

Results from NOvA

Ryan Nichol

NOvA Experiment

- Longest baseline accelerator neutrino search
 - NuMI is a beam of mainly muonneutrinos created at Fermilab
 - Two functionally identical detectors
- Measured muon-neutrino disappearance and electron-neutrino appearance
 - And starting to do the same with anti-neutrinos
- Sensitive to PMNS matrix, mass hierarchy, CP violation, sterile neutrinos, interaction physics, supernova, ...

How to make a neutrino beam

120GeV protons from the main injector

- Focus secondary pions using magnetic horns
 - Focus positive hadrons for neutrino beam, negative for antineutrino
- Pions decay to produce muon neutrinos
 - Decay kinematics mean a detector at 14.6mrad sees a narrowly peaked energy spectrum
- 97.5% muon-neutrino, only 0.7% electronneutrino (remainder wrong-sign)

Rock

NuMI Beam Performance

- Results today from data collected between February 6, 2014 and May 2, 2016
- Data equivalent to 6.05x10²⁰ protons-on-target in a full 14 kT detector
- Achieved 700 kW design goal, most powerful neutrino beam in the world
- Switched to antineutrino beam

NOvA Detectors

- Extruded plastic cells alternating vertical and horizontal orientation filled with liquid scintillator
- Charged particles passing through cells produce light which is collected by a wavelength shifting fibre

Particle Trajectory

> Waveshifting Fiber Loop

> > 3.9cm 6.6cm

Far Detector 550 µs Readout Window

NOvA @ NeuTel, Ryan Nichol Cell hits coloured by recorded charge (~photoelectrons)

Far Detector 10 µs NuMI Beam Window

NOvA @ NeuTel, Ryan Nichol Cell hits coloured by recorded charge (~photoelectrons)

Far Detector Neutrino Interaction

NOvA @ NeuTel, Ryan Nichol Cell hits coloured by recorded charge (~photoelectrons)

Event Topologies

Detector Calibration

- Cosmic ray muons used to correct attenuation
- Stopping muons used as a standard candle

Muon-neutrino disappearance

Muon-Neutrino Disappearance

- Two-flavour approximation still basically valid (although analysis uses full three-flavour formalism)
- Measure neutrinos in the ND
- 'Extrapolate' measurements to form FD prediction
 - Taking into account geometry, efficiencies, purities, energy resolutions, etc.
- Compare FD data to predictions to find the best fit oscillation parameters

 $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2 \left(2\theta\right) \sin^2 \left(1.27\Delta m^2 L / E\right)$

Muon-Neutrino Selection

- Separate v_{μ} -CC interactions from NC and cosmic-ray backgrounds
- Containment cuts remove activity near walls
- Four variable k-Nearest Neighbour to select muons
 - Track length
 - dE/dx along track
 - Scattering along track
 - Track-only plane fraction
- Selection is 81% efficient and 91% pure

Cosmic Rejection

- Far Detector is on the surface and sees
 150 kHz of cosmic induced events
- 10 µs beam window every 1.3s reduces background by 10⁵
- Additional factor of 10⁷ rejection achieved from event topology and a boosted decision tree (BDT) based on:
 - track direction
 - start/end points of track
 - track length
 - energy
 - number of hits
- Predict 2.7 cosmic background events

Good spills Data quality Cosmic rej. Containment **Cosmic background** NC rejection CC v_ prediction (max. mixing) E<5 GeV 10⁵ 10^{2} 10^{3} **10**⁴ 10^{6} 10^{7} 10 Number of events in the spill window

NOvA Preliminary

Energy Estimation

- Muon dE/dx used in length-to-energy conversion
- Hadronic energy estimated from calorimetric sum of non-muon hits
- ~7% resolution on neutrino energy

Energy Estimation

- Muon dE/dx used in length-to-energy conversion
- Hadronic energy estimated from calorimetric sum of non-muon hits ٠
- ~7% resolution on neutrino energy

Extrapolation

- Use high statistics ND data/MC to adjust prediction at FD
 - Translate ND data/MC observation to true energy
 - Oscillate ratio to the FD
 - Smear back into reconstructed energy

Muon-Neutrino Disappearance

- Using 6.05x10²⁰ POT equivalent
- 473 +/- 30 events predicted in the absence of oscillations
- Observed 78 events
- 82 events predicted at the best fit point including 3.7 beam background and 2.9 cosmic induced events

arXiv:1701.05891

Muon-Neutrino Disappearance

arXiv:1701.05891

- Using 6.05x10²⁰ POT equivalent
- 473 +/- 30 events predicted in the absence of oscillations
- Observed 78 events
- 82 events predicted at the best fit point including 3.7 beam background and 2.9 cosmic induced events

