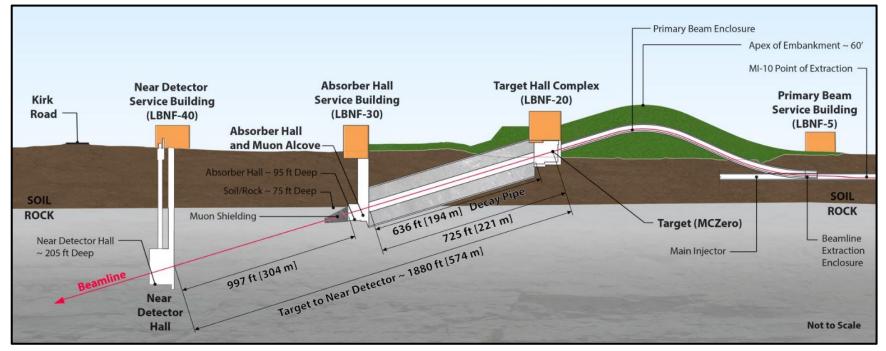

The Deep Underground Neutrino Experiment

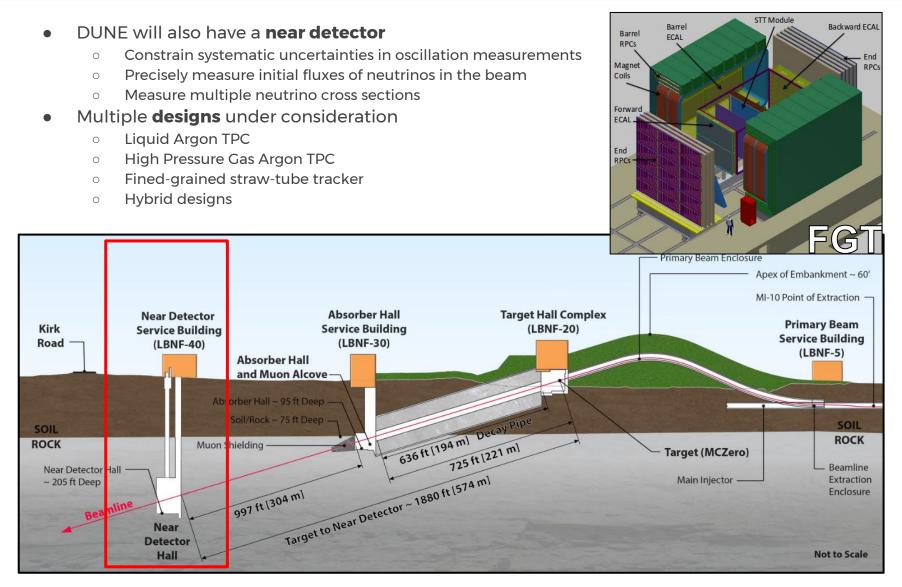
Matt Bass - University of Oxford XVII International Workshop on Neutrino Telescopes

- Will measure v_e appearance and v_{μ} disappearance in a wideband v beam at a 1300 km baseline
- Access to CP violation, mass hierarchy, and neutrino mixing parameters in a single experiment
- Large, underground detector also gives access to nucleon decay, supernova burst *v*, and other interesting physics

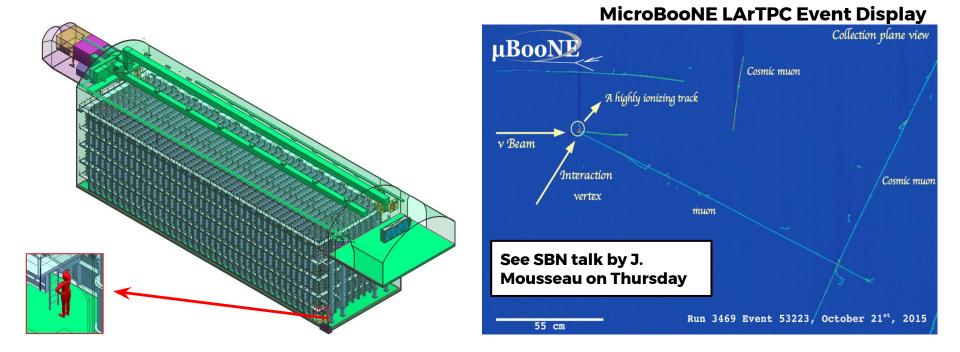
DUNE Overview



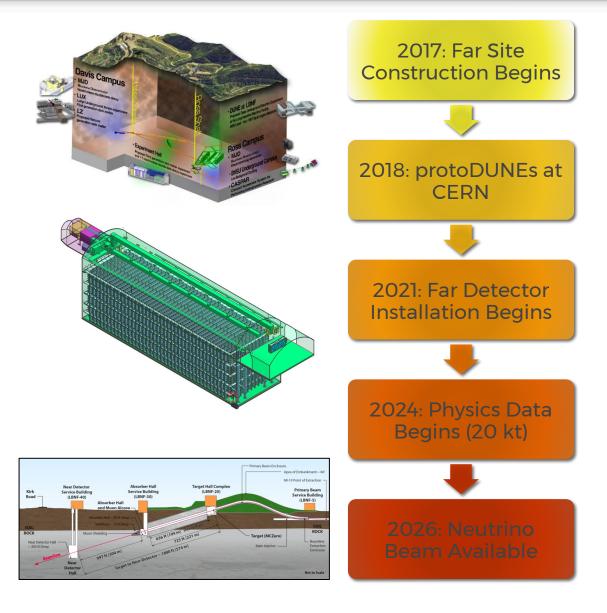
~1000 collaborators from 160 institutions in 30 nations


DUNE Collaboration

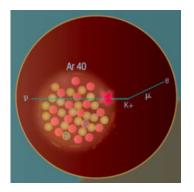
Beam


- **LBNF Neutrino Beam** (Long Baseline Neutrino Facility):
 - DOE/Fermilab hosted project with international participation
 - LBNF houses, and delivers beam to, detectors built by DUNE collaboration
- Horn-focused beam line similar to NuMI beam line
 - 60-120 GeV **protons** from Fermilab's Main Injector
 - 200 m decay pipe at ~5.8° pitch, angled at South Dakota (Sanford Underground Research Facility - SURF)
 - Initial **power**: 1.2 MW (@120 GeV); plan to upgrade to 2.4 MW
 - Beam design has been optimized for oscillation sensitivity

