Imperial College London

Sterile Neutrino Search at Reactors

Antonin Vacheret Neutrino Telescope 2017 17th March 2017, Venice, Italy

Outline

- Sterile neutrino oscillation
- Antineutrino spectrum measurements and recent limits
- Very short baseline experiments

The sterile neutrino hypothesis

- Additionnal mass state participating to mixing give simple explanation of reactor antineutrino and Gallium anomalies
- not detectable through weak interaction, only indirect measurement possible via oscillation
- small correction from 3 x 3 neutrino mixing to explain active neutrino oscillation data
- Best fit gives $\Delta m^2 \sim 1.73 \text{ eV}^2$ and $\sin^2(2\theta) \sim 0.1$
- 3+1 model simplest
 - · additional sterile neutrino allowed

 $P_{ee} \sim 1 - sin^2 (2\theta_{14}) sin (1.267 \Delta m_{14}^2 L[m]/E[MeV])$

Sensitivity to a new neutral state

- Sterile neutrino oscillation in L and E
- Sensitivity strongly depends on stats and S:B
- large coverage in L/E possible with good energy resolution
- A strong test depends on the experimental strategy
 - optimum baseline
 - near-far ratio to cancel normalisation errors
 - control of normalisation allows for better limit but harder to achieve

Sensitivity to a new neutral state

- Sterile neutrino oscillation in L and E
- Sensitivity strongly depends on stats and S:B
- large coverage in L/E possible with good energy resolution
- A strong test depends on the experimental strategy
 - optimum baseline
 - near-far ratio to cancel normalisation errors
 - control of normalisation allows for better limit but harder to achieve

2014: Reactor spectrum distortions

- Energy spectrum distortion seen by all three reactor experiments with high significance (dubbed "the bump")
- Amplitude of effect correlated with reactor power
- Cancels in near-far ratio

NEOS

Reactor Unit 5, Hanbit NPP in Younggwang, Korea

2.8 GWth commercial reactor

- Core size: 3.1 m diameter and 3.8 m height
- Low enriched uranium fuel (4.6% 235 U)

Detector in Tendon Gallery

- ~24 m baseline and ~20 m.w.e

overburden

- Active target (Liquid Scintillator, LS)
- Homogeneous, 1000 L volume
- 0.5% Gd-loaded LS
- LAB- and DIN-based LS (9:1): improved PSD
- 38x R5912 8" PMTs
- Muon veto planes

Detector in Tendon Gallery

- Cylindrical stainless steel tank with PTFE reflector

NEOS result

Data taking: Aug 2015 - May 2016

- Reactor-on period: 180 days
- Reactor-off period: 46 days
- S:B ~ 23
- 5% energy resolution at 1
 MeV

Comparison with Huber and Mueller's flux model

- 5 MeV excess is clear
- Disagreement around 1 MeV

NEOS result

Data taking: Aug 2015 - May 2016

- Reactor-on period: 180 days
- Reactor-off period: 46 days
- S:B ~ 23
- 5% energy resolution at 1
 MeV

Comparison with Huber and Mueller's flux model

 Better agreement with Daya Bay spectrum

NEOS Sterile Analysis

- Use Daya Bay spectrum to subtract flux distortions
- No significant effect found, RAA found to not fit well current data either
- Can significance be improved with subtraction from RENO data ?

Isotopic composition study all data

- Look at previous data to infer which isotope could be causing the reactor anomaly if due to miscalculation of flux
- Deviations in cross section per fission for ²³⁵U at 2.2 sigma
- Not much sensitivity on other isotopes

C. Giunti, 1608.04096

NEOS-Daya Bay isotopic composition study

P. Huber 1609.03910

- Combined analysis of NEOS and DAYA BAY spectrum data
- based on double ration to cancel flux shape related uncertainty
- Able to reject Pu isotopes to be sole responsible for the bump at 99% confidence level

Recent rate measurements

- · Precision of results impacted by adverse conditions and show difficulty of measuring close to reactors
- Neutrino-4 currently taking more data and working on systematics

Very Short Baseline (VSBL) experiments

- Latest data sets are not yet conclusive about the (non-)existence of light sterile neutrino but the phase space is closing fast
 - only experiments at ~ 10 m from reactor can really put strong constraints in the above 1 eV² region
- Since the 2011 reactor anomaly more concerns about the flux model have emerged with the identification of distortion
 - Is the ²³⁵U spectrum the culprit?
 - motivates even more the need for measurement at research reactors using highly enriched ²³⁵U fuel
 - Older data is patchy and not very precise
 - key ingredient for predicting antineutrino flux

