The KATRIN Neutrino Mass Experiment

J.F. Wilkerson on behalf of the KATRIN Collaboration

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

XVII Int. Workshop Neutrino Telescopes March 15, 2017

The KATRIN Collaboration

- Carnegie Mellon University
- Case Western Reserve University
- CEA/Saclay
- Complutense University of Madrid
- Institute for Nuclear Research, Troitsk
- Karlsruhe Institute for Technology
- Lawrence Berkeley National Lab

- Max Planck Institut für Kernphysik, Heidelberg
- Nuclear Physics Institute of the ASCR
- Massachusetts Institute of Technology
- Max Planck Institute for Physics, Munich
- Technical University of Munich

- University of
 - Applied Science, Fulda
 - University of Bonn
 - University of Mainz
 - University of Münster
 - University of North Carolina
 - University of Washington
 - University of Wuppertal

Special thanks from jfw to Diana Parno, Florian Fränkle, Christian Weinheimer, and Guido Drexlin. 2

Primary support from Helmholtz Association; BMBF; DOE Office of Science DE-FG02-97ER41020; Helmholtz Alliance for Astroparticle Physics; Grant Agency for Czech Republic

Lower bound on m₂, m₃ from oscillation

- Lower bound on m₂, m₃
 from oscillation
- Upper bound from β decay

$$m_{\nu_{\beta}} = \sqrt{\sum_{i}^{3} |U_{ei}|^2 m_i^2}$$

 $pprox m_{
u}$ (quasidegenerate regime)

 $\leq 2 \ \mathrm{eV}^{(Mainz, \ Troitsk)}$

- Lower bound on m₂, m₃
 from oscillation
- Upper bound from β decay

$$m_{\nu_{\beta}} = \sqrt{\sum_{i}^{3} |U_{ei}|^2 m_i^2}$$

 $pprox m_{
u}$ (quasidegenerate regime)

 $\leq 2~{
m eV}^{(Mainz, Troitsk)}$

From T_2 to $m_{\nu\beta}$

e⁻

³He

- Extract $m_{\nu\beta}^2$ from fit to ^{3}H spectral shape near endpoint
- Almost model-independent

KArlsruhe TRItium Neutrino

- Intense T₂ source (10¹¹ decays/second)
- Spectrum analysis with electromagnetic filter
- Design resolution
 0.93 eV
- Design m_{νβ} sensitivity:
 0.2 eV/c² at 90% confidence level

T₂ Spectroscopy: MAC-E Filter

- Measure integral spectrum with moving threshold
- Magnetic Adiabatic Collimation + Electrostatic filter

- Two supercond. solenoids compose magnetic guiding field
- adiabatic transformation: $\mu = E_{\perp}/B = const.$ \Rightarrow parallel e beam
- Energy analysis by electrostat. retarding field

 $\Delta E = E \cdot B_{min}/B_{max} = 0.93 \text{ eV} (KATRIN)$

Source, Transport & Pumping

Monitoring & calibration system Molecular windowless gaseous tritium source

Differential pumping

8 adiabatic electron guiding & T₂ reduction factor of $\sim 10^{14}$

Essential for diagnostics of tritium source & spectrometer transmission

- photoelectron gun: spectrometer transmission & energy losses in source
- rear wall: definition of source potential, neutralization of tritium plasma
- X-ray detectors: online monitoring of tritium ß-decay activity via X-rays (BIXS)

Windowless Gaseous molecular Tritium Source WGTS

tube in long superconducting solenoids 5 9cm, length: 10m, T = 30 K

XVII Int. Workshop on Neutrino Telescopes March 15, 2017

WGTS: Temperature stability and density

Differential and Cryo Pumping

- active pumping: 4 TMPs
- Tritium retention: 105
- 5.6 T magnetic field:
- Ion monitoring by FTICR and ion manipulation ٠ by dipole and monopole electrodes inside

- based on by cryo-sorption at Ar snow at 3-4 K
- Tritium retention: >107
- magnetic field: 5.6 T

XVII Int. Workshop on Neutrino Telescopes March 15, 2017

Detector

Requirements

- detection of β -electrons (mHz to kHz)
- high efficiency (> 90%)
- low background (< 1 mHz)
- (passive and active shielding)
- good energy resolution (< 1 keV)

Properties

- 90 mm Ø Si PIN diode
- thin entry window (50nm)
- segmented wafer (148 pixels)
 - record azimuthal and radial profile of the flux tube
 - investigate systematic effects
 - compensate field inhomogeneities
- detector magnet 3 6 T
- post acceleration (30kV)

Detector

Requirements

- detection of β -electrons (mHz to kHz)
- high efficiency (> 90%)
- low background (< 1 mHz)
- (passive and active shielding)
- good energy resolution (< 1 keV)

