A Vision for Neutrino and Particle Physics at the South Pole

João Pedro Athayde Marcondes de André for the IceCube-Gen2 Collaboration

17 March 2017
Neutrino oscillations with atmospheric neutrinos

- Several baselines available
 - L/E dependency on oscillation
- IceCube-DeepCore:
 - See clear ν_μ disappearance
 - Harder measurement of ν_τ appearance (on-going)
 - low ν_τ x-sec
 - missing energy from τ-decay
- Need next generation of experiments for:
 - Precision measurements of ν_τ appearance
 - Neutrino mass ordering
\(\nu_\tau \) appearance: testing unitarity of the mixing matrix \(U \)

- If we don’t assume unitarity of mixing matrix → 9 parameters to be measured

\[
U = \begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu1} & U_{\mu2} & U_{\mu3} \\
U_{\tau1} & U_{\tau2} & U_{\tau3}
\end{pmatrix}
\]

\(\leftrightarrow \) \(\nu_e \) appearance and disappearance

\(\leftrightarrow \) \(\nu_\mu \) disappearance and \(\nu_e \) or \(\nu_\tau \) appearance

- \(\nu \) disappearance: sensitive to the absolute values of 1 row
- \(\nu \) appearance: sensitive to products between 2 rows

Probing the \(\tau \)-row: \(\nu_\tau \) appearance!

- OPERA and SK measured that
- in both cases saw too many \(\nu_\tau \)
 - not statistically significant
 - \Rightarrow need precision measurements

\begin{figure}
\centering
\includegraphics[width=\textwidth]{nu-tau-appearance}
\caption{Phys. Rev. D 93, 113009}
\end{figure}
- Instrument 1 Gton of ice
- Optimized for TeV-PeV neutrinos
 - Astrophysical ν discovered!
- At its center: DeepCore
 - \sim10 Mton region with denser instrumentation
 - lower E threshold
 - study neutrino oscillations
 - Surrounding detector used as active veto against atmospheric μ
IceCube-DeepCore

25 GeV ν_μ CC

- color \rightarrow hit time
- size \rightarrow hit charge

IceCube DOM

10" PMT
IceCube-DeepCore: ν_μ disappearance measurement

- Brand new results (first shown at Feb 2017) with improved analysis on 3 year sample
- Fitting done in 3D space ($E, \cos \theta_z, \text{PID}$) → projected in L/E for illustration
- Consistent & competitive results to accelerator based measurements
 - Different E range (and baselines) than for accelerator based studies

![Graph showing track-like events and numbers of events over log10(E_recoil/E_over)](Image)

![Diagram showing Δm^2 vs. $\sin^2(\theta_{23})$ and $\Delta \chi^2$)](Image)

J. P. A. M. de André, for IceCube-Gen2

International Workshop on Neutrino Telescopes 2017

17 March 2017
IceCube-Gen2 Phase1

25 GeV ν_μ CC

color \rightarrow hit time
size \rightarrow hit charge

mDOM

24 \times 3” PMTs
IceCube Gen2 Phase1 analysis goals

- ν_τ appearance analysis
- Sensitivity to θ_{23} and Δm^2_{31}
 complementary to dedicated LBL experiments
- Octant/Maximal mixing
 (3σ in 3 years for NOνA best fit θ_{23})
- Neutrino mass ordering
 (1.5-2σ in 3 years)
- Improvements on eV sterile ν searches, solar WIMP searches, ...
- New calibration devices will also be installed
 ⇒ Better ice description and calibration
 ⇒ Improvements in reconstruction resolutions
 ⇒ Improvement to neutrino astronomy

Proposal submitted to NSF
Signal for ν_τ appearance in IceCube-Gen2 Phase1

- Appearing ν_τ events usually classified as cascades
 - There is no clear μ track
- Our signal: ν_τ events at specific L/E region in cascade channel
 - Measurement done in 3D: $\cos \theta_z \times E \times PID$ space
 - 1D projection of $\cos \theta_z$ shown below for simplicity

![Graph showing signal for ν_τ appearance](image_url)
Signal for ν_τ appearance in IceCube-Gen2 Phase1

- Appearing ν_τ events usually classified as cascades
 - There is no clear μ track
- Our signal: ν_τ events at specific L/E region in cascade channel
 - Measurement done in 3D: $\cos\theta_z \times E \times PID$ space
 - 1D projection of $\cos\theta_z$ shown below for simplicity

![Graph showing ratio to standard oscillations and appearance of ν_τ events in cascade sample](image)