Quantities	SBL @ PWR	VSBL @ RR	
L/E (m/MeV)	100-1000	1-10	Compact experiment
Fiducial Mass	7	1-2	-
Rates (nu/day)	1-100	1000	
S:B	20-50:1	3-1:1	
Overburden	50-850	5-20	
Thermal Power uncertainty	0.5%	2-5%	
Core composition	²³⁵ U, ²³⁸ U, ²³⁹ PU, ²⁴¹ PU	²³⁵ U	

Quantities	SBL @ PWR	VSBL @ RR	
L/E (m/MeV)	100-1000	1-10	
Fiducial Mass	7	1-2	
Rates (nu/day)	1-100	1000	
S:B	20-50:1	3-1:1	Challenging background environment
Overburden	50-850	5-20	
Thermal Power uncertainty	0.5%	2-5%	•
Core composition	²³⁵ U, ²³⁸ U, ²³⁹ PU, ²⁴¹ PU	235U	

Quantities	SBL @ PWR	VSBL @ RR
L/E (m/MeV)	100-1000	1-10
Fiducial Mass	7	1-2
Rates (nu/day)	1-100	1000
S:B	20-50:1	3-1:1
Overburden	50-850	5-20
Thermal Power uncertainty	0.5%	2-5%
Core composition	²³⁵ U, ²³⁸ U, ²³⁹ PU, ²⁴¹ PU	235U

Quantities	SBL @ PWR	VSBL @ RR
L/E (m/MeV)	100-1000	1-10
Fiducial Mass	7	1-2
Rates (nu/day)	1-100	1000
S:B	20-50:1	3-1:1
Overburden	50-850	5-20
Thermal Power uncertainty	0.5%	2-5%
Core composition	²³⁵ U, ²³⁸ U, ²³⁹ PU, ²⁴¹ PU	235U

VSBL reactor experiments

Very Short baseline experiment

Experiment	Tech	Reactor	Power/ Fuel	P [MW]	L (m)	M (tonnes)
STEREO (Fr/ Ger)	LS+Gd	ILL-HFR	235U	57	9-11	2
Neutrino-4 (Ru)	LS+Gd	SM3	²³⁵ U	100	6-12	1.5
PROSPECT (US)	LS + ⁶ Li	ORNL HFIR	235U	85	7-18	2
SoLid (UK/B/Fr)	PVT & ⁶ LiF:ZnS	SCK • CEN BR2	235U	45-80	6-9	2
DANSS (Ru)	PS + Gd	KNPP	²³⁵ U, ²³⁸ U, ²³⁹ Pu, ²⁴¹ Pu	3000	9.7-12.2	0.9
NuLat (US)	⁶ Li doped PS	NIST	²³⁵ U	25	6-10	1

L

Segmentation, segmentation, segmentation...

- Detector segmentation provides relative measurement along oscillation length
 - · combined with energy measurement is only way to demonstrate oscillation !
- Finer segmentation provides additional capability to reject background and select positron energy

buffer cells around the target 2000 L of Gd loaded LS

dimension 15 x 15 x 120 cm3 3000 L of Li6 loaded LS

1.6-2 tons PVT+LiF:ZnS

STEREO

- Detector installed at 8.9-11m of ILL-HFR
- Overburden 15 mwe against muons
- Challenging reactor environment requiring external shielding in front and between other experiments
 - Detector shielding against fast neutrons, gamma-rays and magnetic field
 - Muon veto umbrella detector
- Installation completed in September 2016

Commissioning

First source calibration done :

- ~280 PEs/MeV in Target cells as expected
- Small top-bottom effect on the detector response : 2% of differences

Buffer leak in cell 4 and one short gamma-catcher cell :

- Decrease by a factor 2.5 of the light collection
- LS and buffer oil chemically compatible

Related systematics under studies

Data taking already started : after 10 days of commissioning

- Acquisition rate of $\sim 3\,\rm kHz$ with $\sim 1.8\%$ deadtime at ${\sim}250$ keV threshold
- Single rate in neutrino window ($2 \text{ MeV} < E_{vis} < 8 \text{ MeV}$) : ~14 Hz

T. Salagnac, AAP 2016

Status and sensitivity

- Detector has been running since November 2016
 - short commissioning phase
- Data taking until March 2017
 - 80 days reactor ON
- Results coming soon

PRSPECT sensitivity to 3+1 model

Osc./Unos

0.980.96

0.94

0.920.90

A model independent experimental approach to test for oscillation of eVscale neutrinos

