

XVII International Workshop on Neutrino Telescopes

13-17 March 2017 Venezia, Palazzo Franchetti - Istituto Veneto di Scienze, Lettere ed Arti

M.G. Catanesi INFN Bari Italy

3 generations of Kamiokande family

- □ Larger mass for more statistics
- Better sensitivity by more photons with improved sensors

Why water Cherenkov detector ?

- Feasibility of ~Mton size detector confirmed by various studies over past decade
 - **20** years experience with Super-Kamiokande
- "Ready-for-construction" design developed
- □ Still improving with new technology and new ideas

Hyper-K: a multi pourpose Experiment

Neutrino oscillation physics

- CP violation
- Θ_{23} octant determination
- Mass hierarchy with beam and atmospheric v's

Nucleon decay discovery potential

Possible discovery with ~×10 better sensitivity than Super-K

Neutrino astrophysics

- Precisio This talk nts of solar ν
- High statistics measurements of SN burst ν
- Detection and study of relic SN neutrinos

Unexpected....

Extend highly successful program of Super-K

Hyper-Kamiokande: new design

74m

EACH TANK:

- 260 Kton total
- 10 x SK fiducial volume
- Very good PMT coverage (40%)
- 60 m height x 74 m diameter
 - > 40,000 50cm ID PMTs
 - > 6,700 20cm OD PMTs

2 TANKS:

- ✓ Fiducial Volume : 2/3 of original design
- ✓ Vertical tanks
- ✓ Possibility of staging
- Significant reduction for the cost of the project

NOT FOR DISTRIBUTION

ONLY FOR INTERNAL USE

DesignReport Version2 Dated: February7, 2016

Detector location @ Kamioka, Japan

6

□ The candidate site locates under Mt. Nijugo-yama

- ~8km south from Super-K
- Identical baseline (295km) and off-axis angle (2.5deg) to T2K
- Overburden ~650m (~1755 m.w.e.)

Geological condition: confirmed

Surveyed area around candidate position

Initial rock stress

Making huge (74mD×60mH) caverns is not trivial Detailed geological surveys at the candidate site Rock core sampling, initial stress of bedrock, etc. Bedrock condition confirmed for HK cavern construction

Tank design: ready

3 layer lining design

Water containment system and PMT support structure have been designed

Support structure design

Truss structure made of shaped stainless steel (SUS304)

Newly developed 50cm PMT

Charge [photoelectron]21

□ Higher pressure tolerance (> 80m)

Photo-sensor R&D

0

- International efforts for further improvement:
 - **50**cm Hybrid Photo-detector (HPD)
 - 20-30cm photo-sensors for OD / ID
- "Multi-PMT" module
 - Being developed based on KM3NeT optical module
 - MoU with KM3NeT to exchange knowledge
- □ PMT housing to prevent chain implosion
 - Confirmed functionality at 80m under water

HPD

KM3NeT

Multi-PMT

8cm (3") PMT

28cm (11") PMT

Hyper-K construction timeline

- Assuming funding from 2018
- The 1st detector construction in 2018~2025
 - Cavern excavation: ~5 years
 - Tank (liner, photosensors) construction: ~3 years
 - Water filling: 0.5 years

Hyper-K proto-collaboration

- □ International proto- collaboration formed on January 2015
- Reviewed by an International HK Advisory Committee
- New proposal submitted in March 2016 selected as one of important large scale projects by Science Council of Japan.
- J-PARC upgrade for Hyper-K is top priority in KEK Project Implementation Plan (KEK-PIP)
- Budget request for detector construction in preparation
- □ 15 countries, ~300 members and growing

Tokai to Hyper-K (T2HK)

- □ Long baseline oscillation using the J-PARC neutrino beam-line (as T2K)
- □ Same off-axis angle (2.5°) as Super-K
- □ Improved Neutrino Beam (1.3 MW)

J-PARC neutrino beam upgrade

14

- Continuous upgrade of neutrino beam up to 2030
- Present beam power ~470 kW
- New MR power supply for 750kW by 2019
- Repetition rate increase to 0.86
 Hz for 1.3MW by 2026

KEK Project Implementation Plan Review

 Priority of new projects to be promoted with a major budget request was discussed.