Preliminary events with $E_\nu < 10$ GeV - only events with $E_\nu > 10$ GeV, cascade sample

J. P. A. M. de André, for IceCube-Gen2 International Workshop on Neutrino Telescopes 2017 17 March 2017 9 / 19

Systematic errors

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Priors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric ν flux parameters</td>
<td></td>
</tr>
<tr>
<td>$\Delta \gamma$ (spectral index)</td>
<td>0.00±0.10</td>
</tr>
<tr>
<td>ν_e normalization</td>
<td>1.00±0.20</td>
</tr>
<tr>
<td>ν NC normalization</td>
<td>1.00±0.20</td>
</tr>
<tr>
<td>$\Delta(\nu/\bar{\nu})$, energy dependent‡</td>
<td>0 ± 1 σ</td>
</tr>
<tr>
<td>$\Delta(\nu/\bar{\nu})$, zenith dependent‡</td>
<td>0 ± 1 σ</td>
</tr>
<tr>
<td>Cross section parameters (from GENIE)</td>
<td></td>
</tr>
<tr>
<td>M_A (resonance) [GeV]</td>
<td>1.12±0.22</td>
</tr>
<tr>
<td>M_A (quasi-elastic) [GeV]</td>
<td>0.99$^{+0.25}_{-0.15}$</td>
</tr>
</tbody>
</table>

‡: Following Barr, et al., PRD 74, 094009.

- In general same systematics used for IceCube-DeepCore analysis
 - θ_{13}, DIS x-sec uncertainties tested and observed to be irrelevant
- Impact of systematics limited in result due to different $L \times E$ dependency to signal
- New calibration devices with IceCube-Gen2 Phase1 ⇒ improve detector systematics
- Leading systematics for ν_τ appearance: $\Delta(\nu/\bar{\nu})$, zenith dependent

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Priors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δm^2_{32}</td>
<td>no prior</td>
</tr>
<tr>
<td>$\sin^2 \theta_{23}$</td>
<td>no prior</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Detector parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hole ice scattering* from calibration</td>
<td></td>
</tr>
<tr>
<td>DOM efficiency* [%]</td>
<td>100±10</td>
</tr>
</tbody>
</table>

*: Systematic change studied for IceCube-DeepCore used here.
Sensitivity to ν_τ appearance in IceCube-Gen2 Phase1

- < 7% precision in the ν_τ normalization after 3 years of data
- Not many experiments can do this measurement!

J. P. A. M. de André, for IceCube-Gen2
International Workshop on Neutrino Telescopes 2017
17 March 2017 11 / 19

Projected DeepCore sensitivity using same sample as in pg 6.
IceCube-Gen2 PINGU

12 GeV ν_μ CC

color \rightarrow hit time
size \rightarrow hit charge

IceCube DOM mDOM

in LoI
plan to use

J. P. A. M. de André, for IceCube-Gen2
International Workshop on Neutrino Telescopes 2017
17 March 2017 12 / 19
IceCube Gen2 PINGU analysis goals

- Improves on IceCube-Gen2 Phase1 sensitivities across the board
- ν_{τ} appearance analysis:
 - in 6 months reach 10% precision
- Improved sensitivity to θ_{23} and Δm^2_{31} →
- Neutrino mass ordering
- ...
Neutrino oscillations in matter

\[\Delta m_{32}^2 = 2.32 \times 10^{-3} \text{ eV}^2 \]
\[\sin^2(2\theta_{23}) = \frac{\pi}{4} \]

\[\cos \theta_z = -0.84 \]

Increasing density

Outer core

Neutrinos
Normal hierarchy

J. P. A. M. de André, for IceCube-Gen2
Neutrino Mass Ordering effect observable on PINGU

PINGU cannot differentiate ν and $\bar{\nu}$: rely on difference in flux and cross-section
 ▶ Large statistical samples: $\sim 33k \nu_\mu + \bar{\nu}_\mu$ CC per year, $\sim 25k \nu_e + \bar{\nu}_e$ CC per year

Distinct ordering dependent signatures for tracks (mostly ν_μ CC) and cascades
 ▶ Intensity is statistical significance of each bin with 1 year data
 ▶ Particular expected “distortion pattern” helps mitigate impact of systematics
Sensitivities calculated with 2 different methods (LLR and $\Delta \chi^2$) in agreement

NMO sensitivity strongly depends on true θ_{23}
 - θ_{23} uncertainty also has large effect in precision: synergy with other efforts!