Properties

- 90 mm Ø Si PIN diode
- thin entry window (50nm)
- segmented wafer (148 pixels)
 - record azimuthal and radial profile of the flux tube
 - investigate systematic effects
 - compensate field inhomogeneities
- detector magnet 3 6 T
- post acceleration (30kV)

Main spectrometer and detector commissioning objectives

Primary objectives:

- test of hardware, software and slow control components
- provide ultra high vacuum conditions at the p 4 10-11 mbar level
- detailed understanding of the transmission properties of this MAC-E-Filter (E = 18.6 keV with Δ E = 0.93 eV resolution) compared to simulation with Kasseiopeia
- detailed understanding and passive & active control of background processes

Main spectrometer and detector commissioning results

First Light

14 October 2016

Major Milestone: Photo electrons transported over full 70m apparatus.

• Illuminate rear wall

- Magnetically guide photoelectrons along beamline
- First all-KATRIN commissioning

First Light

14 October 2016

Major Milestone: Photo electrons transported over full 70m apparatus.

- Illuminate rear wall
- Magnetically guide photoelectrons along beamline
- First all-KATRIN commissioning

Last beamline valve opens

KATRIN main spectrometer backgrounds

- Various processes can contribute to the spectrometer background
- Spectrometer backgrounds were investigated in detail during two measurement phases (SDS1 & SDS2)

KATRIN main spectrometer backgrounds

- All previously known background processes are efficiently suppressed
- Background rate about 50 times larger then design value (10 mcps), presumably due to ionization of Rydberg atoms by black body radiation

Decays of neutral particles

²¹⁹Rn from getter (and artificial ²²⁰Rn source)

Rydberg model

- Remaining spectrometer background independent of magnetic field
- Approximately constant "background density" -> volume effect
- No cluster events at elevated pressure
 -> background not due to radioactive decays in spectrometer volume
- No effect of active methods
 -> no trapped particles

Rydberg model:

Rydberg atoms created in the decay of ²¹⁰Pb and accompanying processes, enter the spectrometer volume where they are ionized by thermal radiation, thus creating low-energy electrons

Rydberg model ²²⁸Th test

Background signature comparison

induced background has the same behavior as existing background

→ main spectrometer ²¹⁰Pb contamination is root cause of background

Spectrometer Background

- Kananue hilitan Neutrino 15
- 2015 commissioning revealed high backgrounds
 - ~50x higher than design value (10 mcps)
- Primary mechanism: ²¹⁰Po decay in/on wall
 - Secondary particles via sputtering
 - Rydberg atoms (H*) enter flux tube
 - H* ionized via blackbody radiation
 - Low-energy e⁻ created in flux tube!
- Countermeasures
 - reduce H-atom surface coverage:
 - extended bake-out phase
 - strong UV source illumination
 - revise data taking strategy

Mitigating High Backgrounds

Ideas and early plan

- Optimize scanning
- Enlarge analysis window
- Increase B_{min}

KATRIN 2017-2018

- *Right now:*
 - Analysis of commissioning data (up to late 2016)
 - Final work on tritium related hardware loops
 - Continued work on monitoring systems
 - Maintenance, upgrades, software work preparing for:
- *Summer/Fall* 2017: System commissioning with ^{83m}Kr, H₂, and D₂
- *Early 2018:* First tritium data
- And beyond:
 - Early mass results (final sensitivity: 3 beam yrs)
 - Sterile neutrino searches
 - Searches for physics beyond the Standard Model

Backup slides

Molecular Final-State Distributio

- Electronic excitations in T atoms
- Excitations in T₂ gas
 - Electronic: 20 eV
 - Vibrational: ~0.1 eV
 - Rotational: ~0.01 eV
- Beta spectrum depends on excitation energies V_k and probabilities P_k

$$\frac{dN}{dE_e} = \frac{G_F^2 m_e^5 \cos^2 \theta_C}{2\pi^3 \hbar^7} |M_{\rm nuc}|^2 F(Z, E_e) p_e E_e \times \sum_{i,k} |U_{ei}|^2 P_k (E_{\rm max} - E_e - V_k)$$

$$\times \sqrt{(E_{\max} - E_e - V_k)^2 - m_{\nu i}^2} \times \Theta(E_{\max} - E_e - V_k - m_{\nu i})$$

Describing T₂ Final States

-147(79) eV² -130(25) eV²

LLNL m_v^2

- Uncertainty hard to estimate
- Enters directly into analysis

LANL m_v^2

Bodine, DSP, Robertson, PRC **91**, 035505 (2015) 0.001

- KATRIN needs $\sigma_{\rm FSD}$ to 1%
 - New calculations
 - Initial-state source characterization

resolve historical discrepancy

TRIMS experiment to

Binding energy (eV)

-100

Saenz et al., PRL 84 (2000) 242

Fackler et al., PRL 55 (1985) 1388

Calculation

1985

-50

Relative probabili

-250

-200

=150