Muon-Neutrino Disappearance

- Maximal-mixing disfavoured at 2.6 sigma
- Interesting tension between NOvA and T2K, new results eagerly anticipated

Electron-Neutrino Appearance

Electron-Neutrino Appearance

- Electron-neutrino appearance is a sub-dominant oscillation mode at the NOvA L/E
- Matter effects matter (almost 3 times longer baseline than T2K)
- Sensitive to
 - Mass hierarchy
 - · CP violating phase
 - Octant of θ_{23}

New Classification Algorithm

- Take advantage of recent advances in machine learning/computer vision
- Deep networks extract complex features from input data, GPUs greatly improve training time
- · Inputs to the network are pixels in image
- Apply convolutional kernels to pull out event features

Convolutional Visual Network (CVN) Selection

• Showing a muon neutrino interaction and the first layer of feature maps extracted from the convolutional kernels

Convolutional Neural Networks

- Showing a electron neutrino interaction and the first layer of feature maps extracted from the convolutional kernels
- The strong features extracted are the shower as opposed to the track

Electron Neutrino Selection

arXiv:1703.03328

- 73% $v_{\rm e}$ CC selection efficiency, 76% purity with CVN classifier
- Good ND Data/MC agreement
- CVN provides better cosmic rejection and similar systematics to 2015
 classifiers

Electron Neutrino Selection

arXiv:1703.03328

Bin analysis in four bins of energy and three of CVN

Data Driven Background Corrections

- v_e-CC selection in the ND picks out FD backgrounds
 - Beam v_e-CC
 - v_{μ} -CC
 - Neutral current
- ~10% excess of data over MC in the ND
- Extrapolate data/MC differences to adjust FD prediction
- Each component oscillates differently
- Must decompose the data into constituent components

arXiv:1703.03328

Electron-neutrino appearance

- Observe 33 events on background of 8.2 +/- 0.8 events
- Over 8 significance of • electron-neutrino appearance

$v_{\mu} \rightarrow v_{e}$ Oscillation Results

- Fit for hierarchy, δ_{CP} , $\sin^2 \theta_{23}$
 - Constrain $\sin^2 2\theta_{13} = 0.085 \pm 0.005$ from reactor experiments
 - Simultaneous fit NOvA disappearance data
- Global best fit, two degenerate points in Normal Hierarchy

$$\delta_{cp} = 1.48\pi, \sin^2(\theta_{23}) = 0.404$$

$$\delta_{cp} = 0.74\pi, \sin^2(\theta_{23}) = 0.623$$

- best fit IH-NH, $\Delta \chi 2=0.47$
- Lower octant, IH is disfavoured at greater than 93% C.L for all values of $\delta_{\rm CP}$

arXiv:1703.03328

Looking Forward

- Switched to anti-neutrino running in February 2017
- Run 50% neutrino, 50% anti-neutrino after 2018
 - 3 σ sensitivity to maximal mixing of θ_{23} in 2018
 - 2 σ sensitivity to mass hierarchy and θ_{23} octant in 2018-2019

Conclusions

- Analysis of 6.05x10²⁰ POT of NOvA data (1 nominal year)
- Muon-neutrino disappearance (<u>arXiv:1701.05891</u>)
 - Best fit is non-maximal value of θ_{23} , maximal mixing disfavoured at 2.5 σ
- Electron neutrinos appearance (arXiv:1703.03328)
 - First joint fit of NOvA appearance and disappearance data
 - Weak preference for normal hierarchy
 - Inverted hierarchy, lower octant is disfavoured at > 93% C.L.
- Didn't mention sterile neutrino search, neutrino interaction, supernova, monopoles, and a lot more
- Switched to anti-neutrino running just a few weeks ago

$$\begin{split} & \forall \mu \longrightarrow \forall e \text{ Appearance channel} \\ & \forall \mu \longrightarrow \forall e \text{ Appearance channel} \\ & \mathsf{P}(v_{\mu} \rightarrow v_{e}) \approx \left| \sqrt{P_{atm}} e^{-i(\Delta_{32} + \delta)} + \sqrt{P_{sol}} \right|^{2} \\ & = P_{atm} + P_{sol} + 2\sqrt{P_{atm}} P_{sol} (\cos \Delta_{32} \cos \delta \mp \sin \Delta_{32} \sin \delta) \\ & \sqrt{P_{atm}} = \sin \theta_{23} \sin 2\theta_{13} \frac{\sin(\Delta_{31} - aL)}{\Delta_{31} - aL} \Delta_{31} \\ & \mathsf{Depends on relative sign of "a"} \\ & \mathsf{and } \Delta_{31} \\ & \sqrt{P_{sol}} = \cos \theta_{23} \sin 2\theta_{12} \frac{\sin(aL)}{aL} \Delta_{21} \\ & a = \frac{G_{F}N_{e}}{\sqrt{2}} \approx \frac{1}{3500km} \\ & \mathsf{aL} = 0.08 \text{ for } L = 295 \text{km T2K baseline} \\ & \mathsf{aL} = 0.23 \text{ for } L = 810 \text{km NOvA} \\ & \mathsf{baseline} \\ & \mathsf{Oscillation probability is} \\ & \mathsf{sensitive to: mass ordering,} \\ & \mathsf{CP violating phase, and } \theta_{23} \\ & \mathsf{octant} \\ \end{split}$$