Near Detector

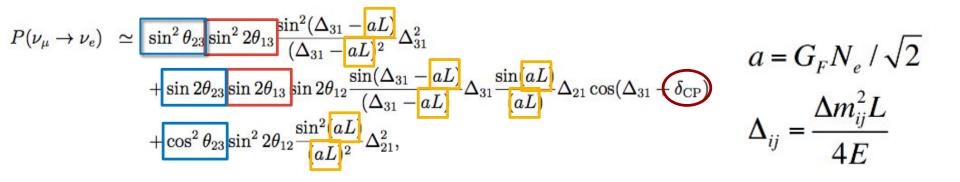


Far Detector

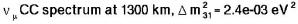


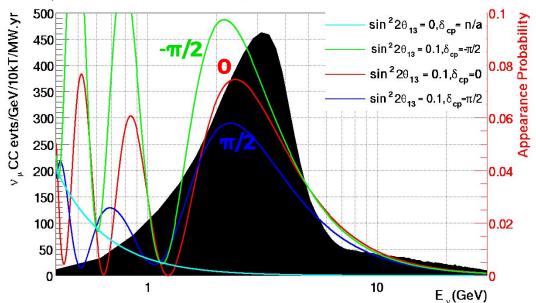
- **40-kt** (fiducial) liquid argon TPC (**LArTPC**) at 4850L of SURF
- Four **10-kt** (fiducial) modules
- First module will be a **single phase LArTPC**
- Modules installed in **stages**; modules not necessarily identical
- Photon detection system

DUNE Timeline



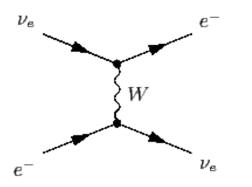
DUNE Physics Program Long-baseline Oscillation Physics Nucleon Decay Supernova Burst *v*

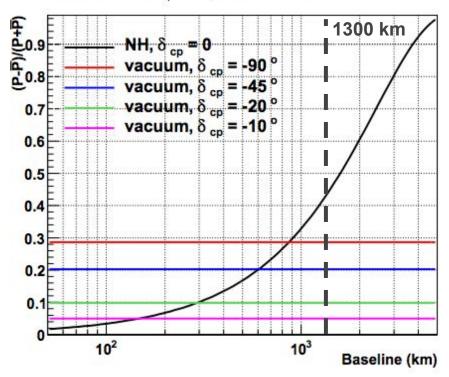

v_e Appearance



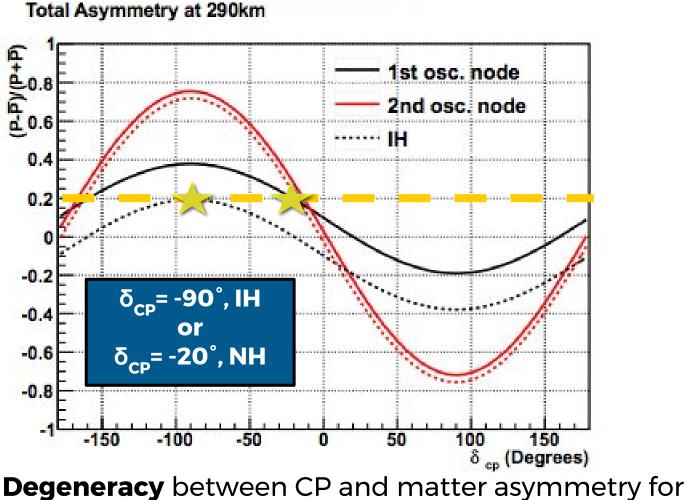
Large value of **sin²(20₁₃)** allows **significant v**_e **appearance sample**

 v_{e} appearance amplitude depends on θ_{13} , θ_{23} , δ_{CP} , and matter effects

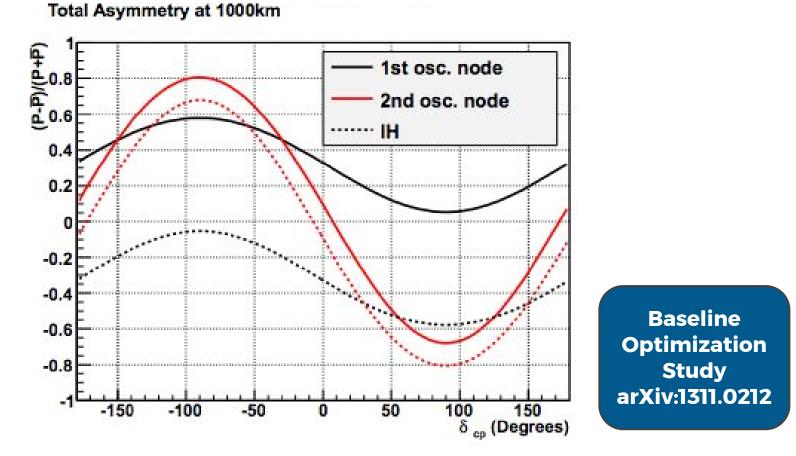

> <u>Measure all four in a</u> <u>single experiment!</u>


Matter & CP Asymmetry

Charged-current coherent forward scattering on electrons:

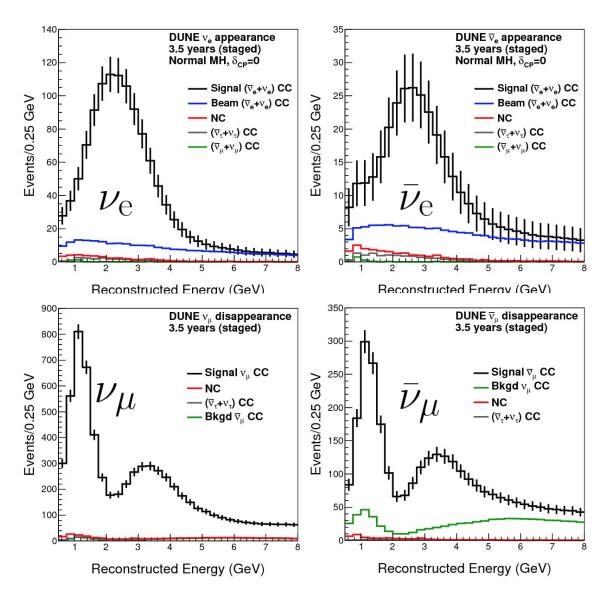

This **CC process** occurs for v_e only; v_{μ} and v_{τ} have only NC interactions with electrons