Median sensitivity of $\sim 3\sigma$ with 4 years of data for current best-fit values
 - Current global best fit close to sensitivity minimum for both orderings
IceCube-DeepCore detector: good performance to measure neutrino oscillations
 ▶ Latest θ_{23} and Δm^2_{32} measurement of similar precision to those from accelerators

IceCube-Gen2 Phase1: proposal submitted to NSF
 ▶ First step towards full IceCube-Gen2 program
 ▶ Very good sensitivity to ν_τ appearance: expected precision better than 7% after 3 years
 ▶ Improvements in wide range of measurements expected
 * including improvements to neutrino astronomy via improvement in calibrations!

IceCube-Gen2 PINGU: going beyond IceCube-Gen2 Phase1
 ▶ Potential low-energy extension within IceCube-Gen2
 ▶ Essential to measure Neutrino Mass Ordering
 ▶ Other improvements in broad physics program (ν oscillation, WIMPs, SNs, ...)

J. P. A. M. de André, for IceCube-Gen2
Backup slides
IceCube-DeepCore ν_μ disappearance result systematics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Priors</th>
<th>Best fit NH</th>
<th>Best fit IH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard neutrino mixing parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δm^2_{32} [10^{-3} eV2/c4]</td>
<td>no prior</td>
<td>$2.31^{+0.12}_{-0.14}$</td>
<td>$-2.32^{+0.12}_{-0.13}$</td>
</tr>
<tr>
<td>$\sin^2 \theta_{23}$</td>
<td>no prior</td>
<td>$0.51^{+0.08}_{-0.08}$</td>
<td>$0.51^{+0.08}_{-0.07}$</td>
</tr>
<tr>
<td>Atmospheric neutrino flux parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta \gamma$ (spectral index)</td>
<td>0.00 ± 0.10</td>
<td>-0.02</td>
<td>-0.02</td>
</tr>
<tr>
<td>ν_e normalization</td>
<td>1.00 ± 0.20</td>
<td>1.24</td>
<td>1.24</td>
</tr>
<tr>
<td>ν NC normalization</td>
<td>1.00 ± 0.20</td>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>$\Delta (\nu/\bar{\nu})$, energy dependent</td>
<td>‡</td>
<td>-0.56σ</td>
<td>-0.60σ</td>
</tr>
<tr>
<td>$\Delta (\nu/\bar{\nu})$, zenith dependent</td>
<td>‡</td>
<td>-0.53σ</td>
<td>-0.55σ</td>
</tr>
<tr>
<td>Cross section parameters (from GENIE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_A (resonance) [GeV]</td>
<td>1.12 ± 0.22</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>Detector parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOM lateral sensitivity (hole ice)</td>
<td>0.020 ± 0.010</td>
<td>0.022</td>
<td>0.022</td>
</tr>
<tr>
<td>DOM forward sensitivity (hole ice)</td>
<td>no prior</td>
<td>-0.76</td>
<td>-0.70</td>
</tr>
<tr>
<td>DOM efficiency [% of nominal]</td>
<td>100 ± 10</td>
<td>103</td>
<td>103</td>
</tr>
<tr>
<td>Background</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atm. μ contamination [%]</td>
<td>no prior</td>
<td>5.2</td>
<td>5.2</td>
</tr>
</tbody>
</table>

‡: Following Barr, et al., PRD74, 094009.
IceCube-Gen2 Phase1 L/E

Preliminary

J. P. A. M. de André, for IceCube-Gen2 International Workshop on Neutrino Telescopes 2017 17 March 2017 23 / 19
IceCube-Gen2 Phase1 impact in neutrino astronomy

- Better understanding of ice and calibration ⇒ improve reconstruction resolutions/PID
- Use better reconstructions to re-analyse existing IceCube data
IceCube-Gen2 Phase 1 timescale

- Proposals for Gen2 Phase I submitted to NSF and foreign partners
 - Seven strings of new instrumentation in the center of IceCube – tau physics and improved calibration to enable reanalysis with improved sensitivity
Measurement strategy

- Main background is atmospheric μ
 - Use IC as veto to reject atm μ events
- Reconstruct ν energy and direction
 - oscillation distance (L) given by zenith
- Do oscillation measurement!
- Same concept from DeepCore works on Gen2 Phase1
Atmospheric neutrinos

- 2:1 ratio between $\nu_\mu : \nu_e$
- similar rate of ν and $\bar{\nu}$
 - however, x-sec for $\bar{\nu}$ half of ν

