The SOX experiment

Lea Di Noto

on behalf of the SOX collaboration

Istituto Nazionale Fisica Nucleare Sez. Genova -ITALY

Venezia, 16 th March 2017
Scientific motivations

The Standard Model of neutrino oscillations

\[
\begin{bmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{bmatrix} =
\begin{bmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{bmatrix}
\begin{bmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{bmatrix}
\]

\[\Delta m_{32}^2 \approx \Delta m_{31}^2 = 2.4 \times 10^{-3} \text{ eV}^2\]
\[\Delta m_{12}^2 = 8 \times 10^{-5} \text{ eV}^2\]

The anomalies

- **LSND** \(P(\bar{\nu}_\mu \rightarrow \nu_e)\) 30 m
- **MiniBoone** \(P(\bar{\nu}_\mu \rightarrow \nu_e)\) and \(P(\nu_\mu \rightarrow \nu_e)\) 540 m
- **GalleX, SAGE** \(^{51}\text{Cr} - ^{37}\text{Ar}\) 1.9 m - 0.6 m
- **Reactors** \(\bar{\nu}\) flux 10 - 100 m

cannot be explained by the same matrix

All of these hint to \(\Delta m^2 \approx 1\) - 10 eV\(^2\) mass scale
The hypothesis of the sterile neutrinos

Combined analysis: 3+1 scenario

Sterile neutrino properties
- no SM interactions
- no coupling with Z boson (LEP)
- mixing with active ν's

\[E = 1 - 10 \text{ MeV} \rightarrow L = E/\Delta m^2 = 1 - 10 \text{ m} \]

\[L_{\text{osc}} (m) = \frac{E(\text{MeV})}{1.27 \Delta m^2 (\text{eV}^2)} \]

Experimental requirements:
- Precision on L (vertex reconstruction and compact source dimension)
- High sensitivity (low background, large scale detector)
Hunt the sterile neutrino

- **With accelerators** to test the MiniBooNE and LSND signal
 - T2K and MicroBooNE
 - MINOS-DayaBay ν_μ disappearance $\Delta m^2_{14} < 0.8 \text{ eV}^2$ Arxiv:1607.01177 (2016)

- **With artificial source** to test the Gallium anomaly
 - RICOCHET ^{37}Ar ν_e
 - SNO+ $^{53}\text{Cr (EC)}$ ν_e
 - BOREXINO-SOX $^{144}\text{Ce-144Pr}$ $\bar{\nu}_\text{e}$ **in 2018!**

- **Others**
 - ICeCube: from sterile neutrino induced matter effect in atmospheric neutrino
 - IceCube 1605.01990 (2016)
The SOX idea

Short neutrino Oscillation with BoreXino

A $^{144}\text{Ce} - ^{144}\text{Pr} \bar{\nu}_e$ source (100-150 kCi)
under the Borexino detector at LNGS Laboratory

Signature signal of new sterile neutrinos:

• Deviation from $1/r^2$ behavior of count rates
 ("disappearance technique")
• Direct observation of oscillation pattern ("waves")
The radioactive source

$^{144}\text{Ce} \rightarrow ^{144}\text{Pr} + \text{e}^- + \bar{\nu}_\text{e}$ long lived with low Q

$^{144}\text{Pr} \rightarrow ^{144}\text{Nd} + \text{e}^- + \bar{\nu}_\text{e}$ short lived with high Q above the IBD threshold

Activity: 100 - 150 kCi \(T_{1/2} = 285 \) days

$\bar{\nu}_\text{e}$ detected by Inverse beta Decay
Threshold 1.8 MeV

Venezia, 16th March 2017 L. Di Noto Neutrino Telescopes
The Borexino detector

Built mainly, for solar neutrino: \(\nu + e^- \rightarrow \nu + e^- \) in an organic liquid scintillator

Ultra-low radioactive background
- Spatial resolution: 12 cm @ 2 MeV
- Energy resolution: ~3.5% @ 2 MeV

Fiducial volume estimation: 0.7% for \(^{7}\)Be

See G. Bellini’s talk
The Borexino detector

The anti-neutrino detection by a coincidence measurement

\[\bar{\nu} + p \rightarrow n + e^+ \]

- geo-\(\nu\): \(~5\) ev/y in 300 t
- distant reactors: \(~10\) ev/y in 300 t
- accidental background: \(\ll 1\) ev/y

SOX is background free

expected signal: \(> 10^4\) events in 1.5 y

New calibration with many radioactive sources (next October)
Two types of analysis

The rate analysis

We look for a deviation from $1/r^2$ behaviour

It depends mainly on θ_{ee}

the amplitude of the oscillation

\[
N_0(l, T_1, T_2) = n_e \Phi(l) V(l) P_{ee}(l, E) \int_{T_1}^{T_2} \frac{d\sigma_{ee}(E, T)}{dT} dT
\]

The sensitivity depends on:

- Error on source activity
- Error on ν_e spectrum
- FV determination

\[
\Phi(l) = \frac{I_0}{4\pi l^2}
\]

\[
V(l) = 2\pi l^2 \left(1 - \frac{L^2}{2 l^2} + \frac{L^2}{2 l^2} - 1\right)
\]

Venezia, 16th March 2017

L. Di Noto
Two types of analysis

The shape analysis

The «waves» might be seen!