In the Normal Hierarchy (NH), the matter effect **increases** appearance probability for neutrinos and **suppresses** it for antineutrinos CP asymmetries in $\nu_{\mu} \rightarrow \nu_{e}$ at 1 st osc. node


Matter asymmetry very important for long-baseline experiments!

Matter & CP Asymmetry

Degeneracy between CP and matter asymmetry fo 1st oscillation node at short baseline


Matter & CP Asymmetry

Longer baseline **breaks degeneracy** between CP and matter asymmetry. Optimal baseline: ~1300 km

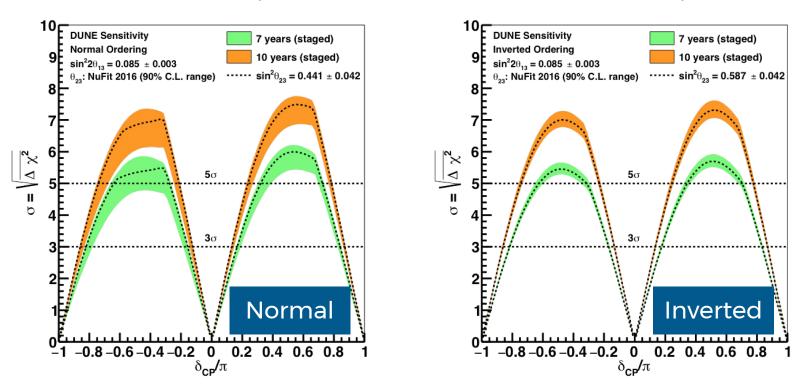
Wideband beam also helps break degeneracy.

Oscillation Sensitivity Overview

- GLoBES-based simultaneous
 fit to four FD samples
- Optimized **beam**-line
- **GENIE** event generator
- Reconstructed spectra predicted using expected detector response

parameterized at the single particle level

- Order 1000 **v_e appearance** events in ~7 years of equal running in neutrino and antineutrino mode
- Normalization systematics on signal & backgrounds
- GLoBES configurations arXiv:1606.09550

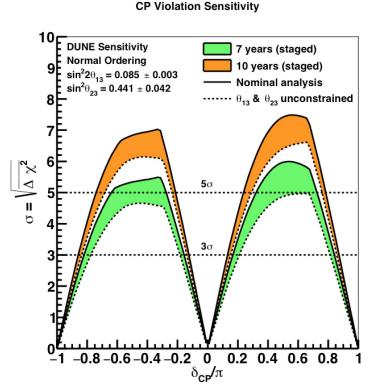

Staging

Experiment will be built in **stages**, so our oscillation sensitivities reflect this **staging plan**:

- Year 1 (2026): 20-kt FD with 1.07 MW (80-GeV) beam and initial ND constraints
- Year 2 (2027): 30-kt FD
- Year 4 (2029): 40-kt FD and improved ND constraints
- Year 7 (2032): upgrade to 2.14 MW (80-GeV) beam (technically limited schedule)

Exposure (kt-MW-years)	Exposure (Years)
171	5
300	7
556	10
984	15

CP Violation Sensitivity

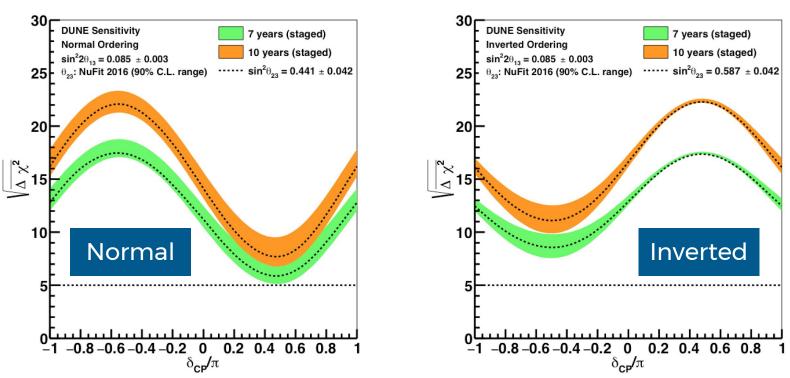

CP Violation Sensitivity

CP Violation Sensitivity

Width of band corresponds to 90% CL variations in value of θ_{23} based on NuFit 2016 fit values

Includes normalization **systematics** and results are **profiled** over oscillation parameter uncertainties, MH, and octant

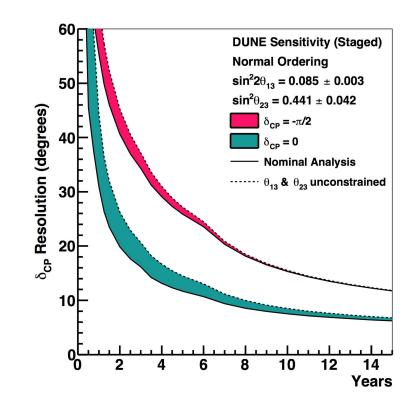
CP Violation Sensitivity


Top of band: Nominal analysis including external constraints **Bottom of band**: θ_{13} and θ_{23} constraints removed

DUNE has sensitivity to measure all three oscillation parameters (θ_{13} , θ_{23} , δ_{CP}) and matter effects in a **single experiment**!

