

XVII International Workshop on Neutrino Telescopes

13-17 March 2017 Venezia, Palazzo Franchetti - Istituto Veneto di Scienze, Lettere ed Arti

Project N. 320873 P.I. M. Pallavicini

StG N. 307184. P.I. T. Lasserre

The SOX experiment

Lea Di Noto

on behalf of the SOX collaboration

Istituto Nazionale Fisica Nucleare Sez. Genova -ITALY

Venezia, 16 th March 2017

Scientific motivations

The Standard Model of neutrino oscillations

$$\Delta m_{32}^2 \approx \Delta m_{31}^2 = 2.4 \cdot 10^{-3} \ eV^2$$

 $\Delta m_{12}^2 = 8 \cdot 10^{-5} \ eV^2$

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

$$\begin{bmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix} = \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4 \sum_{i>j} \text{Re}(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin^2\left(\frac{\Delta m_{ij}^2 L}{4E}\right) + 2 \sum_{i>j} \text{Im}(U_{\alpha i}^* U_{\beta i} U_{\alpha j} U_{\beta j}^*) \sin\left(\frac{\Delta m_{ij}^2 L}{2E}\right)$$

The anomalies

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$$

$$P(\overline{\nu_{\mu}} \rightarrow \overline{\nu}_{e})$$
 and $P(\nu_{\mu} \rightarrow \nu_{e})$

GalleX, SAGE

Reactors

cannot be explained by the same matrix

540 m

1.9 m - 0.6 m

10 -100 M

Appearance

Deficit

All of these hint to $\Delta m^2 \approx 1-10 \text{ eV}^2$ mass scale

The hypotesis of the sterile neutrinos

Combined analysis: 3+1 scenario

Giunti et al. (2013)

Kopp et al. arXiv: 1303:3011

Sterile neutrino properties

- no SM interactions
- no coupling with Z boson (LEP)
- mixing with active v's

$$P_{ee} = 1 - 4|U_{e4}|^2(1 - |U_{e4}|^2)\sin^2\left(\frac{\Delta m_{41}^2 L}{4E}\right) = 1 - \sin^2 2\theta_{ee}\sin^2\frac{\Delta m_{41}^2 L}{4E}$$

E=1-10 MeV \rightarrow L=E/ Δ m² =1-10 m

$$L_{osc}(m) = \frac{E(MeV)}{1.27\Delta m^2 (eV^2)}$$

Experimental requirements:

- → Precision on L (vertex recontruction and compact source dimension)
- → High sensitivity (low background, large scale detector)

Hunt the sterile neutrino

With accelerators to test the MiniBooNE and LSND signal

T₂K and MicroBooNE

MINOS-DayaBay

ν_μ disappearance

 $\Delta m_{14}^2 < 0.8 \ eV^2$ Arxiv:1607.01177 (2016)

With artificial source to test the Gallium anomaly

RICOCHET

37**A**r

SNO+

51**Cr (EC)**

BOREXINO-SOX

¹⁴⁴Ce-¹⁴⁴Pr

in 2018!

Others

ICeCube: from sterile neutrino induced matter effect in atmospheric neutrino

IceCube 1605.01990 (2016)

The SOX idea

Short neutrino Oscillation with BoreXino

A ¹⁴⁴Ce-¹⁴⁴Pr $\overline{\nu}_e$ source (100-150 kCi) under the Borexino detector at LNGS Laboratory

Signature signal of new sterile neutrinos:

- Deviation from 1/r² behavior of count rates
 ("disappearance technique")
- Direct observation of oscillation pattern ("waves")

The radioactive source

¹⁴⁴Ce→ ¹⁴⁴Pr +e⁻+ ∇e

long lived with low Q

 $^{144}Pr \rightarrow ^{144}Nd + e^{-} + \overline{v}e$

short lived with high Q above the IBD threshold

Activity: 100 -150 kCi $T_{1/2}$ =285 days

The Borexino detector

Built mainly, for solar neutrino: $\mathbf{v} + \mathbf{e} - \rightarrow \mathbf{v} + \mathbf{e} - \mathbf{v}$ in an organic liquid scintillator