- J-PARC upgrade for Hyper-K is top priority in KEK Project Implementation Plan (KEK-PIP)
 - Strong commitment for future neutrino program

Near Detector upgrade

15

- □ Under consideration by T2K
 - Goal: systematics reduction in T2K-II era
 - Expand angular acceptance with new TPCs and new target detectors
- □ Lol "Neutrino Near Detectors based on gas TPCs" @CERN (Neutrino Plat.)
- □ Technical design in ~2017, aim for installation around 2020/21
- Operation foreseen to continue in HK (possibly further improvement)

X Configuration under optimization

Large angular acceptance detector with plastic scintillator grid (WAGASCI)

Intermediate Detectors

16

- Water Cherenkov detectors at ~I-2 km distance being investigated for HK (or possibly before).
- □ The same technology as the far detector
 - Further reduction of systematic uncertainties
- □ Two proposals:
 - Off-axis angle spanning orientation.
 - **G**d loading, magnetized μ range detector.
 - Will merge in unique detector/ collaboration.

Final goal: Reduce systematic uncertainties from 5-6% (T2K) to 3-4% RISM

arXiv:1412.3086 [physics.ins-det]

arXiv:1606.08114 [physics.ins-det]

NUPRISM

Physics performance for oscillation studies: v_e appearance

δ=0	Signal (v _µ →v _e CC)	Wrong sign appearance	$egin{array}{c} u_{\mu} , \overline{ u}_{\mu} \ CC \end{array}$	Beam v_e , \overline{v}_e contamination	NC
V beam	2300	21	10	362	188
ν beam	1656	289	6	444	274

- I0 years of running
- I.3 MW for JPARC proton beam
- I tank then 2 tanks
- ~ 40% PMT coverage in HK
- ✤ 3-4% systematic uncertainties

Physics performance for oscillation studies: v_e appearance

Possibility of using shape information in energy to distinguish different values for δ (CP)

- I0 years of running
- I.3 MW for JPARC proton beam
- I tank then 2 tanks
- ✤ ~ 40% PMT coverage in HK
- ✤ 3-4% systematic uncertainties

CPV sensitivity

19

□ With 10 years exposure, can exclude sin $\delta_{CP}=0$ and demonstrate CP violation: $\square > 8 \sigma$ if $\delta_{CP} = \pm 90^{\circ}$ $\square > 5 \sigma$ for 62% of δ_{CP} values $\square >3 \sigma$ for 78% of δ_{CP} values \Box δ_{CP} resolution: • 21° precision at δ_{CP} =90° **7**° precision at $\delta_{CP}=0^{\circ}$

Towards leptonic CP asymmetry

>5 σ discovery and measurement with HK

Note: "exact" comparison sometimes difficult due to different assumptions

Precision measurements of Θ_{23}

Large improvements in sin²Θ₂₃
 measurements

• ~0.015 precision at $\sin^2\Theta_{23} = 0.5$

- ~0.006 precision at $\sin^2\Theta_{23} = 0.45$
- □ For non-maximal Θ_{23} , reactor constraint breaks octant degeneracy

Beam and atmospheric neutrinos

- 22
- Atmospheric neutrinos data has sensitivity to mass hierarchy and Θ₂₃ octant
- Sensitivity is enhanced by combining atmospheric and beam neutrinos
 - >5 σ determination of the mass hierarchy (10 years)
 - Improved performance for octant determination

T2HKK: Tokai to Hyper-K and Korea

23

- Build second tank in Korea
 to enhance mass hierarchy
 and $\delta_{\rm CP}$ sensitivities
 - I 000 I 200 km baseline
 - I.3⁰ 3.0⁰ off axis beam direction

ν $_{\rm e}$ appearance at the Korean site

- Covers the 2nd oscillation maximum where the CP asymmetry between ν and anti- ν is 3 times larger than the 1st oscillation maximum
- Less sensitive to systematics errors due to larger CP effect
 Lower statistics due to flux reduction
- Longer baseline(1100km) leads to larger matter effects
 - MH better determination

