Super-Kamiokande

Masato Shiozawa

Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Kavli Institute for the Physics and Mathematics of the Universe (WPI), U of Tokyo

XVII International Workshop on Neutrino Telescope March 14, 2017

$(\leftarrow 2 - \text{hody kinematics})$

Super-K detector

Ikeno-yama 1km Kamioka-cho, Gifu (2700mwe) Japan 3km 2km

Mozumi SK Atotsu

II, I29 x 20 inch PMTs (inner detector, ID)

- Ring-imaging water Cherenkov detector
 - Fiducial volume 22 kton (Total volume 50 kton)
 - Photon yield ~10p.e. / MeV
 - Atmospheric v ~10 events/day
 - Solar v ~15 events/day
 - Accelerator v a few events/day (depends on the accelerator power)
 - always ready for Supernova v and nucleon decays
- - Direction of recoiled charged particles (leptons, pions, Y) by neutrinos
 - Particle spices (neutrino flavor)
 - Energy
 - Time

3-flavor oscillation scheme

Parameterized by 4 (mixing matrix) and 2 (difference of squared masses)

Solar&Atmospheric v's played pioneering roles in the past and would also play important roles in future.

Stable operation and det. response

production-perioddependent PMT gain

20th anniversary

Symposium and Celebration (June 6, 2016)

http://www-sk.icrr.u-tokyo.ac.jp/sk/news/2016/06/sk20th-0617-e.html

- •Reviewed past scientific achievements but...
- Many problems remains
 - •unknown parameters (δ , mass hierarchy, θ_{23} octant), Solar Day/Night, spectrum, Supernova v, proton decays, WIMP...
- •Discussed future prospects:

Gadolinium loading and Hyper-Kamiokande

Contents

- Atmospheric neutrinos
- Solar neutrinos
- •SK-Gd
- Proton decays

Studies of atmospheric v

- Dominant effect is v_{μ} disappearance (discovered in 1998)
- Oscillatory signature (evidence in 2004)
- V_T appearance (established in 2013)
- Full three flavor analysis
 - Studies on v_e and v_{μ} flux change to extract information on mass hierarchy, δ_{CP} , θ_{23} octant
- Test of various non-standard scenarios

Evidence for **T** neutrino appearance

τ: Event-by-event ID is difficult

Define neural network to enhance hadronic decays of T

Update from PRL 110, 181802 (2013)

2D unbinned fit

 $N_{\tau}^{DATA}/N_{\tau}^{exp}$

=1.47±0.32(stat+syst.)

4.6 σ significance for zero τ

Atm. V anomaly has been concluded by $V_{\mu} \rightarrow V_{\tau}$ observation

Ongoing study to extract V_{τ} CC crosssection.

3-flavor oscillation study

Through the matter effect in the Earth, we study on

- Mass hierarchy : resonance in multi-GeV ve or $\overline{v}e$
- CP δ
- θ_{23} octant
- : magnitude of the resonance

: interference btw two Δm^2 driven oscill.

ve-like and anti-ve-like sample

Oscillation fit to SK Atmv data

1. $sin^2\theta_{13} = 0.0219(PDG14)$, additional scale factor α for Earth's matter effect

2. $\sin^2\theta_{13} = 0.0219$ (PDG14)

3. MH sensitivity enhanced w/ T2K constraint

Parameter	Value
Δm^2_{21}	7.53±0.18 x 10 ⁻⁵ eV ² (fix)
$sin^2\theta_{12}$	0.304±0.014 (fix)
Δm^2_{32}	free
sin ² θ ₂₃	free
sin ² θ ₁₃	0.0219±0.0012 (fix)
δ _{CP}	free
Mass Hierarchy	free

Matter effect fit

•Best fit α =1 for NH, consistent w/ standard matter effect • $\Delta \chi^2$ =5.2 for α =0, Data disfavors zero matter-effect by >2 σ

electron's Up/Down ratio

Up($\cos\Theta < -0.4$) to Down($\cos\Theta > 0.4$) event ratio for multi-GeV electrons

Atmv data fit w/ fixed θ_{13}

•Mass hierarchy: $\Delta \chi^2 = \chi^2_{NH} - \chi^2_{IH} = -4.3$ (-3.1 expected)

•Under IH hypothesis, the probability to obtain -4.3 or less is 3.1% (sin² θ_{23} =0.6) and 0.7%(sin² θ_{23} =0.4).