Ultra-low radioactive background

- Spatial resolution: 12 cm @ 2 MeV
- Energy resolution: ~3.5% @ 2 MeV

Fiducial volume estimation: 0.7% for 7Be

See G. Bellini's talk

The Borexino detector

The anti-neutrino detection by a coincidence measurement

- distant **reactors**: ~10 ev/y in 300 t
- accidental background: << 1 ev/y

SOX is background free

expected signal: > 104 events in 1.5 y

Ultra-low radioactive background

- Spatial resolution: 12 cm @ 2 MeV
- Energy resolution: ~3,5% @ 2 MeV

New calibration with many radioactive sources (next October)

Two types of analysis

The rate analysis

We look for a deviation from 1/r2 behaviour

It depends mainly of $\theta_{\rm ee}$ the amplitude of the oscillation

$$P_{ee} = 1 - \sin^2 2\theta_{ee} \sin^2 \frac{\Delta m_{41}^2 L}{4E}$$

$$\mathbf{N_0}(\mathbf{l},\mathbf{T_1},\mathbf{T_2}) = \mathbf{n_e} \ \Phi(\mathbf{l}) \ \mathbf{V}(\mathbf{l}) \ \mathbf{P_{ee}}(\mathbf{l},\mathbf{E}) \int_{\mathbf{T_1}}^{\mathbf{T_2}} \frac{\mathbf{d}\sigma_e(\mathbf{E},\mathbf{T})}{\mathbf{d}\mathbf{T}} \mathbf{d}\mathbf{T}$$

The **sensitivity** depends on:

- Error on source activity
- Error on $\overline{v}e$ spectrum
- FV determination

Two types of analysis

The shape analysis

The «waves» might be seen!

It does not depend on the activity measurements

Both the oscillation parameters can be extracted independently

The SOX project

What we **need**:

- The source production /authorizations
- The activity measurement (1%) by two calorimeters
- The \overline{v}_e spectrum measurement

The **final sensitivity** will depends on:

- source activity (100-150 kCi)
- precision level of activity and spectrum measurements
- fiducial volume estimation

The source production process

At Mayak in Russia

From spent nuclear fuel from Research Reactor purification calcination separation processes CeO₂ powder Pressed up to density of 3 -5 g/cm³ Put inside the <u>c</u>opper capsule inside the two welded containers Inserted in the byological shield

The contract was signed last December!!

Source constrains

Radioactivity

It must be very PURE!

- \rightarrow γ emitter activity < 10^{-3} Bq/Bq with respect to ¹⁴⁴Ce
- → neutron rate: ²⁴⁴Cm activity < 10⁻⁵Bq/Bq with respect to ¹⁴⁴Ce (max 10⁵n/s)
- → A limit is put on several nuclides measured at Mayak spectroscopy before the delivery
- \rightarrow Power from impurities 10^{-3} W/W with respect to ¹⁴⁴Ce

```
<sup>22</sup>Na, <sup>44</sup>Ti-<sup>44</sup>Sc, <sup>49</sup>V, <sup>54</sup>Mn, <sup>55</sup>Fe, <sup>57</sup>Co, <sup>60</sup>Co, <sup>63</sup>Ni, <sup>65</sup>Zn, <sup>68</sup>Ge-<sup>68</sup>Ga, <sup>90</sup>Sr-<sup>90</sup>Y, <sup>91</sup>Nb, <sup>93m</sup>Nb, <sup>106</sup>Ru-<sup>106</sup>Rh, <sup>101</sup>Rh, <sup>102</sup>Rh, <sup>102m</sup>Rh, <sup>108m</sup>Ag, <sup>110m</sup>Ag, <sup>109</sup>Cd, <sup>113m</sup>Cd, <sup>119m</sup>Sn, <sup>121m</sup>Sn, <sup>125</sup>Sb, <sup>134</sup>Cs, <sup>137</sup>Cs, <sup>133</sup>Ba, <sup>143</sup>Pm, <sup>144</sup>Pm, <sup>145</sup>Pm, <sup>146</sup>Pm, <sup>147</sup>Pm, <sup>145</sup>Sm, <sup>151</sup>Sm, <sup>150</sup>Eu, <sup>152</sup>Eu, <sup>154</sup>Eu, <sup>155</sup>Eu, <sup>148</sup>Gd, <sup>153</sup>Gd, <sup>157</sup>Tb, <sup>158</sup>Tb, <sup>171</sup>Tm, <sup>173</sup>Lu, <sup>174</sup>Lu, <sup>172</sup>Hf-<sup>172</sup>Lu, <sup>179</sup>Ta, <sup>178m</sup>Hf, <sup>194</sup>Os-<sup>194</sup>Ir, <sup>192m</sup>Ir, <sup>193</sup>Pt, <sup>195</sup>Au, <sup>194</sup>Hg-<sup>194</sup>Au, <sup>204</sup>Tl, <sup>210</sup>Pb\rightarrow<sup>206</sup>Pb, <sup>207</sup>Bi, <sup>208</sup>Po, <sup>209</sup>Po, <sup>228</sup>Ra\rightarrow<sup>208</sup>Pb, <sup>227</sup>Ac\rightarrow<sup>207</sup>Pb, <sup>228</sup>Th\rightarrow<sup>208</sup>Pb, <sup>232</sup>U\rightarrow<sup>208</sup>Pb, <sup>235</sup>Np, <sup>236</sup>Pu-<sup>232</sup>U, <sup>246</sup>Cm, <sup>248</sup>Bk-<sup>244</sup>Am, <sup>249</sup>Bk-<sup>249</sup>Cf, <sup>248</sup>Cf, <sup>249</sup>Cf, <sup>250</sup>Cf, <sup>252</sup>Cf, <sup>252</sup>Es, <sup>254</sup>Es-<sup>250</sup>Bk.
```

