March 13, 2017@Neutrino Telescopes in Venice

K2K & T2K Experiment

1

T. Nakaya (Kyoto) for

Koichiro Nishikawa and the K2K and T2K Collaboration

K2K & T2K Experiment

T2K (2009~) 295 km

Tokai

KEK

東海村

Kamioka 250 km

K2K (1999~2005)

K2K Experiment

- · 1995: K2K Proposal
- 1999: Data taking started
- · 2002: Indication of Neutrino Oscillations
- · 2004: Measurement of Neutrino Oscillations
- · 2005: Data taking finished.

T2K Experiment

- · 2000-2001: JHFnu LOI (base of the T2K proposal)
- · 2004: Construction Started
- · 2009: First Neutrino Beam
- · 2011: Indication of electron neutrino appearance
- · 2013: Observation of electron neutrino appearance
- · 2016: A hint of neutrino CPV

The Eve of K2K/T2K 1980's-2000

Koichiro Nishikawa 2016.1.28 @Breakthrough prize celebration

T2K meeting in January 28, 2016

The Eve of K2K/T2K 1980's-2000

Koichiro Nishikawa 2016.1.28 @Breakthrough prize celebration

• 1950's MNS-P

- 1988 Kamiokande atmospheric anomaly
- 1991 SK start construction
- 1995 K2K proposal
- 1995 A possible experiment at the new accelerator
- 1996 SK construction completed
- 1998 Takayama conference
- 1999 K2K beam line construction completed
- 2005 K2K completed
- 2000 T2K LOI
- 2001 J-PARC approved
- 2005 T2K Proposal
- 2009 T2K beam line construction completed
- 2012 v_e appearance

1980's Long / Short Baseline A motivation of short baseline

Critical mass density of Universe ~ 5000 eV/cm³ (flat curvature)

	number density (/cm ³)	mass (eV)	mass density (eV/cm ³)		
Nucleon	10-7	10 ⁹	100		
neutrino	100 / flavor	1~10	3~3000		
L(km)/E(GeV) ~ 1					

