XVII International Workshop on Neutrino Telescope Venezia, 16.03.2017

Julien Lesgourgues

Institut für Theoretische Teilchenphysik und Kosmologie (TTK), RWTH Aachen University

Cosmology and neutrinos - J. Lesgourgues

Observables derived from first principles

GR+QED, Integration of linearised Einstein + Boltzmann

Observables derived from modelling of complex phenomena non-linear simulations, phenomenological fits & scaling laws

Observables derived from first principles

GR+QED, Integration of linearised Einstein + Boltzmann

Observables derived from modelling of complex phenomena

non-linear simulations, phenomenological fits & scaling laws

temperature/polarisation/ lensing power spectrum

Large Scale Structure

Supernovae, Cepheids, small-scale structures, light element abundances

Hubble rate, acceleration of expansion, satellite galaxies count...

Observables derived from first principles

GR+QED, Integration of linearised Einstein + Boltzmann

Observables derived from modelling of complex phenomena

non-linear simulations, phenomenological fits & scaling laws

CMB

temperature/polarisation/ lensing power spectrum

> ~1500 (Planck) + ~10 *independent* data points minimal 6-parameter model: excellent fit for binned TT data, χ2/dof=1.004 for 731 d.o.f.

Large Scale Structure

Supernovae, Cepheids, small-scale structures, light element abundances

Hubble rate, acceleration of expansion, satellite galaxies count...

most recent H₀ measurement *(Riess et al.)* :1 point in tension at 2.7σ (73.24-66.93)/(1.74+0.62)=2.67

Lesgourgues & Pastor Pys. Rep. 2016; Lesgourgues et al. "Neutrino Cosmology" CUP [NEUTRINO]; Drewes et al. 1602.04816

dark matter clustering

dispersion velocity

ordinary/dark matter clustering

Active neutrino summed mass M_v=Σ_im_i

radiation particles particles carrying the weak force guark anti-quark anti-quark

positron (anti-e)
proton
neutron
meson
hydroger
deuterit n

lithiun DI-91/2020_

relativistic **neutrino** contribution to early expansion

metric fluctuations during nonrelativistic **neutrino** transition (early ISW)

non-relativistic **neutrino** contribution to late expansion rate (acoustic angular scale)

neutrino slow down early dark matter clustering

neutrino propagation and dispersion velocity

neutrino slow down late ordinary/dark matter clustering

Active neutrino summed mass $M_v = \sum_i m_i$

Light (eV-ish) sterile neutrino mass/abundance

relativistic

neutrino contribution

to early expansion

metric fluctuations during nonrelativistic neutrino transition (early ISW)

non-relativistic neutrino contribution to late expansion rate (acoustic angular scale)

neutrino slow down early dark matter clustering

neutrino propagation and dispersion velocity

neutrino slow down late ordinary/dark matter clustering

Active neutrino summed mass $M_v = \sum_i m_i$

Heavy (keV-ish) sterile neutrino mass/abundance

Light (eV-ish) sterile neutrino mass/abundance

relativistic

neutrino contribution

to early expansion

metric fluctuations during nonrelativistic neutrino transition (early ISW)

non-relativistic neutrino contribution to late expansion rate (acoustic angular scale)

neutrino slow down early dark matter clustering

neutrino propagation and dispersion velocity

neutrino slow down late ordinary/dark matter clustering

Active neutrino summed mass $M_v = \sum_i m_i$

Heavy (keV-ish) sterile neutrino mass/abundance

Active neutrino nonstandard interactions

Light (eV-ish) sterile neutrino mass/abundance

relativistic

neutrino contribution

to early expansion

metric fluctuations during nonrelativistic neutrino transition

(early ISW)

non-relativistic neutrino contribution to late expansion rate (acoustic angular scale)

neutrino slow down early dark matter clustering

neutrino propagation and dispersion velocity

neutrino slow down late ordinary/dark matter clustering

Observables derived from first principles

GR+QED, Integration of linearised Einstein + Boltzmann

Observables derived from modelling of complex phenomena

non-linear simulations, phenomenological fits & scaling laws

95%CL upper bounds on $\Sigma_i m_i$ 3 Neutrino mass bounds depend on number of new ingredients in cosmological model beyond minimal (6-1 param) model summed mass 0.3 Σ m_i (eV) 0.1 0.03 0.01 0.01 0.1 1 lightest m_{ν} (eV)

95% CL upper bounds on $\Sigma_i m_i$ 3 Neutrino mass bounds depend on number of new ingredients in cosmological model beyond minimal (6-1 param) model summed mass 0.3 Σ m_i (eV) people report bounds on 7-param model and on extended model 0.1 0.03 0.01 0.01 0.1 1 lightest m_{ν} (eV)

95%CL upper bounds on $\Sigma_i m_i$

95%CL upper bounds on $\Sigma_i m_i$ 3 2006 1 CMB only: Planck, summed mass w/o polarisation and lensing... 2016 $\Sigma_i m_i < 590$ to 140 meV (95%CL) 0.3 [Planck col.] 1605.02985 Σ m_i (eV) CMB + LSS : $\Sigma_{i}m_{i} < 130 \text{ meV} (95\% \text{CL})$ with galaxies: 0.1 with Lyman-a: $\Sigma_i m_i < 120 \text{ meV} (95\% \text{CL})$ $\Sigma_i m_i < 118 \text{ meV} (95\% \text{CL})$ with BAOs: Cuesta et al. 1511.05983; Palanque-Delabrouille et al. 1506.05976; Vagnozzy et 0.03 al. 1701.08172 NH already favoured by cosmo. + labo. 0.01 bounds (Simpson et al. 1703.03425; Capozzi et 0.01 0.1 1 al. 1703.04471) lightest m_{ν} (eV)

... with conservative use of SKA; 21cm?

