Super-Kamiokande

Masato Shiozawa
Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Physics and Mathematics of the Universe (WPI), U of Tokyo

XVII International Workshop on Neutrino Telescope
March 14, 2017
Super-K detector

- Ring-imaging water Cherenkov detector
 - Fiducial volume 22 kton (Total volume 50 kton)
 - Photon yield ~10p.e./MeV
 - Atmospheric ν ~10 events/day
 - Solar ν ~15 events/day
 - Accelerator ν a few events/day (depends on the accelerator power)
 - always ready for Supernova ν and nucleon decays
- Observables
 - Direction of recoiled charged particles (leptons, pions, γ) by neutrinos
 - Particle spices (neutrino flavor)
 - Energy
 - Time

11,129 x 20inch PMTs (inner detector, ID)
3-flavor oscillation scheme

\[t(\nu_e, \nu_\mu, \nu_\tau) = U_{\text{MNS}}^{\text{MNS}} t(\nu_1, \nu_2, \nu_3) \]

\[U_{\text{MNS}}: \text{Maki-Nakagawa-Sakata Matrix} \]

Parameterized by 4 (mixing matrix) and 2 (difference of squared masses)

- \(\theta_{23} \sim 45 \pm 5^\circ \)
- \(|\Delta m_{32}^2| = 2.4 \times 10^{-3} \text{eV}^2 \)
- \(\theta_{12} \sim 34 \pm 3^\circ \)
- \(\Delta m_{21}^2 = +7.6 \times 10^{-5} \text{eV}^2 \)
- \(\theta_{13} \sim 9^\circ \)
- \(\delta = \text{unknown} \)

Atmospheric \(\nu \), Accelerator \(\nu \)

Solar \(\nu \), Reactor \(\nu \)

Accelerator \(\nu \), Reactor \(\nu \), Atm & Solar \(\nu \)

Mass hierarchy (\(\Delta m_{32}^2 = m_3^2 - m_2^2 > 0 \) or \(\Delta m_{32}^2 < 0 \)) is also unknown:

- Accelerator \(\nu \), **Atmospheric \(\nu \)**, Reactor \(\nu \)

Solar&Atmospheric \(\nu \)'s played pioneering roles in the past and would also play important roles in future.
Stable operation and det. response

- Very stable operation
 - <1% Downtime
- Energy scale uniformity and stability w/ RMS <0.4% by correcting
 - time-dependent light attenuation length in water
 - time-dependent, production-period-dependent PMT gain

![Graph showing stable operation and detector response](image)

- PMT gain w.r.t. April 2009
- SK-IV ~8 years
- ±1% PMT gain w.r.t. April 2009
- ±1% Decay-electron [MeV/c]
Reviewed past scientific achievements but...
Many problems remains
 - unknown parameters (δ, mass hierarchy, θ_{23} octant), Solar Day/Night, spectrum, Supernova ν, proton decays, WIMP...
Discussed future prospects:
 - Gadolinium loading and Hyper-Kamiokande
Contents

• Atmospheric neutrinos
• Solar neutrinos
• SK-Gd
• Proton decays
Studies of atmospheric ν

- Dominant effect is νμ disappearance (discovered in 1998)
- Oscillatory signature (evidence in 2004)
- ντ appearance (established in 2013)
- Full three flavor analysis
 - Studies on νe and νμ flux change to extract information on mass hierarchy, δCP, θ23 octant
- Test of various non-standard scenarios
Evidence for τ neutrino appearance

- Event-by-event ID is difficult
- Define neural network to enhance hadronic decays of τ

Update from PRL 110, 181802 (2013)

- 2D unbinned fit
- $N_{\tau}^{\text{DATA}}/N_{\tau}^{\text{exp}} = 1.47 \pm 0.32 (\text{stat+syst.})$
- 4.6 σ significance for zero τ

Atm. ν anomaly has been concluded by $\nu_\mu \rightarrow \nu_\tau$ observation

Ongoing study to extract ν_τ CC crosssection.
Through the matter effect in the Earth, we study on

- **Mass hierarchy**: resonance in multi-GeV ν_e or $\bar{\nu}_e$
- **CP δ**: interference btw two Δm^2 driven oscill.
- **θ_{23} octant**: magnitude of the resonance

“Fractional change of upward ν_e flux ($\cos(\Theta_{\text{zenith}}) = -0.8$)”

- (a) $\cos \theta_\nu = 0.8$, NH, $\sin^2 \theta_{23} = 0.4$, $\sin^2 \theta_{13} = 0.025$, $\delta = 40^\circ$
 - solar term
 - interference term
 - θ_{13} resonance term
 - total

