Results from the **MAJORANA DEMONSTRATOR**

^{76}Ge detector array

J.F. Wilkerson

on behalf of the **MAJORANA Collaboration**
The MAJORANA Collaboration

Black Hills State University, Spearfish, SD
 Kara Keeter

Duke University, Durham, North Carolina, and TUNL
 Matthew Busch

Joint Institute for Nuclear Research, Dubna, Russia
 Viktor Brudanin, M. Shirchenko, Sergey Vasilyev, E. Yakushev, I. Zhitnikov

Lawrence Berkeley National Laboratory, Berkeley, California and the University of California - Berkeley
 Nicolas Abgrall, Yuen-Dat Chan, Lukas Hehn, Jordan Myslik, Alan Poon, Kai Vetter

Los Alamos National Laboratory, Los Alamos, New Mexico
 Pinghan Chu, Steven Elliott, Ralph Massarczyk, Keith Rielage, Larry Rodriguez, Harry Salazar, Brandon White, Brian Zhu

National Research Center ‘Kurchatov Institute’ Institute of Theoretical and Experimental Physics, Moscow, Russia
 Alexander Barabash, Sergei Konovalov, Vladimir Yumatov

North Carolina State University, and TUNL
 Matthew P. Green

Oak Ridge National Laboratory
 Fred Bertrand, Charlie Havener, Monty Middlebrook, David Radford, Robert Varner, Chang-Hong Yu

Osaka University, Osaka, Japan
 Hiroyasu Ejiri

Pacific Northwest National Laboratory, Richland, Washington
 Isaac Arnquist, Eric Hoppe, Richard T. Kouzes

Princeton University, Princeton, New Jersey
 Graham K. Giovanetti

Queen’s University, Kingston, Canada
 Ryan Martin

South Dakota School of Mines and Technology, Rapid City, South Dakota
 Colter Dunagan, Cabot-Ann Christofferson, Anne-Marie Suriano, Jared Thompson

Tennessee Tech University, Cookeville, Tennessee
 Mary Kidd

Technische Universität München, and Max Planck Institute, Munich, Germany
 Tobias Bode, Susanne Mertens

University of North Carolina, Chapel Hill, North Carolina, and TUNL
 Thomas Caldwell, Thomas Gilliss, Chris Haufe, Reyco Henning, Mark Howe, Samuel J. Meijer, Christopher O'Shaughnessy, Gulden Othman, Jamin Rager, Anna Reine, Benjamin Shanks, Kris Vorren, John F. Wilkerson

University of South Carolina, Columbia, South Carolina
 Frank Avignone, Vince Guiseppe, David Tedeschi, Clint Wiseman

University of South Dakota, Vermillion, South Dakota
 Wenzin Xu

University of Tennessee, Knoxville, Tennessee
 Yuri Efremenko, Andrew Lopez

University of Washington, Seattle, Washington
 Sebastian Alvis, Tom Burritt, Micah Buuck, Clara Cuesta, Jason Detwiler, Julieta Gruszko, Ian Guinn, David Peterson, R. G. Hamish Robertson, Tim Van Wechel
Sensitivity vs. Exposure vs. Signal

<table>
<thead>
<tr>
<th>Half life (years)</th>
<th>~Signal (cnts/ton-year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{25}</td>
<td>500</td>
</tr>
<tr>
<td>5×10^{26}</td>
<td>10</td>
</tr>
<tr>
<td>5×10^{27}</td>
<td>1</td>
</tr>
<tr>
<td>5×10^{28}</td>
<td>0.1</td>
</tr>
<tr>
<td>$>10^{29}$</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Assumes 75% efficiency based on GERDA Phase I. Enrichment level is accounted for in the exposure.

76Ge (87% enr.)

J. Detwiler
Advantages of Ge

- Intrinsic high-purity Ge detectors = source
- Excellent energy resolution: approaching 0.1% at 2039 keV (~3 keV ROI)
- Demonstrated ability to enrich from 7.44% to ≥87%
- Powerful background rejection: multiplicity, timing, pulse-shape discrimination

MAJORANA
Compact configuration: Vacuum cryostats in a passive graded shield with ultra-clean materials

GERDA
Direct immersion in active LAr shield
The MAJORANA DEMONSTRATOR

Funded by DOE Office of Nuclear Physics, NSF Particle Astrophysics, NSF Nuclear Physics with additional contributions from international collaborators.

Goals:
- Demonstrate backgrounds low enough to justify building a tonne scale experiment.
- Establish feasibility to construct & field modular arrays of Ge detectors.
- Searches for additional physics beyond the standard model.