Table-4AcceleratorFiducial TonnageNo. of Charged- Current Events/107secOscillation Probability $\Delta m^2 = 10^{-2} eV^2$ $\sin^2 2\theta = 1.0$ KEK-PS22,000 ton 500^* 65% 5% CERN-SPSBNL-AGS6,300 ton $10,000^{**}$ 50% 5% CERN-SPSI J,000 ton -> ?2,000*** 50% 50% **Assumed x5 intensity upgrade *** 43% **Assumed x5 intensity upgrade *** Distance of 24km is assumed ****Actually I may be realistic. *****Construction of a new detector (15-20kton) is proposed.Possible new accelerator in near future Is it worthwhile to do in Japan?AcceleratorDetector $E/L(GeV/km)_{\sim} \Delta m^2$ KEK-PSSuper Kamiokande $2/250=8x10^{-3}$				
AcceleratorFiducial TonnageNo. of Current Events/107secOscillation Probability Events/107secKEK-PS22,000 ton 500^* 65% SNL-AGSBNL-AGS6,300 ton10,000** 5% CERN-SPS15,000 ton<2,000**** 50% SO%FNAL-MI1,000 ton-> ?2,000*****Assumed x5 intensity upgrade ***Actually I may be realistic.****Construction of a new detector (15-20kton) is proposed.Possible new accelerator in near future Is it worthwhile to do in Japan?AcceleratorDetector $E/L(GeV/km) \sim \Delta m^2$ KEK-PSSuper Kamiokande $2/250=8x10^{-3}$			Table-4	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	Accelerator	Fiducial Tonnage	No. of Charged- Current Events/10 ⁷ sec	Oscillation Probability
$sin^{2}20=1.0$ KEK-PS 22,000 ton 500* 65% BNL-AGS 6,300 ton 10,000** 5% CERN-SPS 15,000 ton <2,000*** 50% FNAL-MI 1,000 ton->? 2,000**** 43% * Assumed x5 intensity upgrade *** Distance of 24km is assumed *** This estimate is based on occupation of 100% of the beam time. Actually 1 may be realistic. **** Construction of a new detector (15-20kton) is proposed. Possible new accelerator in near future Is it worthwhile to do in Japan? Accelerator Detector $E/L(GeV/km) \sim \Delta m^2$ KEK-PS Super Kamiokande $2/250=8x10^{-3}$				$\Delta m^2 = 10^{-2} \text{ eV}^2$
KEK-PS22,000 ton 500^* 65% 5% BNL-AGS6,300 ton $10,000^{**}$ 5% $CERN-SPS$ CERN-SPS15,000 ton $<2,000^{***}$ 50% FNAL-MI1,000 ton->?2,000^{****} 43% **Assumed x5 intensity upgrade ***This estimate is based on occupation of 100% of the beam time. may be realistic. ****Actually 1 may be realistic. **** Construction of a new detector (15-20kton) is proposed.Possible new accelerator in near future ls it worthwhile to do in Japan?AcceleratorDetector $E/L(GeV/km)\sim \Delta m^2$ KEK-PSSuper Kamiokande $2/250=8x10^{-3}$				$\sin^2 2\theta = 1.0$
KEK-PS22,000 ton 500^* 65% BNL-AGS6,300 ton10,000** 5% CERN-SPS15,000 ton $<2,000^{***}$ 50% FNAL-MI1,000 ton-> ? $2,000^{****}$ 43% *Assumed x5 intensity upgrade***Distance of 24km is assumed****This estimate is based on occupation of may be realistic. 100% of the beam time.****Construction of a new detector (15-20kton) is proposed.Possible new accelerator in near future Is it worthwhile to do in Japan?AcceleratorDetector $E/L(GeV/km)\sim \Delta m^2$ KEK-PSSuper Kamiokande $2/250=8x10^{-3}$				
BNL-AGS $6,300$ ton $10,000^{**}$ 5% CERN-SPS $15,000$ ton $<2,000^{***}$ 50% FNAL-MI $1,000$ ton-> ? $2,000^{****}$ 43% *Assumed x5 intensity upgrade***Distance of 24km is assumed***This estimate is based on occupation of 100% of the beam time.may be realistic.****Construction of a new detector (15-20kton) is proposed.Possible new accelerator in near future Is it worthwhile to do in Japan?AcceleratorDetector $E/L(GeV/km) \sim \Delta m^2$ KEK-PSSuper Kamiokande $2/250=8x10^{-3}$	KEK-PS	22,000 ton	500*	65%
CERN-SPS15,000 ton $<2,000^{****}$ 50%FNAL-MI1,000 ton-> ?2,000^{****}43%*Assumed x5 intensity upgrade**Distance of 24km is assumed***This estimate is based on occupation of 100% of the beam time.Actually 1may be realistic.********Construction of a new detector (15-20kton) is proposed.Actually 1Possible new accelerator in near future Is it worthwhile to do in Japan?AcceleratorDetector $E/L(GeV/km)_{\sim} \Delta m^2$ KEK-PSSuper Kamiokande $2/250=8x10^{-3}$	BNL-AGS	6,300 ton	10,000**	5%
FNAL-MI1,000 ton-> ?2,000****43%*Assumed x5 intensity upgrade**Distance of 24km is assumed***This estimate is based on occupation of 100% of the beam time.Actually 1may be realistic.********Construction of a new detector (15-20kton) is proposed.Actually 1Possible new accelerator in near future Is it worthwhile to do in Japan?AcceleratorDetectorE/L(GeV/km)~ Δm²KEK-PSSuper Kamiokande2/250=8x10-3	CERN-SPS	15,000 ton	<2,000***	50%
 * Assumed x5 intensity upgrade ** Distance of 24km is assumed *** This estimate is based on occupation of 100% of the beam time. Actually 1 may be realistic. **** Construction of a new detector (15-20kton) is proposed. Possible new accelerator in near future Is it worthwhile to do in Japan? Accelerator Detector E/L(GeV/km)~ Δm ² KEK-PS Super Kamiokande 2/250=8x10 ⁻³	FNAL-MI	1,000 ton > ?	2,000****	43%
Possible new accelerator in near future Is it worthwhile to do in Japan?AcceleratorDetectorE/L(GeV/km)~ Δm²KEK-PSSuper Kamiokande2/250=8x10-3	*** This es may be realistic **** Construc	timate is based on occupa ction of a new detector (1	ation of 100% of the be 5-20kton) is proposed.	eam time. Actually 1/
AcceleratorDetector $E/L(GeV/km) \sim \Delta m^2$ KEK-PSSuper Kamiokande $2/250=8x10^{-3}$	F 	Possible new ac s it worthwhile	celerator in nea to do in Japan?	ar future
KEK-PS Super Kamiokande 2/250=8x10 ⁻³	Accelerator	Detector	E/L(G	$eV/km) \sim \Delta m^2$
	KEK-PS	Super Kam	iokande 2/250=	=8x10-3