NOvA @ Neu lel, Ryan Nichol

Convolutional Neural Networks

- Architecture adapted from GoogLeNet
 - · C. Szegedy et al., arXiv:1409.4842
 - Input is 80 cell x 200 plane detector pixel map
 - Each event view processed separately and then merged
- Network implemented and trained in the Caffe Framework (Y. Jia et al., arXiv:1408.5093)
- Trained on 4.7 million simulated events on Fermilab GPU cluster
- Output classifies neutrino interaction type (v_{\mu},v_{\tau},v_{e},NC)
- Used in appearance analysis.
- Performance gain over previous classifiers equivalent to adding 30% more detector mass
 A. Aurisano and A. Radovic and D. Rocco et. al,

JINST 11 P09001 (2016) 38 NOvA @ NeuTel, Ryan Nichol

Concatenation Softmax Output 3×3 Convolution 5×5 Convolution 1×1 Convolution Avg Pooling 6×5 1×1 Convolution 1×1 Convolution 3×3 Pooling Inception Module Previous Layer Inception Inception Module Module Max Pooling Max Pooling 3×3 , stride 2 3×3, stride 2 Inception Inception Module Module Inception Inception Module Module Max Pooling Max Pooling 3×3 , stride 2 3×3 , stride 2 LRN LRN Convolution Convolution 3×3 3×3 Convolution Convolution 1×1 1×1 LRN LRN Max Pooling Max Pooling 3×3 , stride 2 3×3 , stride 2 Convolution Convolution 7×7 , stride 2 7×7 , stride 2 X View Y View

Filter

1×1 Convolution

t-SNE representation of CVN classification. Truth labels shown for the training sample.

t-SNE representation of CVN classification. Truth labels shown for the training sample.

Systematic Uncertainties

Various sources of systematic uncertainty considered

 Propagate the effect of each though the extrapolation with specially modified MC samples

• Include as pull terms in fit

 Table shows increase in quadrature of measurement uncertainty

Systematic	Effect on sin²(θ ₂₃)	Effect on Δm ² 32	
Normalisation	± 1.0%	± 0.2 %	
Muon E scale	± 2.2%	± 0.8 %	
Calibration	± 2.0 %	± 0.2 %	
Relative E scale	± 2.0 %	± 0.9 %	
Cross sections + FSI	± 0.6 %	± 0.5 %	
Osc. parameters	± 0.7 %	± 1.5 %	
Beam backgrounds	± 0.9 %	± 0.5 %	
Scintillation model	± 0.7 %	±0.1%	
All systematics	± 3.4 %	± 2.4 %	
Stat. Uncertainty	± 4.1 %	± 3.5 %	

vµ -> vµ Oscillation Results

Best fit $\chi 2/DOF = 41.5/17$ is driven by the high energy tail

There is no pull in the oscillation fit from the tail

NOvA Preliminary

Evaluating Signal Efficiency

- Remove cosmic ray muon from FD events in data and simulation
- Apply selection to remaining bremsstrahlung shower to benchmark simulation of electron selection

- EM showers should be well modelled, check if selection efficiency differences come from hadronic side
- Remove reconstructed muons from selected vµ events, replace with simulated electron (MRE)
- better than 1% agreement between efficiency for selecting data MRE events and efficiency for selecting MC MRE events

ND Data Decomposition: Beam v_e CC

- Low energy v_{μ} and v_{e} trace back to the same π ancestors
- Use $v_{\!\scriptscriptstyle \rm U}$ at lower energy to reweight decaying pions in (pT , pz) space
- Decreases v_e with π + parent 3-4%
- Weight v_e with K+ parents up 17% based on v_u high-E tail
- Overall effect is 1% increase in 1-3 GeV range in intrinsic beam v_e CC events

ND Data Decomposition: Michel Electrons

- + v_{μ} CC events contain Michel electron from muon decay
- ~1 more Michel in v_{μ} events then v_{e} or NC
- Fit observed number of Michels in each bin of energy and PID by adjusting v_{μ}/NC ratio
- Data excess assigned between NC (+17%) and v_{μ} CC (+10%)