- Located underground at 4850’ Sanford Underground Research Facility
- Background Goal in the $0
\nu\beta\beta$ peak region of interest (4 keV at 2039 keV)
 3 counts/(ROI t y) (after analysis cuts) Assay U.L. currently ≤ 3.5
 scales to 1 count/(ROI t y) for a tonne experiment
- 44.1-kg of Ge detectors
 - 29.7 kg of 88% enriched 76Ge crystals
 - 14.4 kg of $^{\text{nat}}$Ge
 - Detector Technology: P-type, point-contact.
- 2 independent cryostats
 - ultra-clean, electroformed Cu
 - 22 kg of detectors per cryostat
 - naturally scalable
- Compact Shield
 - low-background passive Cu and Pb shield with active muon veto

DEMOnSTRATOR Background Budget

Based on assays of materials; When upper limit, use upper limit value as contribution

(NIMA 828 (2016) 22)

Background Rate (c/ROI-t-γ)

- Electroformed Cu
- OFHC Cu Shielding
- Pb shielding
- Cables / Connectors
- Front Ends
- Ge (U/Th)
- Plastics + other
- Ge-68, Co-60 (enrGe)
- Co-60 (Cu)
- External γ, (α,n)
- Rn, surface α
- Ge, Cu, Pb (n, n'γ)
- Ge(n,n)
- Ge(n,γ)
- direct μ + other
- ν backgrounds

Total: <3.5 c/ROI-t-γ
MAJORANA Electroformed Copper

- MAJORANA operated 10 baths at the 4850’ level of Sanford Underground Research Facility (SURF) and 6 baths at a shallow UG site at PNNL. All copper was machined at the SURF Davis campus.
- The electroforming of copper completed in May 2015.
 - 2474 kg of electroformed copper on the mandrels,
 - 2104 kg after initial machining,
 - 1196 kg that will be installed in the DEMONSTRATOR.

- Th decay chain (ave) $\leq 0.1 \mu$Bq/kg
- U decay chain (ave) $\leq 0.1 \mu$Bq/kg
AMETEK (ORTEC) fabricated enriched detectors.
35 Enriched detectors at SURF 29.7 kg, 88% 76Ge.
20 kg of modified natural-Ge BEGe (Canberra)
detectors in hand (33 detectors UG).

All detector assembly performed in N_2 purged gloveboxes.
All detectors’ dimensions recorded by optical reader.
MAJORANA DEMONSTRATOR Implementation

Module 1: 16.9 kg (20) ^{enr}Ge
5.6 kg (9) ^{nat}Ge

Module 2: 12.9 kg (14) ^{enr}Ge
8.8 kg (15) ^{nat}Ge

In-shield Running
05/2015 – 10/2015
Module Improvements
01/2016 – ongoing
07/2016 – ongoing
Data Sets and Duty Cycles

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-0</td>
<td>M1 Commissioning, No inner shield</td>
</tr>
<tr>
<td>DS-1</td>
<td>M1 Commissioning, inner shield</td>
</tr>
<tr>
<td>DS-2</td>
<td>M1 Multi-sampling</td>
</tr>
<tr>
<td>DS-3</td>
<td>Modules 1 and 2 Together in-shield</td>
</tr>
<tr>
<td>DS-4</td>
<td>Module 1 & 2 Integrated DAQ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Module 1</th>
<th>Module 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS-2</td>
<td>May 24 - July 14, 2016</td>
<td></td>
</tr>
<tr>
<td>DS-3</td>
<td>Aug. 25 - Sep. 27, 2016</td>
<td></td>
</tr>
<tr>
<td>DS-4</td>
<td>Aug. 25 - Sep. 27, 2016</td>
<td>Oct. 13, 2016 - ongoing*</td>
</tr>
</tbody>
</table>

Total (days)	103.15	144.50	50.97	32.37	32.36	97.7
Total acquired	87.93	136.98	50.47	31.73	25.80	90.41
Physics	47.70	61.34 + 20.41* + 9.82 + 30.56*	29.97	23.84	82.52	
High radon	11.76	7.32	-	-	-	
Calibration	15.44	7.32	0.65	1.18	1.17	1.39
Down time	15.21	7.51	0.50	0.64	6.56	7.29
Disruptive/Commissioning	13.10	34.43 + 5.92* + 2.41 + 7.03*	0.57	0.78	6.51	

*Blind data

*Values up to Jan. 19, 2017

~93% live (phys+cal)
$0\nu\beta\beta$ with Point Contact Detectors

Results from the MAJORANA DEMONSTRATOR

Summed 228Th Calibration Spectrum (DS3&DS4)

- Enriched detectors in Modules 1 and 2
- 228Th calibration source
- FWHM = 2.4 keV at $Q_{\beta\beta}$ (2039 keV)

Calibration paper
arXiv:1702.02466

Energy (keV)