- (b) $\cos \theta_\nu = 0.8$, NH, $\sin^2 \theta_{23} = 0.6$, $\sin^2 \theta_{13} = 0.025$, $\delta = 40^\circ$
 - $\sin^2 \theta_{23} = 0.4$ or 0.6

- (c) $\cos \theta_\nu = 0.8$, NH, $\sin^2 \theta_{23} = 0.6$, $\sin^2 \theta_{13} = 0.025$, $\delta = 220^\circ$
 - CP = 40° or 220°

- (d) $\cos \theta_\nu = 0.8$, IH, $\sin^2 \theta_{23} = 0.6$, $\sin^2 \theta_{13} = 0.025$, $\delta = 40^\circ$

Hierarchy is NH or IH

Resonance in $\bar{\nu}_e$ (not shown) in the case of IH.

EARTH

- Crust
- Mantle
- Core
ν_e-like and anti-ν_e-like sample

\[\nu_e + N \rightarrow e^- + X \]
\[\bar{\nu}_e + N \rightarrow e^+ + X \]

- **ν_e CC** produce more positive \(\pi^+ \) than \(\nu_e \)-bar
- because of negative lepton (e^-)
- more muon decays
- More energy transfer to hadronic system
- more pions and muon decays
- lower charged lepton energy

Define likelihood to make enhanced samples

- Multi-GeV (1-ring) \(\nu_e \)
- Multi-GeV (1-ring) \(\bar{\nu}_e \)
- Multi-GeV Multi-ring \(\nu_e \)-like
- Multi-GeV Multi-ring \(\bar{\nu}_e \)-like

<table>
<thead>
<tr>
<th></th>
<th>(\nu_e) CC</th>
<th>anti-(\nu_e) CC</th>
<th>others</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR (\nu_e)-like</td>
<td>62%</td>
<td>9%</td>
<td>29%</td>
<td>100%</td>
</tr>
<tr>
<td>IR (\bar{\nu}_e)-like</td>
<td>55%</td>
<td>37%</td>
<td>8%</td>
<td>100%</td>
</tr>
<tr>
<td>MR (\nu_e)-like</td>
<td>56%</td>
<td>10%</td>
<td>34%</td>
<td>100%</td>
</tr>
<tr>
<td>MR (\bar{\nu}_e)-like</td>
<td>53%</td>
<td>27%</td>
<td>20%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Oscillation fit to SK Atmν data

1. $\sin^2\theta_{13} = 0.0219$ (PDG14), additional scale factor α for Earth’s matter effect
2. $\sin^2\theta_{13} = 0.0219$ (PDG14)
3. MH sensitivity enhanced w/ T2K constraint

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm^2_{21}</td>
<td>$7.53\pm0.18 \times 10^{-5}\text{eV}^2$ (fix)</td>
</tr>
<tr>
<td>$\sin^2\theta_{12}$</td>
<td>0.304 ± 0.014 (fix)</td>
</tr>
<tr>
<td>Δm^2_{32}</td>
<td>free</td>
</tr>
<tr>
<td>$\sin^2\theta_{23}$</td>
<td>free</td>
</tr>
<tr>
<td>$\sin^2\theta_{13}$</td>
<td>0.0219 ± 0.0012 (fix)</td>
</tr>
<tr>
<td>δ_{CP}</td>
<td>free</td>
</tr>
<tr>
<td>Mass Hierarchy</td>
<td>free</td>
</tr>
</tbody>
</table>
Matter effect fit

\[H_{\text{matter}} = \begin{pmatrix} \frac{m_1^2}{2E} & 0 & 0 \\ 0 & \frac{m_2^2}{2E} & 0 \\ 0 & 0 & \frac{m_3^2}{2E} \end{pmatrix} + U^\dagger \begin{pmatrix} \alpha & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} U \]

\(\alpha: \) scale factor
\(a = \sqrt{2} \ G_f N_e \)

- Best fit \(\alpha = 1 \) for NH, consistent w/ standard matter effect
- \(\Delta \chi^2 = 5.2 \) for \(\alpha = 0 \), Data disfavors zero matter-effect by >2\(\sigma \)
electron’s Up/Down ratio

Up(cos\(\Theta\)<-0.4) to Down(cos\(\Theta\)>0.4) event ratio for multi-GeV electrons

Some data points favors matter-effect

Indication of excess at \(\sim 5\)GeV where resonance is expected to occur.
Mass hierarchy: $\Delta \chi^2 = \chi^2_{\text{NH}} - \chi^2_{\text{IH}} = -4.3$ (-3.1 expected)

Under IH hypothesis, the probability to obtain -4.3 or less is 3.1\% ($\sin^2 \theta_{23} = 0.6$) and 0.7\% ($\sin^2 \theta_{23} = 0.4$).