Phase I = AD-I, 3 years Phase II = AD-I + AD-II, 3+3 years

Objectives 4σ test of best fit after 1 year $>3\sigma$ test of favored region after 3 years 5σ test of allowed region after 3+3 years

PROSPECT spectrum measurement

HFIR Reactor at ORNL

Compact Reactor Core

Power: 85 MW Fuel: HEU (²³⁵U) Core shape: cylindrical Size: h=0.5m r=0.2m Duty-cycle: 41%

- Established on-site operation
- User facility, easy 24/7 access
- Exterior access at grade
- Full utility access, incl. internet

PROSPECT R&D

PROSPECT-0.1 Characterize LS Aug 2014-Spring 2015

PROSPECT-2 Background studies Dec 2014 - Aug 2015

12.5 length 1.7 liters ⁶LiLS

PROSPECT-20 Segment characterization Scintillator studies Background studies Spring/Summer 2015

PROSPECT-50 Baseline design prototype Spring 2016

PROSPECT AD-I 10 Physics measurement 2017

10x12 segments 1.2m length ~3 tons ⁶LiLS

multi-layer shielding

local reactor shielding

SoLid

ArXiv:1703.01683

- SoLid baseline : 6-9m from the BR2 MTR reactor at SCK CEN mol, Belgium
 - 5-6x movable modules on rail system 1.6-2 tonnes fiducial mass
 - Refrigirated container to limit impact of MPPC sensors dark noise
 - CROSS calibration robot for absolute efficiency and energy scale calibration at % level (207Bi, 60Co, 22Na, AmBe, 252Cf)
 - Low Z external shielding based on H_20 bricks and PE slabs.
 - High Z gamma-ray shielding in front of beam ports, outside enclosure

Geant4 model of SoLid at BR2

Detector Modules and rail CROSS source calibration robot Water Wall system

Refrigirating container

3D segmented composite detector

- composite /dual scintillator detector element :
 - 5 cm x 5 cm x 5 cm PVT cube segmentation to contain positron energy and localise interaction
 - Layer of LiF:ZnS(Ag) for neutron detection close to interaction

¹
⁴He
$$^{6}Li$$

 $E_{tot} = 4.78 \text{ MeV}$

- WLS fibre to collect both scintillation light in X and Y direction
- each cube voxel optically separated from each other by reflective coating
- SiPM to read out fibre signal

SoLid R&D 2015-16

SoLid Module 1 (SM1) **288kg** 2 304 voxels, 288 chan. 9 detector planes

- Prototype SM1 system deployed to validate technology
 - 3 days Reactor ON, 1.5 month OFF
 - mechanical design
 - neutron PID
 - target mass estimation dNp < 1%
 - uniformity of cube energy response < 1%
 - Stability at 1% level
 - measurement of IBD background

Imaging IBD events

SoLid status

- Entered construction phase in Octover 2016
 - · all parts ordered and received
- Electronics and trigger developments
- QA and calibration of planes starting this month
- Data taking expected this summer

Summary

- The search for sterile neutrino with mass ~ 1 eV has began at research reactors
- new dedicated experiments have started taking data or are about to come online this year
 - compact segmented detectors provide full coverage of L/E oscillation region
 - probing oscillation lengths not reachable by SBL experiments
- Since the re-evaluation of the reactor flux in 2011 many more questions about the spectrum have surfaced
 - high statistical samples of antineutrino spectra from 235U core will be available soon !
 - fix the lack of data for this crucial flux ingredient
 - measurements at different reactor will give welcome complementarity for a more robust interpretation of the data
- can confirm or reject sterile neutrino hypothesis (3+1 model) with unprecendented precision
- will provide new constraints to the antineutrino flux model

Back up

Signal localisation

- Neutron capture efficiency uniform up to the edge of the detector
- Neutron capture one cube away from interaction gives directional sensitivity

SoLid Energy response calibration

SoLid Neutron trigger and data size

- Neutron pattern recognition in firmware
 - neutron rate is low: Rn ~ 7 Hz
- Buffer time ±500 us and ±2 planes around neutron
 - expect high detection efficiency above 70%
- Zero suppression threshold at 1.5 PA applied to other signals
 - · limit data size and storage
 - Detector cooling to 5 deg to reduce dark counts

SoLid Neutron ID and capture time

prompt to neutron capture time difference (AmBe source)

 Validated PID, neutron tranport simulation (MCNP & G4) and Li capture efficiency