Counts

FWHM 2.8 keV

blue - data
red - fits to selected peaks
Summed 228Th Calibration (DS1) & Simulation

Calibration paper
arXiv:1702.02466
PSD cuts are optimized to keep 90% single-site and <10% multi-site events

- $0\nu\beta\beta$ is a single site event
- ^{208}TI 2614 keV γ can pair produce with annihilation γ’s escaping detection
Cut for α’s, Delayed Charge Recovery

- Alpha background with degraded energies observed in DS0
- Charge of these events drifts along the detector surface, not bulk
- Produces a distinctive waveform allowing a high efficiency cut

![Graphs showing examples of pole-zero corrected waveforms with slow drift of charges along passivated surface resulting in very slow signal component.]
Background Spectrum (DS3 & DS4)

Lowest background configuration, with both modules in shield.
(Previous data presented at Neutrino 16 was from Module 1, DS 0/1)

Enriched detectors in Modules 1 & 2, before and after PSD cuts

No PSD cuts
AvsE cut
AvsE & DCR cuts

Spectrum is dominated by $2\nu\beta\beta$
Estimated $0\nu\beta\beta$-decay ROI background (DS3 & DS4)

- Exposure: 1.39 kg y
- After cuts, 1 count in 400 keV window centered at 2039 keV ($0\nu\beta\beta$ peak)
- Projected background rate is $5.1^{+8.9}_{-3.2}$ c/(ROI t y) for a 2.9 keV ROI, (68% CL).
- Background index of 1.8×10^{-3} c/(keV kg y)
- Analysis cuts are still being optimized.
Detector Low-energy Thresholds and Noise (DS5)

$\text{FWHM}_{\text{Avg}} \approx 250 \text{ eV}$

$\text{Threshold}_{\text{Avg}} \approx 700 \text{ eV}$

Run 23450

Detector ID

FWHM or Threshold [keV]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 10 20 30 40 50 60

Detector ID
DS0: Low-energy spectrum

Controlled surface exposure of enriched material.

For the DEMONSTRATOR, the enriched detector ^{68}Ge rate is low enough that an X-ray delayed coincidence cut will not be necessary.

Significant reduction of cosmogenics in the low-energy region. Factor of a few better in DS1. Tritium is obvious and dominates in natural detectors below 20 keV. Efficiency below 5 keV is under study.

DS0 Natural 4.1 kg Enriched 10.06 kg

Low-Energy Searches for Physics Beyond SM

- Pseudoscalar dark matter
- Vector dark matter
- 14.4-keV solar axion
- $e^- \rightarrow 3\nu$
- Pauli Exclusion Principle
Results from the Majorana Demonstrator

DS0: Low-energy spectrum

 Controlled surface exposure of enriched material.

For the DEMONSTRATOR, the enriched detector ^{68}Ge rate is low enough that an X-ray delayed coincidence cut will not be necessary.

Significant reduction of cosmogenics in the low-energy region. Factor of a few better in DS1. Tritium is obvious and dominates in natural detectors below 20 keV. Efficiency below 5 keV is under study.

Low-Energy Searches for Physics Beyond SM

- Pseudoscalar dark matter
- Vector dark matter
- 14.4-keV solar axion
- $e^- \rightarrow 3\nu$
- Pauli Exclusion Principle

Pseudoscalar axion-like particle dark matter coupling
Majorana Demonstrator Summary

- The 76Ge enriched point contact detectors developed by Majorana have attained the best energy resolution (2.4 keV FWHM at 2039 keV) of any $\beta\beta$-decay experiment.
 - They provide excellent pulse shape discrimination reduction of backgrounds.
 - At low energies have sub-keV energy thresholds and excellent resolution allowing the Demonstrator to perform sensitive test in this region for physics beyond the standard model.

- The Demonstrator’s initial backgrounds are amongst the lowest backgrounds in the ROI achieved to date (approaching to GERDA’s recent best value). Attained by development and selection of ultra-low activity materials and low mass designs.

- Combining the strengths of GERDA and the Majorana Demonstrator, the LEGEND Collaboration is moving forward with a ton-scale 76Ge based experiment. Based on the successes to date, LEGEND should be able to reach the backgrounds (~0.1 c/(ROI t y)) and energy resolution necessary for discovery level sensitivities in the inverted ordering region.
3σ Discovery: Exposure vs. Background

\[\text{IO min. 3σ DL Req. Exposure [ton-years]} \]

- \(^{76}\text{Ge} (87\% \text{ enr.})\)
- \(^{136}\text{Xe} (90\% \text{ enr.})\)
- \(^{130}\text{Te} (\text{nat.})\)

Background [c/ROI-t-y]