ICARUS

 $8/732 = 1.1 \times 10^{-2}$

CERN-SPS

K2K proposal

Feb.14,1995 Revised Feb.24,1995 Revised Apr. 4,1995

Proposal for a Long Baseline Neutrino Oscillation Experiment, using KEK-PS and Super-Kamiokande

Abstract

We propose an experiment to draw a definite conclusion on the possibilities of neutrino oscillations with squared mass differences Δm^2 around 10^{-2} eV^2 which has been indicated by the Kamiokande group and by other undeground experiments (IMB, SOUDAN-II) analyzing atmospheric neutrinos. The experiment uses a well-defined muon neutrino (v_{μ}) beam produced at the KEK-PS and three detectors, including the existing Super-Kamiokande detector. The experiment will be sensitive to the v_{μ} -> v_{e} and v_{μ} -> v_{τ} oscillations, Δm^2 >3x10⁻³ eV² and sin²2 θ >0.1, at more than the 3 σ confidence level. The experimental methods, accelerator modification, schedule and cost estimates are described.

US-Japan collaboration Proposed as a joint project of ICRR, KEK and INS

Neutrino Oscillation Experiment with 50 GeV-PS

Koichiro Nishikawa 1995.9.26 T2K origin

- **1** Implications of Neutrino mass
- 2 Neutrino Oscillation and Physics of Leptons
- **3 Present Near Future Future**
- 4 Neutrino Beam with 50 GeV Protons
 - 4-1 Over-view
 - 4-2 Neutrino Beam
 - 4-3 Understanding Beam
 - **4-4 Discovery Potential**
 - 4-5 Schedule

T2K LOI

Letter of Intent: A Long Baseline Neutrino Oscillation Experiment using the JHF 50 GeV Proton-Synchrotron and the Super-Kamiokande Detector

February 3, 2000

JHF Neutrino Working Group

Y. Itow¹, Y. Obayashi, Y. Totsuka Institute for Cosmic Ray Research, University of Tokyo, Tanashi, Tokyo 188-8502, Japan

Y. Hayato, H. Ishino, T. Kobayashi², K. Nakamura, M. Sakuda Inst. of Particle and Nuclear Studies, High Energy Accelerator Research Org. (KEK), Tsukuba, Ibaraki 305-0801, Japan