•Under NH hypothesis, it is as large as 45% ($\sin^2\theta_{23}=0.6$)

Atmv data fit w/ T2K

Publicly available T2K data is used as an external constraints T2K's constraints on θ_{23} and Δm^2_{32} help sensitivity to mass hierarchy

•SK+T2K: $\Delta \chi^2 = \chi^2_{NH} - \chi^2_{IH} = -5.2$ (-3.8 exp'd for SK best point, -3.1 for combined best)

•Under IH hypothesis, the probability to obtain -5.2 or less is 2.4% $(\sin^2\theta_{23}=0.6)$ and $0.1\%(\sin^2\theta_{23}=0.4)$.

•Under NH hypothesis, it is 43% (sin² θ_{23} =0.6) Paper in preparation

Solar Neutrinos

•Remaining issues: precision measurements of day/night and spectrum upturn

- •They will be compelling evidence of solar ν oscillations
- •Precision measurement of v_e 's θ_{12} and Δm^2_{21} necessary to address the 2σ tension between Solar and KamLAND

•Recent Activities

- •Reduce Radon BG in water
- •Effort to lowering trigger threshold
 - •eff. @Ekin = 3.5-4.0MeV 84%→99%

Flux measurement updates

Data is consistent with a constant flux emission by Sun

Spectrum

Day/Night aymmetry

Super-K+SNO vs KamLAND

SK spectrum and D/N favor lower Δm^2_{21} that causes ~2 σ tension w/ KamLAND. More data is needed to conclude.

SK-Gd

Discovery of relic SN neutrinos is expected by O(1) sensitivity improvement
0.1% Gd loading to tag
ve+p→e+n, Gd+n→Gd+γs

R&D in test tank and water system construction going on
Start SK-Gd in a few yrs

10-16MeV 16-28MeV Significance Model Total Eve/10yrs Eve/10yrs (10-28MeV) 2 energy bin Τν 8 MeV 11.3 19.9 31.2 5.3σ 6 MeV 11.3 13.5 24.8 4.3σ 4 MeV 7.7 4.8 12.5 2.5σ 1987a 2.1σ 5.1 6.8 11.9 BG 10 24 34

Model: Phys. Rev. D 79 (2009) 083013.

PDecay-BG reduction by neutrons

Beacom and Vagins PRL93:171101(2004)

We expect that neutrino events are often accompanied with neutrons (e.g. $\overline{\nu}_e + p \rightarrow e^+ + \pi^0 + n$, recoiled protons kick neutrons in water etc.) In eutron emission probability in proton decay is expected to be small.

Since SK-IV we have started recording faint signature of neutrons; $n+p \rightarrow d+\gamma(2.2MeV, \tau \sim 200 \mu sec)$ by new high speed pipelined electronics. BG reduction by ~2

Potential BG reduction by tighter cut

Proton decays into lepton+meson

paper under preparation

24

Summary

Atmospheric neutrino

- • τ appearance (4.6 σ) concluded the atmv anomaly
- •Data consistent w/ Earth's matter effect (>2σ)
- •Mass hierarchy: preference to Normal hierarchy SK+T2K: $\Delta \chi^2 = \chi^2_{NH} - \chi^2_{IH} = -5.2$

Under IH hypothesis, the probability to obtain -5.2 or less is 2.4% $(\sin^2\theta_{23}=0.6)$ and 0.1% $(\sin^2\theta_{23}=0.4)$.

•Solar neutrinos

•SK spectrum and D/N favor lower Δm^2_{21} that causes ~2 σ tension w/ KamLAND.

•SK-Gd

•Discovery is within the reach. Start in a few years.

Proton decays

•Continuous efforts to reduce BG and keep BG-free regions.