Tungsten alloy shield

W-Ni-Fe alloy for mechanical properties

95% Tungsten (high density shield)

Ring for movimentation.

Dosimetry issue

Helicoflex gasket

Tungsten alloy plug

source

→ Gamma dose:

8 μSv/h at 1 m

from Pr decay (gamma of 2.2 MeV)

→ Neutron dose:

5 nSv/h at 1m

Weight: 2.2 ton

Built in Xiamen Ltd, China

The logistic

A journey to minimize borders:

Mayak → St. Petersburg

by boat

• St. Petersburg \rightarrow Le Havre

by train

• Le Havre \rightarrow Saclay \rightarrow LNGS

by truck

Container: TN MTR

• 24 t container for nuclear fuel (CEA)

Transportation from Mayak to Hall C

1 month

In the clean room for the activiy measurement:

2 weeks

In the pit for data taking

1.5 year

The activity measurement

$$P = \dot{m}[h(T_{out}, \bar{p}) - h(T_{in}, \bar{p})]$$

The activity is measured by knowing the heat released inside the shield and absorbed by a water flow

150 kCi →1200 W

T_{1/2}=285 days

Final precision due to:

- Heat losses (systematic)
- Massflow measurement (o.o5 % accuracy)
- Temperature sensors (mK accuracy!!)
- Entalphy function (0.1% IAPWS)

Estimation of the system time constant

The goal was 1 %...but we are going to do better!!

INFN/TUM calorimeter

CONVECTION

Vacuum system
Scroll pump
Turbo molecular pump
P< 5 · 10⁻⁵ mbar

RADIATION

2 stages of superinsulator (10 layers each one) Thermalization of the external chamber by hot water

 $P_{loss} < 1W$

CONDUCTION

System suspended by 3 kevlar ropes

Results from the electrical source calibration

Steady state: a constant power was applied

The temperature distribution in the system was studied as a function of the setting parameters inorder to estimate the losses

Parameters:

- massflow value
- entering temperature value
- temperature of the external vacuum chamber

In the best condition of measurement the losses result negligible!

Blind measurement:

Measured P = 927.8 ± 1.3 W Set Power = 929 W **0.3 % precision!!**

Results from calibration

Time dependent power, like the exponential decay

The time constant of the system is estimated for the final measurement

Heat propagation time

$$P(t) = P_0 e^{-\frac{t - \Delta t}{\tau}} + P_w$$
Lost power < 1W

We are ready for the final measurement!

The beta spectrum measurement

It influences:

the source heat power (source-activity conversion)

expected IBD interaction rate in Borexino

¹⁴⁴Ce and ¹⁴⁴Pr beta spectra both present **non-unique forbidden transitions**

for which spectral shape is uncertain at the **few % level**

Some apparatus are under development:

at CEA in Paris

at TUM in Munich

A proposal is submitted for using PERKEO III spectrometer at Munich

The SOX sensitivity

Assuming σ =0.015 activity meas σ =0.03 spectrum meas

Thanks to both the analysis the puzzle of 1 eV sterile neutrino might be closed!!

Thanks