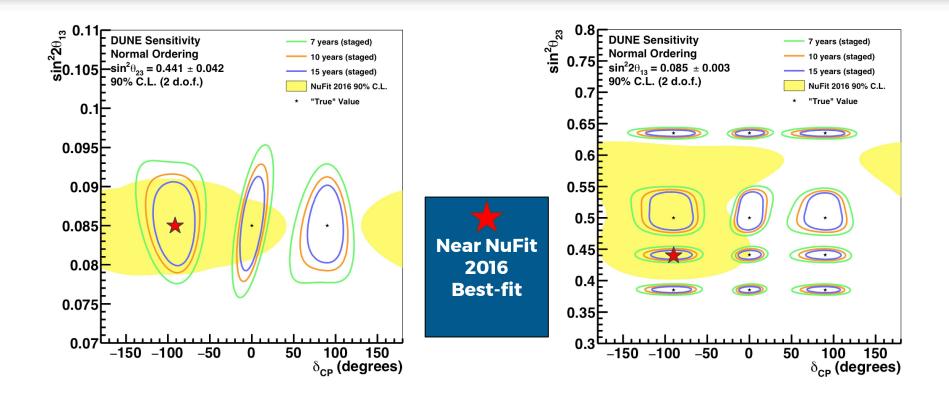
Mass Hierarchy Sensitivity

Mass Hierarchy Sensitivity


Mass Hierarchy Sensitivity

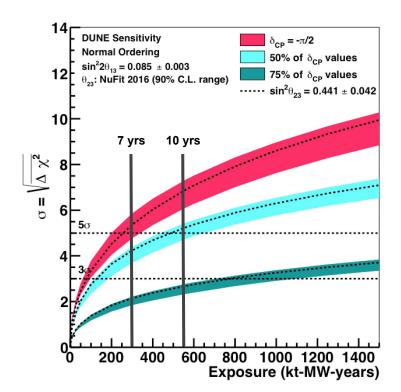
Width of band corresponds to 90% CL variations in value of θ_{23} based on NuFit 2016 fit values

Includes normalization **systematics** and results are **profiled** over oscillation parameter uncertainties and octant


δ_{CP} Resolution

Top of band: Nominal analysis including external constraints **Bottom of band**: θ_{13} and θ_{23} constraints removed

Reach **~7° (16°) resolution** in **10 years** for δ_{cp}=**0° (-90°)**


2-D Parameter Sensitivity

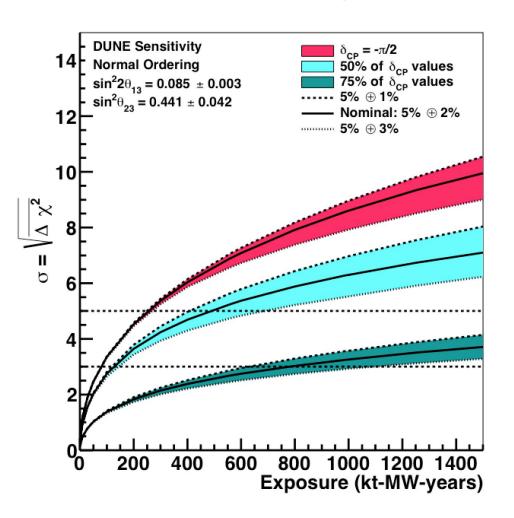
Yellow regions represent 90% CL contours from NuFit 2016

Significant **improvements** on oscillation parameter constraints

CP Violation Sensitivity vs Time

Width of **band** corresponds to 90% CL variations in value of θ_{23} .

 δ_{cp} =- $\pi/2$ or 50%, 75% of δ_{cp} values covered at indicated significance


Sensitivity vs Time

DUNE CDR

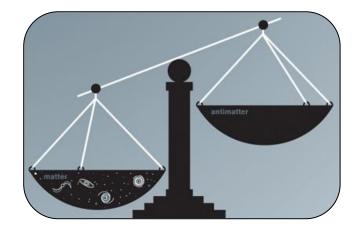
Physics milestone	Exposure kt · MW · year (optimized beam)	
$1^{\circ} \theta_{23}$ resolution ($\theta_{23} = 42^{\circ}$)	45	l yrs
CPV at $3\sigma~(\delta_{ m CP}=+\pi/2)$	60	
CPV at $3\sigma~(\delta_{ m CP}=-\pi/2)$	100	2 yrs
CPV at $5\sigma~(\delta_{ m CP}=+\pi/2)$	210	
MH at 5σ (worst point)	230	5 yrs
10° resolution ($\delta_{ m CP}=0$)	290	
CPV at $5\sigma~(\delta_{ m CP}=-\pi/2)$	320	7 yrs
CPV at 5σ 50% of $\delta_{ m CP}$	550	
Reactor θ_{13} resolution	850	12
$(\sin^2 2\theta_{13} = 0.084 \pm 0.003)$		
CPV at 3σ 75% of $\delta_{ m CP}$	850	

Interesting **measurements** will be made **throughout** the DUNE beam-physics program

Systematics

CP Violation Sensitivity

- CPV measurement statistically limited for ~100 kt-MW-years
 - Sensitivities are based on GLoBES calculations in which the effect of systematic uncertainty is approximated using uncorrelated signal & background normalization uncertainties.


$$\circ \quad v_{\mu} = \overline{v}_{\mu} = 5\%$$

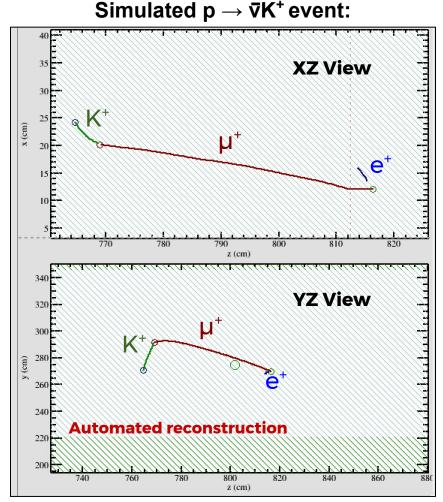
$$\circ \quad v_{e} = \overline{v}_{e} = 2\%$$

- Uncertainty in v_e appearance sample normalization must be ~5% ⊕ 2% to discover CPV in a timely manner
- Near detector designed to meet these standards