- \(10^{-4}\)
- \(10^{-3}\)
- \(10^{-2}\)
- \(10^{-1}\)
- \(1\)
- \(10\)
- \(10^2\)
- \(10^3\)

DL Req. Exposure [ton-years]

- \(10\)
- \(10^2\)

- \(10^3\)

\(\sigma\)

Experiments:
- GERDA-II (PRL 2013)
- CUORE-0 (PRL 2015)
- NEMO-3 (\(^{100}\text{Mo, PRD 2015}\))
- CUORE-I (PRL 2013)
- NEXT 100 goal
- GERDA-I (Nu16)
- MAJORANA DEMONSTRATOR (CD-4)

J. Detwiler

Results from the MAJORANA DEMONSTRATOR

XVII Int. Workshop on Neutrino Telescopes

March 15, 2017

24
Module and Shield Details

- Calibration System
- Thermosyphon
- Upper Veto
- Poly Shield
- Cryostat
- Keyed Pb Stacks
- Air Bearing Transport
- Preamps/HV Distribution
- Vacuum System

Results from the MAJORANA DEMONSTRATOR
4850’ level, SURF, Lead SD
Clean room conditions
Muon flux: $5 \times 10^{-9} \mu/cm^2 s$

(arXiv:1602.07742)
Cosmic ray exposure minimized throughout all processes
Typical sea-level equivalent exposure is about 35 d for the enriched detectors.
DEMONSTRATOR Electroforming Cu

Insertion of mandrel into EF bath

Electroforming Baths in TCR

Inspection of EF copper on mandrels

“Good” Mandrel

“Poor” Mandrel with large nodule growth
DEMONSTRATOR Cables and Connectors

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Biased</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DS3+DS4</td>
<td>Det (kg)</td>
<td>Active (kg)</td>
</tr>
<tr>
<td>Total</td>
<td>44.1</td>
<td>40.3 ± 0.7</td>
<td>58</td>
</tr>
<tr>
<td>Enriched</td>
<td>29.7</td>
<td>27.4 ± 0.4</td>
<td>35</td>
</tr>
<tr>
<td>Natural</td>
<td>14.4</td>
<td>12.9 ± 0.3</td>
<td>23</td>
</tr>
</tbody>
</table>

- 44 of the 58 installed detectors are operating
- Problems with non-operating detectors
 - 7 associated with the signal connectors that are located on the cryostat cold plate or with damaged low mass front end boards.
 - 7 detectors cannot be biased either because of problems with the HV cables, connections, or in one instance a likely detector problem.
- Upgrade underway
 - “Fuzz buttons” for signal connectors.
 - HV cable study in progress
Ge Processing and Recovery

- **Reduction & Zone refining**: 98.7% yield of > 47 Ohm-cm Ge from 42.5 kg of \(\text{enrGe}\) (61.7 kg of \(\text{GeO}_2\))

- **ORTEC manufactured**: 30 \(\text{enrGe}\) detectors, 25.3 kg of mass.
 - 64.4% yield of detectors, 3.22 kg of > 47 Ohm-cm Ge material not used,

- **Recovered Ge**: from processing det. manufacturing waste (NSF suppl. funding)
 - Reprocessed 8.4-kg of “scrap”
 - effluent, kurf, and 2.87 kg of metal from detector manufacturer reject.
 - Recovered 5.87 kg of Ge with >47 Ohm-cm.

- The 5.87 kg was combined with 3.22 kg of Ge material to provide 9.1 kg of Ge > 47 Ohm-cm. ORTEC manufactured 5 additional detectors with 4.4 kg mass.

- **Final yield of detectors**: 74.5%
 - unused \(\text{enrGe}\) inventory: 1.49 kg (crystal) and 1.15 kg (zone refined).
MJD Materials Assay

- Assay of samples from all materials used in the DEMONSTRATOR.
 - Radiometric, NAA, & ICP-MS techniques.
- By necessity have developed world’s most sensitive ICP-MS based assay techniques for U and Th in Cu (Original MJD Goal: <0.3 µBq/kg for U & Th)
 - Current MDL (method detection limits) with iridium anode improvements
 - U decay chain 0.1 µBq 238U/kg
 - Th decay chain 0.1 µBq 232Th/kg
 - Sensitivities with ion exchange copper sample preparation (MDL study)
 - U decay chain <0.13 µBq 238U/kg
 - Th decay chain <0.034 µBq 232Th/kg

Evaluation of iridium electrodes following copper sample preparation

NIM A 775 (2015) 93-98
DEMONSTRATOR Detector Strings

$^{\text{Nat}}$Ge BEGe PPC detector in MJD mount

String with 5 $^{\text{Nat}}$Ge BEGe PPC detectors

Cable Management System

Loading string into string test cryostat in Glove Box

Results from the MAJORANA DEMONSTRATOR