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Outline

• Sterile neutrino oscillation 

• Antineutrino spectrum measurements and recent 
limits 

• Very short baseline experiments
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The sterile neutrino hypothesis

• Additionnal mass state participating to 
mixing give simple explanation of reactor 
antineutrino and Gallium anomalies  

• not detectable through weak interaction, 
only indirect measurement possible via 
oscillation 

• small correction from 3 x 3 neutrino mixing 
to explain active neutrino oscillation data 

• Best fit gives Δm
2

 ~ 1.73 eV
2

 and    
sin

2

(2θ) ~ 0.1   

• 3+1 model simplest 

• additional sterile neutrino allowed 
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antineutrino source detector

Δm2 ~ 1 eV2

νe → νs

Pee ~ 1 − sin2(2θ14)sin (1.267Δm142 L[m]/E[MeV]  )

3+1 model
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Sensitivity to a new neutral state
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•Sterile neutrino oscillation in L and E  

•Sensitivity strongly depends on stats and S:B 

•large coverage in L/E possible with good energy 
resolution 

•A strong test depends on the experimental strategy 

•optimum baseline 

•near-far ratio to cancel normalisation errors 

•control of normalisation allows for better limit 
but harder to achieve

Δm2=2.35 eV2 
 sin22θee = 0.165

[MeV]
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stats or Flux x mass 

•Sterile neutrino oscillation in L and E  

•Sensitivity strongly depends on stats and S:B 

•large coverage in L/E possible with good energy 
resolution 

•A strong test depends on the experimental strategy 

•optimum baseline 

•near-far ratio to cancel normalisation errors 

•control of normalisation allows for better limit 
but harder to achieve

Short baseline

~2% 

Short -intermediate

Very short baseline

Δm2=2.35 eV2 
 sin22θee = 0.165

[MeV]

Daya bay, D-Chooz, Reno

NEOS, DANSS

PROSPECT, SoLid,  
STEREO, NuLat,  

Neutrino-4



2014: Reactor spectrum distortions

• Energy spectrum distortion seen by all three reactor experiments with high 
significance (dubbed “the bump”) 

• Amplitude of effect correlated with reactor power 

• Cancels in near-far ratio
6

Eν ≃ Ee+ + mn - mp  

D-CHOOZ RENO DAYA BAY



NEOS
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2.8 GWth commercial reactor 

- Core size: 3.1 m diameter and 3.8 m height 

- Low enriched uranium fuel (4.6% 235U)  

Detector in Tendon Gallery  

- ~24 m baseline and ~20 m.w.e 

overburden  

- Active target (Liquid Scintillator, LS)  
- Homogeneous, 1000 L volume 
- 0.5% Gd-loaded LS  
- LAB- and DIN-based LS (9:1): improved 
PSD  
- 38x R5912 8” PMTs 
- Muon veto planes

- Cylindrical stainless steel 
tank with PTFE reflector  
-  



NEOS result

Data taking: Aug 2015 - May 
2016  

- Reactor-on period: 180 days 
- Reactor-off period: 46 days  

- S:B ~ 23  

• 5% energy resolution at 1 
MeV 

Comparison with Huber and 
Mueller’s flux model  

• 5 MeV excess is clear 
• Disagreement around 1 MeV 
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NEOS result
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Data taking: Aug 2015 - May 
2016  

- Reactor-on period: 180 days 
- Reactor-off period: 46 days  

- S:B ~ 23  

• 5% energy resolution at 1 
MeV 

Comparison with Huber and 
Mueller’s flux model  

• Better agreement with Daya 
Bay spectrum



NEOS Sterile Analysis

• Use Daya Bay spectrum to subtract flux distortions 

• No significant effect found, RAA found to not fit well current data either 

• Can significance be improved with subtraction from RENO data ?  
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Isotopic composition study all data
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• Look at previous data to infer which isotope could be causing the reactor 
anomaly if due to miscalculation of flux 

• Deviations in cross section per fission for 235U at 2.2 sigma 

• Not much sensitivity on other isotopes C. Giunti,  1608.04096



NEOS-Daya Bay isotopic composition study
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• Combined analysis of NEOS and 
DAYA BAY spectrum data  

• based on double ration to cancel 
flux shape related uncertainty 

•   Able to reject Pu isotopes to be 
sole responsible for the bump at 
99% confidence level

P. Huber 1609.03910 Daya Bay / M+H prediction
NEOS / M+H prediction

Double ratio  NEOS/Daya Bay

Correction to NEOS data



Recent rate measurements

• Precision of results impacted by adverse conditions and show difficulty of measuring close to reactors 

• Neutrino-4 currently taking more data and working on systematics
13

Neutrino-4 @ SM3 NUCIFER @ OSIRIS



Very Short Baseline (VSBL) experiments

• Latest data sets are not yet conclusive about the (non-)existence of 
light sterile neutrino but the phase space is closing fast 

• only experiments at ~ 10 m from reactor can really put strong 
constraints in the above 1 eV2 region 

• Since the 2011 reactor anomaly more concerns about the flux model 
have emerged with the identification of distortion  

• Is the  235U spectrum the culprit ?  