Proton Decay

• Test of **fundamental symmetries**

- Matter-antimatter asymmetry requires baryon number non-conservation (Sakharov)
- Baryon number conservation is observed, so far, but there is no known reason why this must be so
- Well-motivated Grand Unification Theory models suggest **proton decay** may exist and be observable
 - GUTs make specific predictions about proton decay modes and branching fractions that can be tested in DUNE

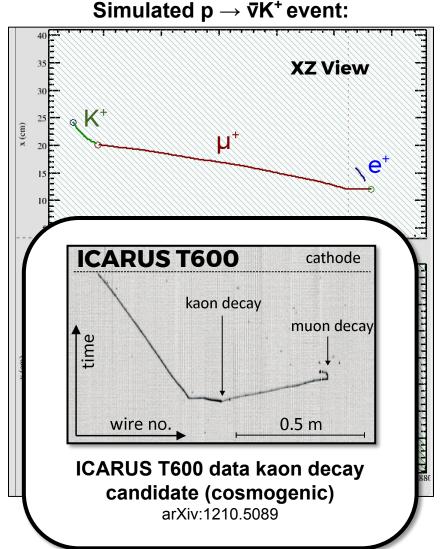

Sensitivity to Nucleon Decay

Detector requirements

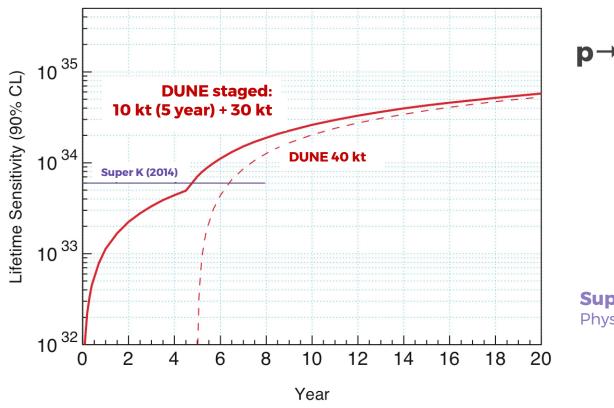
- Low background rate
 - Cosmogenic background (primarily entering neutral kaons and neutrons) reduced by deep underground location
 - Atmospheric neutrinos also a source of background

• High signal efficiency

- Precision tracking in LArTPC especially effective for modes with kaons, neutrinos, or complex final state
- Large exposure (detector mass × time)
 - 40-kt detector expected to run for 20+ years


Sensitivity to Nucleon Decay

Detector requirements


- Low background rate
 - Cosmogenic background (primarily entering neutral kaons and neutrons) reduced by deep underground location
 - Atmospheric neutrinos also a source of background

• High signal efficiency

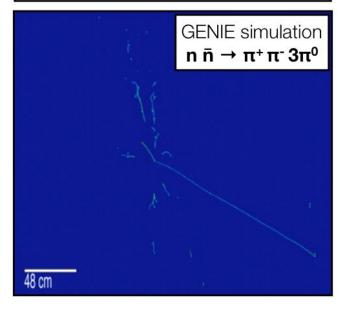
- Precision tracking in LArTPC especially effective for modes with kaons, neutrinos, or complex final state
- Large exposure (detector mass × time)
 - 40-kt detector expected to run for 20+ years

Sensitivity for $\mathbf{p} \rightarrow \bar{\mathbf{v}} \mathbf{K}^+$

$\mathbf{p} \rightarrow \bar{\mathbf{v}} \mathbf{K}^{+}$ in DUNE:

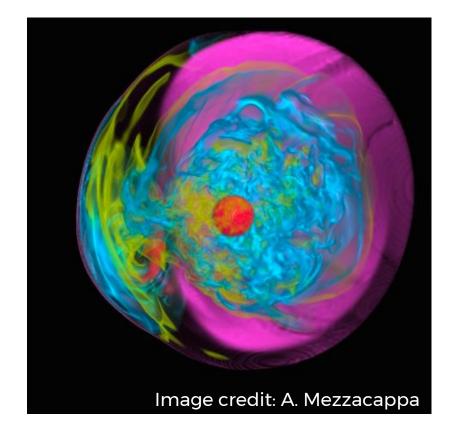
- > ~97% signal efficiency
- ~1 background event/Mt-year

SuperK result: Phys. Rev. D 90, 072005 (2014)

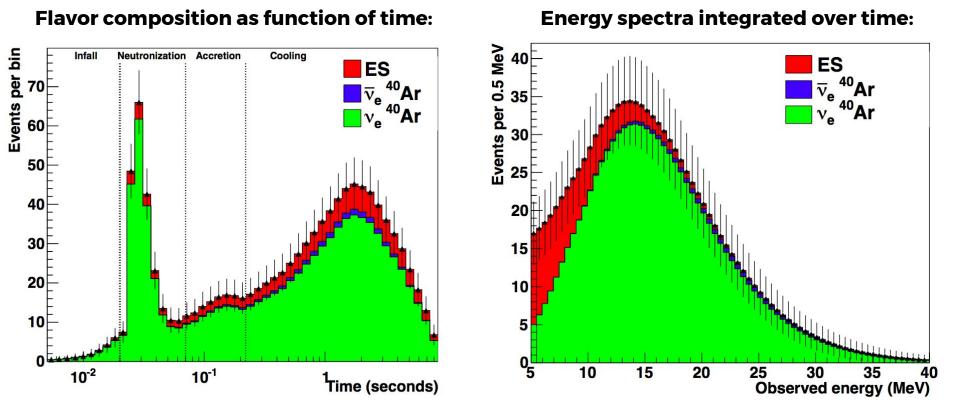

A low-background mode with high detection efficiency

DUNE will do well in decay modes with kaons, and modes with neutrinos or with complicated topologies.