T. Hara Department of Physics, Kobe University, Kobe, Hyogo 657-8501, Japan

T. Nakaya³, K. Nishikawa⁴ Department of Physics, Kyoto University, Kyoto 606-8502, Japan

T. Hasegawa, K. Ishihara, A. Suzuki Department of Physics, Tohoku University, Sendai, Miyagi, 980-8578, Japan

¹Super Kamiokande Contact Person: itow@suketto.icrr.u-tokyo.ac.jp

 $^{^2 \}rm Neutrino Beam Contact Person: kobayasi@neutrino.kek.jp$

³Near Detector Contact Person: nakaya@scphys.kyoto-u.ac.jp

⁴Organizer: nishikaw@neutrino.kek.jp

New idea of off-axis beam

1994 TRIUMF KAON factory workshop

Paper presented at the 9th Lake Louise Winter Institute, Lake Louise, Feb. 20-26

TRI-PP-94-34 June 1994

Table 1: Members of the TRIUMF Neutrino Working Group.

seen, there will be no ambiguities in its interpretation.

BNL long baseline proposal (not realized) 17

12

10⁴ off-exia

3.0° off-axia

Strong leadership and broad physics view of the Directorates and trust from funding agency

Prof. Hirotaka Sugawara and the late Prof. Yoji Totsuka

Your choice

Known unknown

result from phenomena which are recognized, but poorly understood.

Unknown unknown

are phenomena which cannot be expected because there has been no prior experience or theoretical basis for expecting the phenomena.

Bruno Pontecorvo prize for 2016

- Nihikawa-san is awarded the international Bruno Pontekorvo Proze with Prof. WANG Yifang and Prof. KIM Soo-Bong.
 - For their outstanding contributions to the study of the neutrino oscillation phenomenon and to the measurement of the Theta13 mixing angle in the Daya Bay, RENO and T2K experiments.

Neutrino Oscillation studies with accelerator neutrino beams

- Intensity of the Proton Accelerator
 - · K2K: 8×10¹² Protons/Pulse @12GeV
 - T2K: 2×10¹⁴ Protons/Pulse @30GeV
- Understanding of the neutrino beam
 - \cdot Precise beam monitoring with hadron production data from
 - · K2K: CERN HARP Experiment
 - · T2K: CERN NA61 Experiment
- Understanding of the neutrino interactions with near detectors:
 - $\cdot\,$ K2K: 1kton WC, SciFi and SciBar detectors
 - · T2K: INGRID and ND280 detectors (ND280 upgrade for the future)
- \cdot Understanding of the detector
 - Excellent PID and particle counting with novel reconstruction algorithms

K2K results: PRD 74, 072003 (2006)

· Measurement of ν_{μ} disappearance

- 112 neutrino events observed with 158+9.2-8.6 expected events without oscillations.
- · 0.00015% (4.3 σ)

Initial T2K results: PRL 107, 041801 (2011), PRL 112, 061802 (2014)

• In 2011, Indication of electron neutrino appearance (non-zero θ_{13}) with 6 electron events over 1.5±0.3 background events corresponding to 2.5 σ .

· In 2014, Observation of electron neutrino appearance with 28 events over 4.92 ±0.55 background events corresponding to 7.3 σ .

Current status and future of T2K

(a talk will be given by Dr. IZMAYLOV Alexander tomorrow)

- A hint of neutrino CP violation with 90% CL in 2016
 - arXiv: 1701.00432 [hep-ex] accepted by PRL
- · T2K-II for search for CP violation with 3 σ (T2K-II)
 - Stage 1 status in J-PARC PAC

J-PARC Neutrino Beam and the detectors Very Intense Neutrino Beam for $(\overline{\nu})_{\mu} \rightarrow (\overline{\nu})_{e}$ study

Super-K

22.5 kton (Super-K, ~2026)
190(×2) kton (Hyper-K, 2026~)

My comments for a summary

- Thank Nishikawa-san with his leadership for the K2K and T2K experiments.
- These excellent results are achieved with great efforts by all K2K and T2K collaborators.
- We are in an exciting stage with neutrino oscillations to explore CP violation.
- Let's keep going forward with more measurements and more observations by current and new experiments.