Additional benefits of the Korean site

- >1000 m high mountains with hard granite rocks
- Smaller background due to its larger overburden (> 800m)
- Improved sensitivity in solar neutrino physics
 - Day/night asymmetry due to MSW matter effect in Earth
 - HEP solar neutrinos

25

- Energy spectrum upturn
- Supernova relic neutrino detection capability below 20 MeV improves
 - Detection efficiency is more than twice HK site in 16-18 MeV range

	Site	ОАВ	Baseline [km]	Height [m]
	Mt. Bisul	~1.3°	1088 km	1084 m
	Mt. Hwangmae	~1.8°	1140 km	1113 m
	Mt. Sambong	~1.9°	1180 km	1186 m
	Mt. Bohyun	~2.2°	1040 km	1126 m
	Mt. Minjuii	~2.2°	1140 km	1242 m
	Mt. Unjang	~2.2°	1190 km	1125 m

K.Abe *et al.*, "Physics Potentials with the Second Hyper-Kamiokande Detector in Korea", November 2016, <u>arXiv:1611.06118</u>

Mass Ordering Sensitivities

δ_{CP} Sensitivities

an Hyper-Kamiokande primary goal: nucleon decay

28

status & next generation expectations (10 y exposure), most important modes:

design emphasizes $p \rightarrow e^+\pi^0$, $p \rightarrow v K^+$ while keeping sensitivity to many other

favored by non super-symmetric GUTs a nearly model independent reaction

29

 $\rightarrow e^{+}\pi_{0}$

back-to-back e⁺, π^0 (459 MeV) e⁺, $\pi^0 \rightarrow \gamma \gamma$ are detected

fully final state reconstructed in Water Cherenkov detectors

* LAr discovery potential computed using numbers from DUNE CDR 2015: signal efficiency: 97%, background: 1 event Mton/year, no systematic errors

used $\mathcal{T}_p = 1.7 * 10^{34}$ (SK limit) 10 years exposure

$p \rightarrow \bar{v} K^+$

feature of super-symmetric GUTs

decay mode rather interesting but difficult to reconstruct

Benefits from increased photon yield and better timing resolution

Summary of physics potential

31

		HK (2TankHD w/ staging)	
	δ precision	7°-21°	
LBL (13 5MWyr)	CPV coverage (3/5 σ)	78%/62%	
(13.3110091)	$\sin^2 heta_{23} m error$ (for 0.5)	±0.017	
ATM+LBL	MH determination	>5.3 <i>o</i>	
(10 years)	Octant (sin ² θ ₂₃ =0.45)	5.8σ	
Proton Decay	e⁺π⁰ 90%CL	1.2×10 ³⁵	
(10 years)	ν K 90%CL	2.8×10 ³⁴	
Solar	Day/Night (from 0/from KL)	6 σ/ 12 σ	
(10 years)	Upturn	4.9 <i>σ</i>	
	Burst (10kpc)	104k-158k	
Supernova	Nearby	2-20 events	
	Relic (10 yrs)	98evt/4.8 σ	

** for DM search see backup slides

Conclusion

32

- Hyper-Kamiokande will have a rich program with world-leading science output
 - Technology established with past/ongoing experiments
 - Fast and robust approach to lepton CPV
 + long term program with a wide range of science
 - Multi-purpose approach crucial (huge investment) new design optimized with better sensors

- Project being accelerated towards an early approval
 - International collaboration open for new groups

Cavern stability analysis

- Cavern stability analyses based on geol. survey results
 - **3**D finite element analysis
 - Excavation steps taken into account in stability analysis
 - Evaluate plastic region depth and design cavern support
- Confirmed the Hyper-K cavern can be constructed with the existing technologies
 - Detailed construction timeline established

DM WIMP-induced neutrino searches at the Galactic Center

35

DM WIMP-induced neutrino searches the Sun

36

90% CL limits on WIMP nucleon scattering cross-section