Under NH hypothesis, it is as large as 45\% ($\sin^2 \theta_{23} = 0.6$)
Atmν data fit w/ T2K

Publicly available T2K data is used as an external constraints
T2K’s constraints on θ_{23} and Δm^2_{32} help sensitivity to mass hierarchy

Normal Hierarchy

Fit (585 dof)

| | χ^2 | $\sin^2 \theta_{13}$ | δ_{CP} | $\sin^2 \theta_{23}$ | $|\Delta m^2_{32}| \text{ eV}^2$ |
|----------|----------|----------------------|----------------------|----------------------|-------------------------------|
| SK+T2K (IH) | 644.82 | 0.0219 (fix) | 4.538 | 0.55 | 2.5x10^{-3} |
| SK+T2K (NH) | 639.61 | 0.0219 (fix) | 4.887 | 0.55 | 2.4x10^{-3} |

• SK+T2K: $\Delta \chi^2 = \chi^2_{\text{NH}} - \chi^2_{\text{IH}} = -5.2$ (-3.8 exp’d for SK best point, -3.1 for combined best)

• Under IH hypothesis, the probability to obtain -5.2 or less is 2.4% ($\sin^2 \theta_{23}=0.6$) and 0.1%($\sin^2 \theta_{23}=0.4$).

• Under NH hypothesis, it is 43% ($\sin^2 \theta_{23}=0.6$)

Paper in preparation
Solar Neutrinos

- Remaining issues: precision measurements of day/night and spectrum upturn
 - They will be compelling evidence of solar ν oscillations
 - Precision measurement of ν_e’s θ_{12} and Δm^2_{21} necessary to address the 2σ tension between Solar and KamLAND

- Recent Activities
 - Reduce Radon BG in water
 - Effort to lowering trigger threshold
 - $\text{eff. @}E_{\text{kin}} = 3.5\text{-}4.0\text{MeV}$ 84%→99%

100% trigger efficiency above 2.5MeV(kin.)
Flux measurement updates

All SK I-IV, 5200 days

- 84k signal for 5200 days
- Data/MC = 0.4486 ± 0.0062 (stat+syst)
- $\varphi = 2.355 ± 0.033$ (stat+syst) [10^6 cm$^{-2}$s$^{-1}$]
- χ^2 for flat = 15.52/19 d.o.f.
- p-value = 68.9%

Data is consistent with a constant flux emission by Sun
Spectrum

All SK phase are combined without regard to energy resolution or systematics in this figure

<table>
<thead>
<tr>
<th>Model</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(total # of bins of SK-IV is 83, 80 dof)</td>
<td></td>
</tr>
<tr>
<td>Solar+KamLAND</td>
<td>76.60</td>
</tr>
<tr>
<td>Solar</td>
<td>73.86</td>
</tr>
<tr>
<td>quadratic fit</td>
<td>72.33</td>
</tr>
</tbody>
</table>

Disfavor $\sim 2\sigma$
Day/Night asymmetry

Assuming the expected time variation as a function of $\cos \theta_z$ like below, amplitude of A_{DN} was fitted.

For solar global parameter:

\[
\Delta m^2_{21} = 4.84 \times 10^{-5} \text{ eV}^2 \\
\sin^2 \theta_{12} = 0.311
\]

\[
A_{DN} = \frac{(\text{Day} - \text{Night})}{(\text{Day} + \text{Night})/2}
\]

<table>
<thead>
<tr>
<th>A_{DN}</th>
<th>A_{fit}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK-I</td>
<td>$-2.0 \pm 1.8 \pm 1.0%$</td>
</tr>
<tr>
<td>SK-II</td>
<td>$-4.4 \pm 3.8 \pm 1.0%$</td>
</tr>
<tr>
<td>SK-III</td>
<td>$-4.2 \pm 2.7 \pm 0.7%$</td>
</tr>
<tr>
<td>SK-IV</td>
<td>$-3.6 \pm 1.6 \pm 0.6%$</td>
</tr>
<tr>
<td>combined</td>
<td>$-3.3 \pm 1.0 \pm 0.5%$</td>
</tr>
<tr>
<td>non-zero significance</td>
<td>3.0 σ</td>
</tr>
</tbody>
</table>