Neutron-Antineutron Oscillation

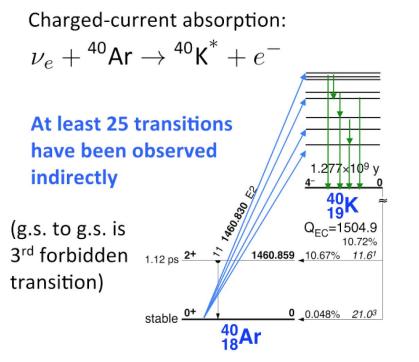

- Beyond SM (**|ΔB=2|**) process, sibling to proton decay
- Current limit τ > 2.7 x 10⁸ s (90% CL) from SuperK; Phys. Rev. D 91, 072006 (2015)
- Signature in LArTPC is spherical cascade of pions with total E ~= 2 GeV & p < ~300 MeV
- Potential for **improvement** in DUNE:
 - Large exposure
 - Good spatial resolution
 - Improved particle ID
 - Low background rate

		\bar{n} + n	
$\pi^+\pi^0$	1%	$\pi^+\pi^-$	2%
$\pi^+ 2\pi^0$	8%	$2\pi^0$	1.5%
$\pi^+ 3 \pi^0$	10%	$\pi^+\pi^-\pi^0$	6.5%
$2\pi^+\pi^-\pi^0$	22%	$\pi^+\pi^-2\pi^0$	11%
$2\pi^+\pi^-2\pi^0$	36%	$\pi^+\pi^-3\pi^0$	28%
$2\pi^+\pi^-2\omega$		$2\pi^{+}2\pi^{-}$	7%
$3\pi^{+}2\pi^{-}\pi^{0}$	7%	$2\pi^+ 2\pi^- \pi^0$	24%
		$\pi^+\pi^-\omega$	10%
		$2\pi^+ 2\pi^- 2\pi^0$	10%



Neutrinos from Stellar Core Collapse

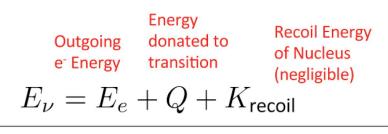
- More than 99% of energy in supernova burst is emitted in the form of neutrinos with energy @ (10 MeV)
- Basic physical model of SNB understood and confirmed by observation of SN1987a but many details remain to be understood
- High-statistics observation of SNB neutrinos, with sensitivity to flavor components, interesting for **astrophysics** and **neutrino physics**

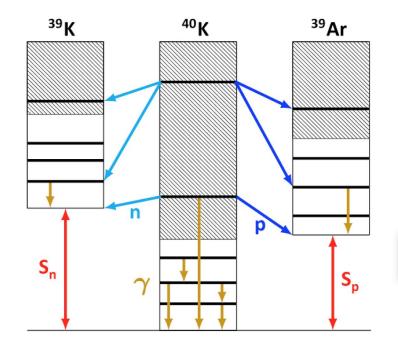

Supernova Signal in DUNE

For 40-kt LArTPC, SNB @ 10 kpc, "Garching" model (Significant variation among models)

Electron flavour is dominant. Allows mapping of the neutronization burst at the beginning of the signal.

SN Neutrino Detection

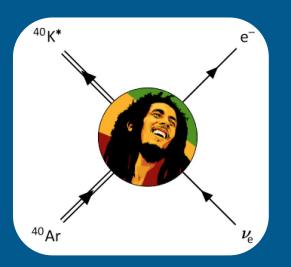

Transition levels are determined by observing de-excitations (γ's and nucleons)

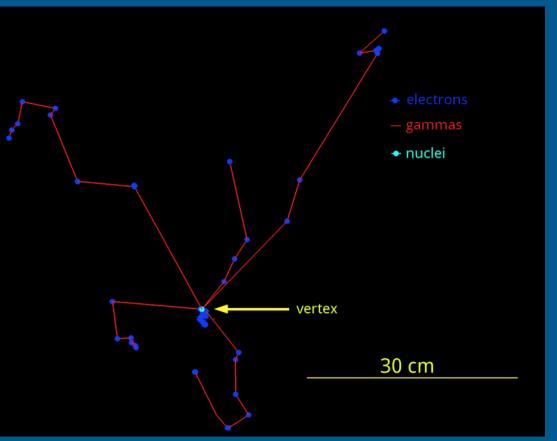

Transitions to particle-unbound levels occur with many competing de-excitation channels

Large uncertainties in nuclear data and models complicate energy reconstruction

Reconstructing true neutrino energy:

 ${\boldsymbol{Q}}$ is determined by measuring de-excitation gammas and nucleons




SNB Neutrino Simulation

LArSoft: A multi-experiment LArTPC simulation package

Contributed to and used by DUNE collaborators

MARLEY: Model of Argon Reaction Low-Energy Yields An event generator for supernova neutrinos in liquid argon Simulated charged-current supernova v_e event:

Charged-current absorption: $\nu_e + {}^{40}{\rm Ar} \rightarrow {}^{40}{\rm K}^* + e^-$

Summary

• DUNE has a **broad physics program**

- CP Violation, mass hierarchy, neutrino oscillation parameters, and other LBL physics
- Nucleon decay
- Supernova burst v
- **More!** (BSM, NSI, Sterile, Atmospheric *v*, dark matter)

• DUNE will **determine the MH** and can **measure CPV at 5**σ

- Wideband-beam, 1300 km baseline, and 40 kt, deep-underground LArTPC enable this physics reach
- Beam characterized and interaction systematics will be constrained by a **near detector**
- **Excavation** at SURF (far-site) starting soon, **stay tuned**!

Extra Slides

Oscillation Fit Parameters

Oscillation fits assume NuFit 2016 parameters

For 1 σ uncertainty in DUNE sensitivity calculations, we take 1/6 of the
±3σ range, to account for non-Gaussian PDFs in NuFit.