Neutrino masses

Conclusions:

- 5 σ detection of M_v possible even if M_v = 60 meV, M_v = safest discovery opportunity for cosmologists
- Error forecasts include non-minimal cosmological assumptions

Neutrino masses

Conclusions:

- 5 σ detection of M_v possible even if M_v = 60 meV, M_v = safest discovery opportunity for cosmologists
- Error forecasts include non-minimal cosmological assumptions
- More sensitive than many β and double- β decay (KATRIN, GERDA, ...), works for Dirac and Majorana, but complementary to β -decay which contains independent information (on phases, angles, Dirac/Majorana...)
- No direct significant test of NH versus IH like PINGU, ORCA, JUNO; but if measured mass is close to 60 meV, IH could be excluded at 2σ (Planck+Euclid, ~2022) and later up to 4 to 5σ ... (see e.g. Hannestad and Schwetz 2016; Simpson et al. 2017)

Neutrino masses

Conclusions:

- 5 σ detection of M_v possible even if M_v = 60 meV, M_v = safest discovery opportunity for cosmologists
- Error forecasts include non-minimal cosmological assumptions
- More sensitive than many β- and double-β- decay (KATRIN, GERDA, ...), works for Dirac and Majorana, but complementary to β-decay which contains independent information (on phases, angles, Dirac/Majorana...)
- No direct significant test of NH versus IH like PINGU, ORCA, JUNO; but if measured mass is close to 60 meV, IH could be excluded at 2σ (Planck+Euclid, ~2022) and later up to 4 to 5σ ... (see e.g. Hannestad and Schwetz 2016; Simpson et al. 2017)
- Non-detection would require major change of paradigm on the late time behaviour of the cosmological model (new physics to describe structure formation: MG, nonstandard particle interactions) or on neutrino physics (cosmological neutrinos decay, mass from coupling with varying scalar, etc.)

Extra relics (massless case)

Current an future bounds on density of relativistic relics beyond photons (standard model: $N_{eff} = 3.046$)

CORE / S-IV would resolve degeneracy with H₀ (redshift of equality) and is limited by determination of peak scale angle (neutrino drag effect)

Planck 2015	CORE alone
(TT,TE,EE + lowP +	CORE collaboration
lensing)	[1612.00021]
N _{eff} = 3.04 ± 0.18 (68%CL)	♂(N_{eff}) = 0.041

Extra relics (massless case)

Current an future bounds on density of relativistic relics beyond photons (standard model: $N_{eff} = 3.046$)

Test of non-thermal or early decoupled thermal relics (Axion-Like Particles, ...), lowtemperature reheating models, neutrino non-standard interactions, light sterile neutrinos

Planck 2015	CORE alone
(TT,TE,EE + lowP +	CORE collaboration
lensing)	[1612.00021]
N _{eff} = 3.04 ± 0.18 (68%CL)	ന(N_{eff}) = 0.041

Bauman et al. 1604.08614

Extra relics (small mass case)

Current an future bounds on one early-decoupled or non-thermalized extra light species (e.g. sterile neutrino)

For Dodelson-Widrow neutrinos, physical mass m = $m_{eff}/\Delta N_{eff}$

Extra relics (small mass case)

Current an future bounds on one early-decoupled or non-thermalized extra light species (e.g. sterile neutrino)

For Dodelson-Widrow neutrinos, physical mass m = $m_{eff}/\Delta N_{eff}$

Extra relics (small mass case)

Current an future bounds on one early-decoupled or non-thermalized extra light species (e.g. sterile neutrino)

Effective density parameters	Planck 2015 (TT+lowP+lensing) + BAO	CORE + DESI + Euclid CORE collaboration [1612.00021]	0.4 (agressive) Planck+lensing LiteCORE-80 CORE-M5 COrE+
∆N _{eff} (extra contribution to density <i>before</i> NR transition)	<0.7 (95%CL)	2 σ ~ 0.10	AN _{eff} 0.2
m _{eff} (extra contribution to density <i>after</i> NR transition)	< 400 meV (95%CL)	2 σ ~ 66 meV	0 0 0 0.3 0.6 Meff [eV] (forecasted errors obtained while simultaneously varying — and measuring

For Dodelson-Widrow neutrinos, physical mass $m = m_{eff} / \Delta N_{eff}$

— active neutrino mass scale)

KeV sterile neutrino

- Non-resonantly produced (leptonic asymmetry << 10⁻⁶): ``pure Warm Dark Matter": EXCLUDED
- Resonantly produced (leptonic asymmetry ~ 10⁻⁶): ``Cold+Warm Dark Matter": PROBABLY EXCLUDED (effect of T_{IGM}(z) ? Garzilli et al.2015)

 As a fraction of DM only: future improvement on both sides (X-ray despite Hitomi failure- , Lyman-alpha)

END