(Preliminary)
SK spectrum and D/N favor lower Δm^2_{21} that causes $\sim 2\sigma$ tension w/ KamLAND. More data is needed to conclude.
SK-Gd

- Discovery of relic SN neutrinos is expected by $O(1)$ sensitivity improvement
- 0.1% Gd loading to tag $\bar{\nu}_e+p\rightarrow e+n$, Gd+n$\rightarrow$Gd+γs
- R&D in test tank and water system construction going on
- Start SK-Gd in a few yrs

Model
<table>
<thead>
<tr>
<th>电视 Model</th>
<th>10-16MeV</th>
<th>16-28MeV</th>
<th>Total (10-28MeV)</th>
<th>Significance 2 energy bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 MeV</td>
<td>11.3</td>
<td>19.9</td>
<td>31.2</td>
<td>5.3σ</td>
</tr>
<tr>
<td>6 MeV</td>
<td>11.3</td>
<td>13.5</td>
<td>24.8</td>
<td>4.3σ</td>
</tr>
<tr>
<td>4 MeV</td>
<td>7.7</td>
<td>4.8</td>
<td>12.5</td>
<td>2.5σ</td>
</tr>
<tr>
<td>1987a</td>
<td>5.1</td>
<td>6.8</td>
<td>11.9</td>
<td>2.1σ</td>
</tr>
<tr>
<td>BG</td>
<td>10</td>
<td>24</td>
<td>34</td>
<td>--</td>
</tr>
</tbody>
</table>

PDecay-BG reduction by neutrons

- We expect that neutrino events are often accompanied with neutrons (e.g. $\bar{\nu}_e + p \rightarrow e^+ + \pi^0 + n$), recoiled protons kick neutrons in water etc.
- Neutron emission probability in proton decay is expected to be small.

Since SK-IV we have started recording faint signature of neutrons; $n+p \rightarrow d+\gamma (2.2\text{MeV}, \tau \sim 200 \mu\text{sec})$ by new high speed pipelined electronics. BG reduction by ~ 2

SK-IV 1297 days atmν Data

- Tagged γ's Timing (μsec)
- Black: Tagged γ average ~ 0.9
- Red: True neutrons average ~ 4

BG Monte Carlo

- $p \rightarrow e^+ \pi^0$
Potential BG reduction by tighter cut

- $P_{tot} < 250$ MeV/c (SK cut)
 - $BG = 2.2$ ev/Mtonyrs, eff.$ = 44\%$
 - **BG reduction by ~ 15**
- $P_{tot} < 100$ MeV/c (tighter cut)
 - $BG = 0.15$ ev/Mtonyrs, eff.$ = 17.4\%$

main target is **free proton decays**

$16O \rightarrow 15N e^+\pi^0$

$P_{tot} < 250$ MeV/c (SK cut)
- $BG = 2.2$ ev/Mtonyrs, eff.$ = 44\%$
- $P_{tot} < 100$ MeV/c (tighter cut)
- $BG = 0.15$ ev/Mtonyrs, eff.$ = 17.4\%$

Shiozawa, talk@NNN00-Fermilab
Proton decays into lepton+meson

- $p \rightarrow e^+\pi^0$:
 - 0 candidates (40% eff. & 0.61BG)
 - $\tau_p/\text{Br} > 1.6 \times 10^{34}$ yrs

- $p \rightarrow \mu^+\pi^0$:
 - 2 candidates (40% eff. & 0.87BG),
 one is rejected after energy re-calibration
 - $\tau_p/\text{Br} > 7.7 \times 10^{33}$ yrs
Summary

- **Atmospheric neutrino**
 - τ appearance (4.6σ) concluded the atmν anomaly
 - Data consistent w/ Earth’s matter effect (>2σ)
 - Mass hierarchy: preference to Normal hierarchy
 - SK+T2K: Δχ² = χ²_{NH} - χ²_{IH} = -5.2
 Under IH hypothesis, the probability to obtain -5.2 or less is 2.4% (sin²θ_{23}=0.6) and 0.1%(sin²θ_{23}=0.4).

- **Solar neutrinos**
 - SK spectrum and D/N favor lower Δm²_{21} that causes ~2σ tension w/ KamLAND.

- **SK-Gd**
 - Discovery is within the reach. Start in a few years.

- **Proton decays**
 - Continuous efforts to reduce BG and keep BG-free regions.