NuFIT 3.0 (2016)

	Normal Ore	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 0.83)$		Any Ordering
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	3σ range
$\sin^2 \theta_{12}$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.306\substack{+0.012\\-0.012}$	$0.271 \rightarrow 0.345$	$0.271 \rightarrow 0.345$
$ heta_{12}/^{\circ}$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$	$33.56_{-0.75}^{+0.77}$	$31.38 \rightarrow 35.99$	$31.38 \rightarrow 35.99$
$\sin^2 \theta_{23}$	$0.441^{+0.027}_{-0.021}$	$0.385 \rightarrow 0.635$	$0.587^{+0.020}_{-0.024}$	$0.393 \rightarrow 0.640$	$0.385 \rightarrow 0.638$
$ heta_{23}/^{\circ}$	$41.6^{+1.5}_{-1.2}$	$38.4 \rightarrow 52.8$	$50.0^{+1.1}_{-1.4}$	$38.8 \rightarrow 53.1$	$38.4 \rightarrow 53.0$
$\sin^2 \theta_{13}$	$0.02166\substack{+0.00075\\-0.00075}$	$0.01934 \to 0.02392$	$0.02179^{+0.00076}_{-0.00076}$	$0.01953 \rightarrow 0.02408$	$0.01934 \to 0.02397$
$ heta_{13}/^{\circ}$	$8.46_{-0.15}^{+0.15}$	$7.99 \rightarrow 8.90$	$8.49_{-0.15}^{+0.15}$	$8.03 \rightarrow 8.93$	$7.99 \rightarrow 8.91$
$\delta_{ m CP}/^{\circ}$	261^{+51}_{-59}	$0 \rightarrow 360$	277^{+40}_{-46}	$145 \rightarrow 391$	$0 \rightarrow 360$
$\frac{\Delta m_{21}^2}{10^{-5} \ {\rm eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	$7.50^{+0.19}_{-0.17}$	$7.03 \rightarrow 8.09$	7.03 ightarrow 8.09
$\frac{\Delta m_{3\ell}^2}{10^{-3} \ {\rm eV}^2}$	$+2.524^{+0.039}_{-0.040}$	$+2.407 \rightarrow +2.643$	$-2.514^{+0.038}_{-0.041}$	$-2.635 \rightarrow -2.399$	$ \begin{bmatrix} +2.407 \to +2.643 \\ -2.629 \to -2.405 \end{bmatrix} $

What's in NuFit 2016?

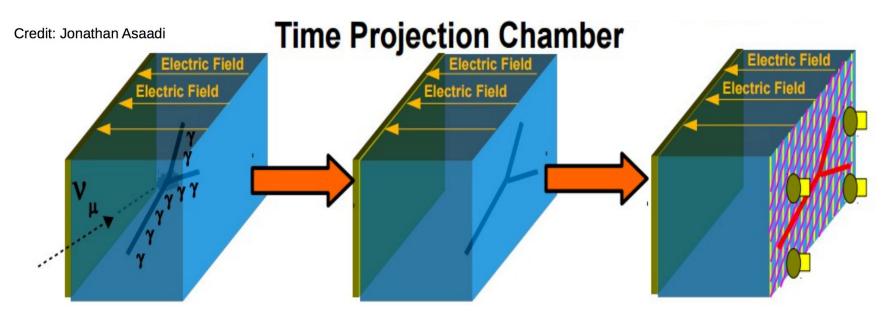
Solar experiments

- Chlorine total rate [3], 1 data point.
- Gallex & GNO total rates [4], 2 data points.
- SAGE total rate [5], 1 data point.
- SK1 full energy and zenith spectrum [6], 44 data points.
- SK2 full energy and day/night spectrum [7], 33 data points.
- SK3 full energy and day/night spectrum [8], 42 data points.
- \Rightarrow SK4 2055-day energy and day/night spectrum [9], 46 data points.
- SNO combined analysis [10], 7 data points.
- Borexino Phase-I 740.7-day low-energy data [11], 33 data points.
- Borexino Phase-I 246-day high-energy data [12], 6 data points.
- \Rightarrow Borexino Phase-II 408-day low-energy data [13], 42 data points.

Atmospheric experiments

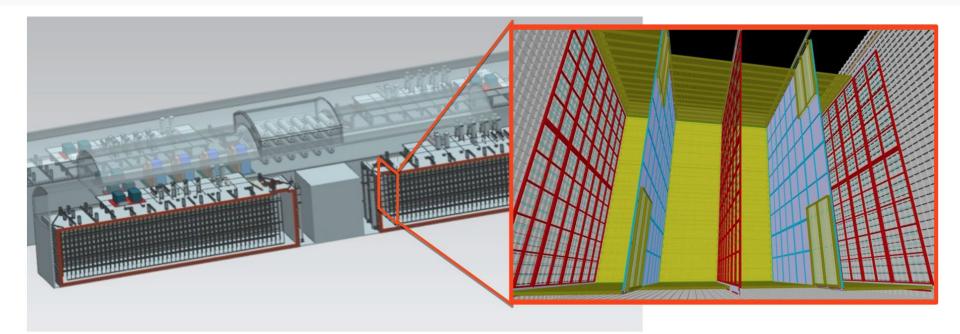
- SK1-4 (including SK4 1775-day) combined data [14], 70 data points.
- \Rightarrow IceCube/DeepCore 3-year data [15, 16], 64 data points.

Reactor experiments

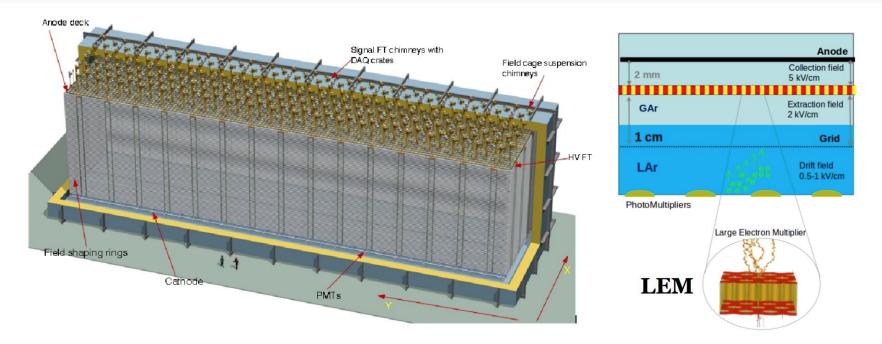

- KamLAND combined DS1 & DS2 spectrum [17], 17 data points.
- CHOOZ energy spectrum [18], 14 data points.
- Palo-Verde total rate [19], 1 data point.
- \Rightarrow Double-Chooz FD-I (461 days) and FD-II (212 days) spectra [20], 54 data points.
- Daya-Bay 621-day spectrum [21], 36 data points.
- Reno 800-day near & far total rates [22], 2 data points (with free normalization).
- SBL reactor data (including Daya-Bay total flux at near detector), 77 data points [21, 23].