• motivates even more the need for measurement at research 
reactors using highly enriched 235U fuel 

• Older data is patchy and not very precise 

• key ingredient for predicting antineutrino flux 
14



Very Short Baseline (VSBL) vs SBL
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Quantities SBL @ PWR VSBL @ RR

L/E (m/MeV) 100-1000 1-10

Fiducial Mass 7 1-2

Rates (nu/day) 1-100 1000

S:B 20-50:1 3-1:1

Overburden 50-850 5-20

Thermal Power 
uncertainty  0.5% 2-5%

Core composition
235U,238U,

239PU,241PU
235U

Compact experiment



Very Short Baseline (VSBL) vs SBL
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Quantities SBL @ PWR VSBL @ RR

L/E (m/MeV) 100-1000 1-10

Fiducial Mass 7 1-2

Rates (nu/day) 1-100 1000

S:B 20-50:1 3-1:1

Overburden 50-850 5-20

Thermal Power 
uncertainty  0.5% 2-5%

Core composition
235U,238U,

239PU,241PU
235U

Challenging background  
environment



Very Short Baseline (VSBL) vs SBL
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Quantities SBL @ PWR VSBL @ RR

L/E (m/MeV) 100-1000 1-10

Fiducial Mass 7 1-2

Rates (nu/day) 1-100 1000

S:B 20-50:1 3-1:1

Overburden 50-850 5-20

Thermal Power 
uncertainty  0.5% 2-5%

Core composition
235U,238U,

239PU,241PU
235U

Normalisation 
precision limited



Very Short Baseline (VSBL) vs SBL
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Quantities SBL @ PWR VSBL @ RR

L/E (m/MeV) 100-1000 1-10

Fiducial Mass 7 1-2

Rates (nu/day) 1-100 1000

S:B 20-50:1 3-1:1

Overburden 50-850 5-20

Thermal Power 
uncertainty  0.5% 2-5%

Core composition
235U,238U,

239PU,241PU
235U

Single isotopic 
composition



VSBL reactor experiments
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Prospect - ORNL
Neutrino-4 - SM3

DANSS - KNPP

STEREO - ILL

SoLid - BR2

NEOS
NuLat - NIST

Funded / construction phase

Taking data

data taking / run completed



Very Short baseline experiment 
Experiment Tech Reactor Power/

Fuel P [MW] L (m) M (tonnes)

STEREO (Fr/
Ger) LS+Gd ILL-HFR 235U 57 9-11 2

Neutrino-4 (Ru) LS+Gd SM3 235U 100 6-12 1.5

PROSPECT (US) LS + 6Li ORNL 
HFIR

235U 85 7-18 2

SoLid (UK/B/Fr) PVT & 
6LiF:ZnS

SCK•CEN 
BR2

235U 45-80 6-9 2

DANSS (Ru) PS + Gd KNPP
235U,238U,

239Pu,
241Pu

3000 9.7-12.2 0.9

NuLat (US) 6Li doped PS NIST 235U 25 6-10 1



Segmentation, segmentation, 
segmentation…

• Detector segmentation provides relative measurement along oscillation length 

• combined with energy measurement is only way to demonstrate oscillation ! 

• Finer segmentation provides additional capability to reject background and select positron energy 
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STEREO PROSPECT SoLid

6x inner 1D cells 90 x 90 x 35 cm3 
buffer cells around the target 

2000 L of Gd loaded LS 

120x 2D LS unit segment  
dimension 15 x 15 x 120 cm3 

3000 L of Li6 loaded LS 

5-6x modules 2560 cubes 
dimension 5 x 5 x 5 cm3 
1.6-2 tons PVT+LiF:ZnS  



STEREO 
• Detector installed  at 8.9-11m of ILL-HFR  

• Overburden 15 mwe against muons 

• Challenging reactor environment requiring external shielding in 
front and between other  experiments  