Systematic Uncertainties

- Multiple sources of systematic error considered
- Extrapolate FD predictions with special MC samples for each effect.
- Uncertainty quoted as difference between shifted and nominal predictions
- Fit nuisance parameters as pull terms
- · Statistical uncertainties dominate

$v\mu$ -> ve Oscillation Prediction

 Prediction dependent on oscillation parameters

Signal events $(\pm 5\%$ systematic uncertainty):

NH, 3π/2,	IH, π/2,
28.2	11.2

Background by component

 $(\pm 10\%$ systematic uncertainty):

Total BG	NC	Beam v _e	v_{μ} CC	v_{τ} CC	Cosmics
8.2	3.7	3.1	0.7	0.1	0.5

NOvA Preliminary

$v_{\mu} \rightarrow v_{e}$ Oscillation Results

- Fit for hierarchy, δ CP, sin2023
 - Constrain sin2(2θ13)=0.085±0.05
 - Constrain
 Δm2=2.44±0.06x10-3 eV2,
 NH
 - (-2.49±0.06x10-3 eV2, IH)
- Systematic effects included as nuisance parameters (normalization, flux, calibration, cross section, and detector response effects

Nuclear Model Corrections

Near Detector hadronic energy distribution suggests unsimulated process between quasi-elastic and delta production

Similar conclusions from MINERvA data reported in P.A. Rodrigues et al., PRL 116 (2016) 071802

Solution: 2-particle, 2-hole (2p2h) events where neutrino is scattering off a nucleon-nucleon pair

Nuclear Model Corrections

- Enable GENIE's emperical Meson Exchange Current model¹
- Reweight to matched observed excess as a function of momentum transfer

NOvA Preliminary

🚰 Fermilab

• Weight single non-resonant pion production down by effectively 50%²

¹S. Dytman, based on J. W. Lightbody, J. S. OConnell, Comp. in Phys. 2 (1988) 57 ²P.A. Rodrigues et al., arXiv:1601.01888

Nuclear Model Corrections

- Take 50% systematic uncertainty on MEC component
- Reduces hadronic energy scale and quasi-elastic cross section systematic uncertainties

¹S. Dytman, based on J. W. Lightbody, J. S. OConnell, Comp. in Phys. 2 (1988) 57 ²P.A. Rodrigues et al., arXiv:1601.01888

NC disappearance results

Observe 95 NC-like event in Far Detector MC extrapolated prediction: 83.71 ± 9.15 (stat.) ± 8.28 (syst.) within 1σ of three-flavour prediction NOvA sees no evidence for sterile neutrino mixing

NOvA Preliminary

JETP seminar, Fermilab - 07/29/2016

Far detector NC selection

FD NC selection uses the same variables as the ND selection, with identical cut values

NOvA Preliminary

R-ratio comparison with 3-flavour

JETP seminar, Fermilab - 07/29/2016

G. S. Davies (Indiana U.), NOvA

Calorimetric Energy (GeV)

3+1 model

$$1 - P(\nu_{\mu} \rightarrow \nu_{s}) \approx 1 - \cos_{14}^{4} \cos_{34}^{2} \sin^{2}2\theta_{24} \sin^{2}\Delta_{41} - \frac{\sin_{34}^{2}}{\sin^{2}2\theta_{23}} \sin^{2}\Delta_{31} - \frac{1}{2} \sin\delta_{24} \sin_{24} \sin^{2}\theta_{34} \sin^{2}\theta_{23} \sin^{2}\Delta_{31}$$

3+1 1D limits

For 0.05 eV² < Δm_{41}^2 < 0.5 eV²: θ_{24} < 21° at 90% C.L. $|U_{\mu4}|^2$ < 0.14 at 90% C.L. θ_{34} < 35° at 90% C.L. $|U_{\tau4}|^2$ < 0.33 at 90% C.L.

Future Sterile Sensitivities

Competitive with current best θ_{34} limits (Super-K)

NOvA Physics Results

- 1. $v_{\mu} \rightarrow v_{\mu}$ disappearance channel
 - Clear deficit of v_{μ} CC events as a function of energy
 - Sensitive to $|\Delta m^2_{32}|$ and $\sin^2(2\theta_{23})$
 - 2015 analysis results
 Phys.Rev.D93.051104

- 2. $v_{\mu} \rightarrow v_e$ appearance channel
 - Matter effect enhanced by 810 km baseline
 - Sensitive to θ_{13} , θ_{23} , δ_{CP} , and mass hierarchy
 - 2015 analysis results PRL.
 116.151806

- 3. Disappearance of neutral current events
 - Evidence for oscillations involving additional sterile neutrinos
 - Fit to a 3+1 neutrino model
 - $\Delta m^2_{41}, \, \theta_{34}, \, \theta_{24}$
 - New result

Additionally, many cross section measurements, exotic physics searches and non-beam physics studies underway.