Accelerator experiments

- MINOS 10.71×10^{20} pot ν_{μ} -disappearance data [24], 39 data points.
- MINOS 3.36×10^{20} pot $\bar{\nu}_{\mu}$ -disappearance data [24], 14 data points.
- MINOS 10.6×10^{20} pot ν_e -appearance data [25], 5 data points.
- MINOS 3.3×10^{20} pot $\bar{\nu}_e\text{-appearance}$ data [25], 5 data points.
- T2K 6.57 $\times \, 10^{20}$ pot $\nu_{\mu}\text{-disappearance data}$ [26], 16 data points.
- T2K 6.57×10^{20} pot ν_e -appearance data [27], 5 data points.
- \Rightarrow T2K 4.01 \times 10²⁰ pot $\bar{\nu}_{\mu}$ -disappearance data [28, 29], 63 data points.
- $\Rightarrow~{\rm T2K}~4.01\times10^{20}~{\rm pot}~\bar{\nu}_e\text{-appearance}$ data [30], 1 data point.
- \Rightarrow NOvA 2.74 \times 10^{20} pot $\nu_{\mu}\text{-disappearance}$ data [31], 18 data points.
- \Rightarrow NOvA 2.74 \times 10²⁰ pot ν_e -appearance data [32], 1 data point (both LEM and LID).


Most relevant data up to May 2016

See release notes

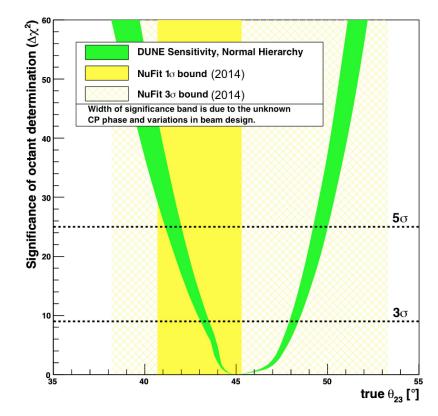

- Electric field, ~500 V/cm, is setup by cathode plane
- Interactions in LAr produce ionization electrons and photons
- Prompt scintillation light (128 nm) reaches the PMTs first
 - Wavelength shift (fibers, plates, coating on walls of TPC, etc) to readout in PMTs
- Due to electric field, electrons drift, at mm/us, to anode plane where they induce charge in the induction planes and are collected on the collection plane
 - No charge amplification -> charge readout is proportional to deposited energy
- This is the single phase approach

Far Detector: Single Phase

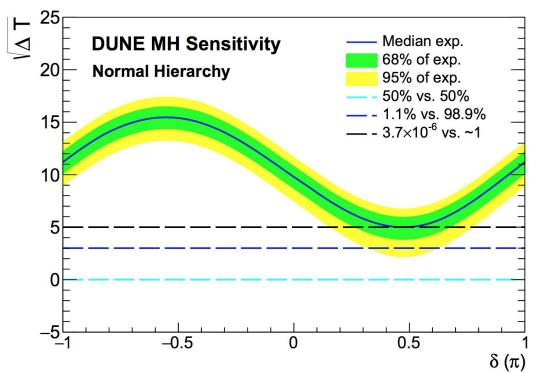
- **Single phase** FD based on LBNE modular drift cells
 - Suspended anode and cathode plane assemblies (APAs and CPAs)
 - 3.6 m drift with 500 V/cm E field
 - Cold digital electronics to reduce noise levels
- Three wire planes (two wrapped induction planes, one collection)
 - Wrapping reduces complexity and number of channels
 - Photon detector within APA frames

Far Detector: Dual Phase

- **Dual phase** TPC inspired by LBNO FD design
 - 12 m vertical drift, 500 V/cm E field in LAr and GAr
 - Charge amplification via Large Electron Multiplier (LEM)
 - Partially cold electronics (accessible for maintenance)
- Readout is via two orthogonal, interleaved collection plane views
 - Excellent S/N via gain in GAr
- PMTs at bottom of cryostat


Nucleon decay channels

Decay Mode	Water Cherenkov		Liquid Argon TPC	
	Efficiency	Background	Efficiency	Background
$p ightarrow K^+ \overline{ u}$	19%	4	97%	1
$p ightarrow K^0 \mu^+$	10%	8	47%	< 2
$p ightarrow K^+ \mu^- \pi^+$			97%	1
$n ightarrow K^+ e^-$	10%	3	96%	< 2
$n ightarrow e^+ \pi^-$	19%	2	44%	0.8


Efficiencies and background rates (events per Mt · year) for nucleon decay channels of interest for a large underground LArTPC, and comparison with water Cherenkov detector capabilities.

Octant Sensitivity

Octant Sensitivity

MH Statistics

The sensitivity, given by $\sqrt{\Delta 1} = \sqrt{\Delta \chi 2}$ for a typical experiment (solid blue line), is compared to the bands within which 68% (green) and 95% (yellow) of experiments are expected to fall due to statistical fluctuations. The solid blue line (representing a minimum significance of $\sqrt{T} = 5$ for 100% of δ CP values) is the expected sensitivity in our standard treatment. The dashed lines show the values of the $\sqrt{\Delta T}$ metric an experiment must measure for the probability of determining the correct neutrino MH to be 50% (cyan), 98.9% (blue), or 1 to 3.7 × 10–6 (black). In the legend, the numbers corresponding to the dashed lines indicate [probability of determining MH incorrectly] vs. [probability of determining the MH correctly].

Other Physics

- DUNE will also make interesting measurements in:
 - Other LBL oscillation physics (BSM, NSI, Sterile)
 - Atmospheric neutrinos
 - Near detector measurements
 - Dark matter searches

Atmospheric v event rates (350 kt.yr)

Sample	Event Rate
fully contained electron-like sample	14,053
fully contained muon-like sample	20,853
partially contained muon-like sample	6,871