogenic background 

(primarily entering neutral kaons 
and neutrons) reduced by deep 
underground location

○ Atmospheric neutrinos also a 
source of background

● High signal efficiency
○ Precision tracking in LArTPC 

especially effective for modes 
with kaons, neutrinos, or 
complex final state

● Large exposure (detector mass × 
time)
○ 40-kt detector expected to run 

for 20+ years
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Simulated p → νK+ event: 

Automated reconstruction

K+

K+

μ+

μ+

e+

e+

XZ View

YZ View
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Simulated p → νK+ event: 

Automated reconstruction

K+

K+

μ+

μ+

e+

e+

XZ View

YZ View

ICARUS T600 data kaon decay 
candidate (cosmogenic)

arXiv:1210.5089

ICARUS T600



             Sensitivity for                   

A low-background mode with high detection efficiency

DUNE will do well in decay modes with kaons, and modes with 
neutrinos or with complicated topologies.
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Super K (2014)

SuperK result: 
Phys. Rev. D 90, 072005 (2014)   

DUNE staged:
10 kt (5 year) + 30 kt

DUNE 40 kt

➢ ~97% signal 
efficiency

➢ ~1 background 
event/Mt-year



Neutron-Antineutron Oscillation
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● Beyond SM (|ΔB=2|) process, sibling 
to proton decay

● Current limit ᶦ > 2.7 x 108 s (90% CL) 
from SuperK; Phys. Rev. D 91, 072006 
(2015)  

● Signature in LArTPC is spherical 
cascade of pions with 
total E ~= 2 GeV & p < ~300 MeV

● Potential for improvement in DUNE:
○ Large exposure
○ Good spatial resolution
○ Improved particle ID
○ Low background rate



Neutrinos from Stellar Core Collapse

● More than 99% of energy in 
supernova burst is emitted in 
the form of neutrinos with 
energy ᭓ (10 MeV)

● Basic physical model of SNB 
understood and confirmed by 
observation of SN1987a but 
many details remain to be 
understood

● High-statistics observation of 
SNB neutrinos, with sensitivity 
to flavor components, 
interesting for astrophysics 
and neutrino physics
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Image credit: A. Mezzacappa



Supernova Signal in DUNE

For 40-kt LArTPC, SNB @ 10 kpc, “Garching” model (Significant variation 
among models)

Electron flavour is dominant. Allows mapping of the neutronization burst at 
the beginning of the signal.
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Flavor composition as function of time: Energy spectra integrated over time:



SN Neutrino Detection
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LArSoft: A multi-experiment 
LArTPC simulation package 

Contributed to and used by 
DUNE collaborators

MARLEY: Model of Argon 
Reaction Low-Energy Yields

An event generator for 
supernova neutrinos in liquid 

argon

SNB Neutrino Simulation
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Simulated charged-current supernova νe event:



Summary

● DUNE has a broad physics program
○ CP Violation, mass hierarchy, neutrino oscillation parameters, 

and other LBL physics
○ Nucleon decay
○ Supernova burst ᶟ 
○ More! (BSM, NSI, Sterile, Atmospheric ᶟ, dark matter)

● DUNE will determine the MH and can measure CPV at 5σ 
○ Wideband-beam, 1300 km baseline, and 40 kt, deep-underground 

LArTPC enable this physics reach
○ Beam characterized and interaction systematics will be 

constrained by a near detector

● Excavation at SURF (far-site) starting soon, stay tuned!
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Extra
Slides
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Oscillation Fit Parameters

Oscillation fits assume NuFit 2016 parameters

For 1σ uncertainty in DUNE sensitivity calculations, we take 1/6 of the 
±3σ range, to account for non-Gaussian PDFs in NuFit.
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What’s in NuFit 2016?

Most relevant data up to May 2016

See release notes
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http://www.nu-fit.org/sites/default/files/v21.release-notes.pdf
http://www.nu-fit.org/sites/default/files/v21.release-notes.pdf
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Far Detector: Single Phase

● Single phase FD based on LBNE modular drift cells
○ Suspended anode and cathode plane assemblies (APAs and CPAs)
○ 3.6 m drift with 500 V/cm E field
○ Cold digital electronics to reduce noise levels

● Three wire planes (two wrapped induction planes, one collection)
○ Wrapping reduces complexity and number of channels
○ Photon detector within APA frames

37



Far Detector: Dual Phase

● Dual phase TPC inspired by LBNO FD design
○ 12 m vertical drift, 500 V/cm E field in LAr and GAr
○ Charge amplification via Large Electron Multiplier (LEM) 
○ Partially cold electronics (accessible for maintenance)

● Readout is via two orthogonal, interleaved collection plane views
○ Excellent S/N via gain in GAr

● PMTs at bottom of cryostat
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Nucleon decay channels

Efficiencies and background rates (events per Mt · year) for nucleon decay 
channels of interest for a large underground LArTPC, and comparison with 
water Cherenkov detector capabilities.
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Octant Sensitivity
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MH Statistics

The sensitivity, given by √∆T =√∆χ2 for a typical experiment (solid blue line), is compared to the bands 
within which 68% (green) and 95% (yellow) of experiments are expected to fall due to statistical 
fluctuations. The solid blue line (representing a minimum significance of √T = 5 for 100% of δCP values) is 
the expected sensitivity in our standard treatment. The dashed lines show the values of the √∆T metric an 
experiment must measure for the probability of determining the correct neutrino MH to be 50% (cyan), 
98.9% (blue), or 1 to 3.7 × 10−6 (black). In the legend, the numbers corresponding to the dashed lines 
indicate [probability of determining MH incorrectly] vs. [probability of determining the MH correctly].
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Other Physics

● DUNE will also make interesting 
measurements in:
○ Other LBL oscillation physics 

(BSM, NSI, Sterile)
○ Atmospheric neutrinos
○ Near detector measurements
○ Dark matter searches
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Atmospheric ᶟ event rates (350 kt.yr)