- various baselines available
Atmospheric neutrinos

- ν energy over several orders of magnitude
- Various baselines available

\Rightarrow wide range of L/E available
Atmospheric neutrinos oscillations

Largest baseline (L=12760 km, \(\cos \theta_Z = -1\)) has:
- First oscillation maxima at \(\sim 25\) GeV
- Matter effects below \(\sim 12\) GeV
- Potential for \(\nu_e\) appearance at 8 GeV
Atmospheric neutrinos oscillations

- Largest baseline (L=12760 km, $\cos \theta_z = -1$) has:
 - First oscillation maxima at ~ 25 GeV
 - δ_{CP} below ~ 12 GeV
 - but matter effects dominate that region
 - Potential for ν_e appearance at 8 GeV

\[\Delta m_{21}^2 = 7.59 \times 10^{-5} \text{ eV}^2 \]
\[\Delta m_{32}^2 = 2.42 \times 10^{-3} \text{ eV}^2 \]
\[\sin^2(2\theta_{12}) = 0.861 \]
\[\sin^2(2\theta_{13}) = 0.098 \]
\[\sin^2(2\theta_{23}) = 0.490 \]

Bands: $\delta_{CP} \in [0, 2\pi]$
Matter Effects

- MSW effect alter oscillation probabilities of ν (NH) or $\bar{\nu}$ (IH)
 - Sharp changes in density between zones produce visible effects in oscillation probabilities
- Different paths “see” different mass patterns \Rightarrow can be probed by measuring the zenith of the neutrino
Neutrino oscillations in vacuum

\[P(\nu_\alpha \rightarrow \nu_\beta) = \sin^2(2\theta) \sin^2 \left(\frac{\Delta m^2 L}{4E} \right) \]

\[\Delta m_{32}^2 = 2.32 \times 10^{-3} \text{eV}^2 \]
\[\sin^2(2\theta_{23}) = \frac{\pi}{4} \]
Estimating sensitivity to the NMO: Log Likelihood Ratio

1. Generate pseudo-data trial in analysis binning
 - True physics and systematics kept fixed for generation
2. Fit assuming NO and IO
3. Calculate log likelihood ratio between IO and NO

Advantages of the method:
- Can account for any systematic given
- Does not pre-suppose shape of ΔLLH distribution

Disadvantages of the method:
- The significance “limited” by number of trials
 - If Gaussian can provide approximate significances
- Since each trial is a full fit (and given lots of trials needed) having large number of systematics can became prohibitively time consuming
Median sensitivity

- For quantifying significance to measure ordering usually use median sensitivity
 - Widely used in literature
- “Median sensitivity” will mean that 50% of the time we can do better and 50% of the time we can do worse
- “Median sensitivity” calculated by integrating shade region under wrong ordering assumption
 - If distribution fits well Gaussian, integrate area under Gaussian curve instead of trial distribution
Excluding an ordering

- To say we measure the true ordering (TO) at a given CL we want to be able to exclude the wrong ordering (WO) for any value of the oscillation parameters

\[\Delta m^2_{23} \quad \text{sin}^2 \theta_{23} \]

- Testing every point of the WO parameter space too costly
 - WO best-fit gives parameters of “maximum confusion”
 (used to get WO trial distribution)
Estimating sensitivity to the NMO: $\Delta \chi^2$ method

1. Get expected number of events in analysis binning
 ▶ True physics and systematics kept fixed as in LLR method
 ▶ But, no Poisson fluctuations applied

2. Calculate minimal $\Delta \chi^2$ for the WO
 ▶ $\Delta \chi^2 = \min_{p \in \text{WO}} \sum_i \left(\frac{\mu_{i,\text{TO}}(p_0) - \mu_{i,\text{WO}}(p)}{\sigma_i} \right)^2$
 ▶ $\Delta \chi^2$ is Gaussian distributed with mean $\pm \Delta \chi^2$ and sigma $2\sqrt{\Delta \chi^2}$

3. Evaluate distribution of $\Delta \chi^2$ for NO and IO
 ⇒ correspond to the LLR trial distribution

- Advantages of the method:
 ▶ Linear systematics are extremely fast to be computed
 ▶ Even with non-linear systematics still much faster than LLR

- Disadvantage of the method:
 ▶ Intrinsic assumption of gaussianity of final distribution
 ▶ Not possible to include non-centered priors
 ★ cannot include prior on θ_{23} due to “maximum confusion” method
Comparing Test Statistic of LLR and $\Delta \chi^2$

- Good agreement between TS
 ⇒ sensitivities in agreement
 - lines from $\Delta \chi^2$
 - points from LLR