• Detector shielding against fast neutrons, gamma-rays and 
magnetic field 

• Muon veto umbrella detector  

• Installation completed in September 2016
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Commissioning

23T. Salagnac, AAP 2016



Status and sensitivity

• Detector has been 
running since 
November 2016 

• short commissioning 
phase 

• Data taking until March 
2017  

• 80 days reactor ON 

• Results coming soon
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PROSPECT sensitivity to 3+1 model
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PROSPECT spectrum measurement
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HFIR Reactor at ORNL
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PROSPECT R&D
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SoLi∂
• SoLid baseline : 6-9m from the BR2 MTR reactor at SCK•CEN mol, Belgium  

• 5-6x movable modules on rail system  1.6-2 tonnes fiducial mass 

•  Refrigirated container to limit impact of MPPC sensors dark noise 

• CROSS calibration robot for absolute efficiency and energy scale 
calibration at % level (207Bi, 60Co, 22Na, AmBe, 252Cf) 

• Low Z external shielding based on H20 bricks and PE slabs.  

• High Z gamma-ray shielding in front of beam ports, outside enclosure
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Geant4 model of SoLid at BR2 Detector Modules and rail 

CROSS source calibration robot   
Water Wall system Refrigirating  

container

PE top shielding 

ArXiv:1703.01683



3D segmented composite detector
• composite /dual scintillator detector 

element :  

• 5 cm x 5 cm x 5 cm PVT cube 
segmentation to contain positron 
energy and localise interaction 

• Layer of LiF:ZnS(Ag) for neutron 
detection close to interaction 

• WLS fibre to collect both scintillation 
light in X and Y direction 

• each cube voxel optically separated 
from each other by reflective coating 

• SiPM to read out fibre signal

30

n

6Li
4He

3H

Etot = 4.78 MeV



SoLid R&D 2015-16
• Prototype SM1 system deployed to 

validate technology 
• 3 days Reactor ON, 1.5 month OFF 
•  mechanical design 
• neutron PID 
• target mass estimation dNp < 1% 
• uniformity of cube energy 

response < 1%  
• Stability at 1% level 

•  measurement of IBD background  
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80 cm 

• SoLid Module 1 (SM1)  
288kg 

2 304 voxels, 288 chan.  
9 detector planes 

80 cm 

~10x 

~100x 



Imaging IBD events
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prompt

delayed



SoLid status
• Entered construction phase in Octover 2016 

• all parts ordered and received 

• Electronics and trigger developments 

• QA and calibration of planes starting this month 

• Data taking expected this summer
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Gallium Anomaly 95% C.L.

Reactor Anomaly 95% C.L.

Global fit 95% C.L.

Global best fit

SoLid 95% C.L. - 150 days reactor on

SoLid 95% C.L. - 350 days reactor on

 C.L. - 350 days reactor onσSoLid 3

SoLid preliminary



Summary

• The search for sterile neutrino with mass ~ 1 eV has began at research reactors  

• new dedicated experiments have started taking data or are about to come online this year 

• compact segmented detectors provide full coverage of L/E oscillation region 

• probing oscillation lengths not reachable by SBL experiments 

• Since the re-evaluation of the reactor flux in 2011 many more questions about the spectrum 
have surfaced 

• high statistical samples of antineutrino spectra from 235U core will be available soon ! 

• fix the lack of data for this crucial flux ingredient  

• measurements at different reactor will give welcome complementarity for a more robust 
interpretation of the data 

• can confirm or reject sterile neutrino hypothesis (3+1 model) with unprecendented precision 

• will provide new constraints to the antineutrino flux model
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Back up



Signal localisation

• Positron energy contained in cube voxel  

• Neutron capture efficiency uniform up to 
the edge of the detector  

• Neutron capture one cube away from 
interaction gives directional sensitivity
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SoLi∂ Energy response calibration

• Energy response  
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Data

SoLid  
preliminary

• PVT response intercalibrated using muons 

• cube response equalised to better than 1% for majority of 
channels 

• stability over time of energy scale ~ 1% 



SoLi∂ Neutron trigger and data size
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• Neutron pattern recognition in firmware 

• neutron rate is low: Rn ~ 7 Hz  

• Buffer time ±500 us  and ±2 planes around neutron  

• expect high detection efficiency above 70%  

• Zero suppression threshold at 1.5 PA applied to 
other signals  

• limit data size and storage 

• Detector cooling to 5 deg to reduce dark 
counts AmBe test data



SoLi∂ Neutron ID and capture time

• Validated PID, neutron tranport simulation (MCNP & G4) and Li 
capture efficiency 
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