It does not depend on the activity measurements

Both the oscillation parameters can be extracted independently

Venezia, 16th March 2017

L. Di Noto

Phys. Rev. D91 (2015) 7, 072005
What we need:

- The source production /authorizations
- The activity measurement (1%) by two calorimeters
- The ν_e spectrum measurement

The final sensitivity will depend on:

- source activity (100-150 kCi)
- precision level of activity and spectrum measurements
- fiducial volume estimation
The source production process

From spent nuclear fuel from Research Reactor
- purification
- calcination
- separation processes
- CeO₂ powder
- Pressed up to density of 3 - 5 g/cm³
- Put inside the copper capsule
- inside the two welded containers
- Inserted in the biological shield

At Mayak in Russia

Copper disk for better heat transfer
Free volume 25%
3 Cu- capsules
CeO₂ powder
2 Stainless Steel cases

The contract was signed last December!!
Source constrains

- **Radioactivity**
 - It must be very PURE!
 - γ emitter activity < 10^{-3} Bq/Bq with respect to 144Ce
 - neutron rate: 244Cm activity < 10^{-5} Bq/Bq
 - with respect to 144Ce (max 10^5 n/s)
 - A limit is put on several nuclides measured at Mayak spectroscopy before the delivery
 - Power from impurities 10^{-3} W/W with respect to 144Ce
Tungsten alloy shield

W-Ni-Fe alloy for mechanical properties

95% Tungsten (high density shield)

Dosimetry issue

→ Gamma dose:
 8 μSv/h at 1 m
 from Pr decay (gamma of 2.2 MeV)

→ Neutron dose:
 5 nSv/h at 1 m

Weight: 2.2 ton

Built in Xiamen Ltd, China

Neutrino Telescopes
The logistic

A journey to minimize borders:
- Mayak → St. Petersburg by train
- St. Petersburg → Le Havre by boat
- Le Havre → Saclay → LNGS by truck

Container: TN MTR
- 24 t container for nuclear fuel (CEA)

Transportation from Mayak to Hall C
In the clean room for the activity measurement: 1 month
In the pit for data taking 2 weeks 1.5 year

Venezia, 16th March 2017 L. Di Noto

Neutrino Telescopes
The activity measurement

The activity is measured by knowing the heat released inside the shield and absorbed by a water flow

$$P = \dot{m}[h(T_{out}, \bar{p}) - h(T_{in}, \bar{p})]$$

150 kCi \rightarrow 1200 W

$T_{1/2} = 285$ days

Final precision due to:

- Heat losses (systematic)
- Massflow measurement (0.05 % accuracy)
- Temperature sensors (mK accuracy!!)
- Entalphy function (0.1% IAPWS)
- Estimation of the system time constant

The goal was 1 %...but we are going to do better!!
INFN/TUM calorimeter

CONVECTION
- Vacuum system
- Scroll pump
- Turbo molecular pump
 $P < 5 \cdot 10^{-5}$ mbar

RADIATION
- 2 stages of superinsulator (10 layers each one)
- Thermalization of the external chamber by hot water

CONDUCTION
- System suspended by 3 kevlar ropes

$P_{\text{loss}} \approx 0 \text{ W}$

$P_{\text{loss}} < 1 \text{ W}$

$P_{\text{loss}} < 0.1 \text{ W}$
Steady state: a constant power was applied

The temperature distribution in the system was studied as a function of the setting parameters in order to estimate the losses.

In the best condition of measurement the losses result negligible!

Results from the electrical source calibration

Parameters:
- massflow value
- entering temperature value
- temperature of the external vacuum chamber

Blind measurement:
Measured $P = 927.8 \pm 1.3 \text{ W}$
Set Power = 929 W
0.3 % precision!!
Results from calibration

Time dependent power, like the exponential decay

The time constant of the system is estimated for the final measurement:

\[P(t) = P_0 e^{-\frac{t-\Delta t}{\tau}} + P_W \]

Heat propagation time

\[\Delta t = 15 \text{ h} \quad P_w = 0 \text{ W} \]
\[\Delta t = 5 \text{ h} \quad P_w = 0 \text{ W} \]
\[\Delta t = 0 \quad P_w = 0 \text{ W} \]
\[\Delta t = 0 \quad P_w = -0.6 \text{ W} \]

We are ready for the final measurement!

Lost power < 1 W
The beta spectrum measurement

It influences:

- the source heat power (source-activity conversion)
- expected IBD interaction rate in Borexino

^{144}Ce and ^{144}Pr beta spectra both present **non-unique forbidden transitions**, for which spectral shape is uncertain at the **few % level**

Some apparatus are under development:

- **at CEA in Paris**
- **at TUM in Munich**

A proposal is submitted for using **PERKEO III** spectrometer at Munich
The SOX sensitivity

Assuming
\[\sigma = 0.015 \] activity meas
\[\sigma = 0.03 \] spectrum meas

Thanks to both the analysis the puzzle of 1 eV sterile neutrino might be closed!!
Thanks

Borexino detector

Venezia, 16th March 2017
L. Di Noto
Neutrino Telescopes