

Project 8: Towards a Direct Measurement of the Neutrino Mass with Tritium Beta Decays

NOAH OBLATH for the Project 8 Collaboration

XVII International Workshop on Neutrino Telescopes 15 March, 2017 — Venice, Italy

<u>×1</u>0⁻⁹ 0.1 3×10^{-10} of the $m_v = 0 eV$ full spectrum 0.08 0.06 0.04 $m_{\nu} = 2.2 \text{ eV}$ (current limit 0.02 from ³H) <u>0</u> -9 -7 -6 -5 -3 -4 -2 -1 ΔE (eV) $\frac{dN}{dE} \approx KF(Z, E)p(E + m_e c^2) \left((E - E_0)^2 - \frac{1}{2}m_\beta^2 \right)$

Zoom in on the endpoint ...

 $m_{\beta} = \sqrt{\sum_{i} |U_{ei}^2| m_i^2} \qquad \qquad | \ \mathbf{2}$

Endpoint of the Tritium β -decay Spectrum

3

Novel Technique: CRES

Cyclotron Radiation Emission Spectroscopy

- Enclosed volume
- Fill with tritium gas
- Add a magnetic field

- Decay electrons spiral around field lines
- Add
 antennas to
 detect the
 cyclotron
 radiation

Cyclotron Radiation

- An electron traveling in a magnetic field emits cyclotron radiation
- The frequency of the emitted radiation depends on the relativistic boost

The angle between the electron momentum and the magnetic field

Correction term for the cyclotron frequency

$$\omega_{\gamma} = \frac{\omega_0}{\gamma} = \frac{eB}{K + m_e} \left(1 + \frac{\cot^2 \theta}{2} \right)$$

Power emitted

Pitch Angle

$$P_{\rm tot} = \frac{1}{4\pi\epsilon_0} \frac{2q^2\omega_c^2}{3c} \frac{\beta^2 \sin^2\theta}{1-\beta^2}$$

Phase I: Proof of Principle

- WR-42 waveguide to contain the gas and detect the cyclotron radiation
- Filled with ^{83m}Kr gas
- 1 T background magnetic field & a small 5-mT magnetic trap
- Waveguide leads to cryogenic amplifiers

Phase I Apparatus

^{83m}Kr Gas Cell

First Observation

Proudly Operated by Battelle Since 1965

First Observation

Proudly Operated by Battelle Since 1965

Phys. Rev. Lett. 114, 162501 (2015)

Energy Spectrum

Proudly Operated by Battelle Since 1965

Energy Spectrum

Proudly Operated by Battelle Since 1965

"Bathtub" Trap

- Improved field homogeneity
- Larger trapping volume

Energy Spectrum

Disentangling Energy and θ

Proudly Operated by Battelle Since 1965

$$\omega_{\gamma} = \frac{\omega_0}{\gamma} = \frac{eB}{K + m_e} \left(1 + \frac{\cot^2 \theta}{2} \right)$$

Use the axial frequency: modulation of the cyclotron radiation signal

$$\omega_a \propto v \left(\frac{a}{\sin\theta} + \frac{4\sin\theta}{m\cos^2\theta}\right)^{-1}$$

For an approximation of a bathtub trap

Expected frequencies: 50-200 MHz

Sidebands Observed

Sidebands Observed

Upper Sideband ×10⁶ 10⁻¹² Preliminary Central peak 134 ×10⁻¹² ×10⁶ 9.0 Power Spectral Density (W/Hz) Frequency (Hz) 132 96 0.6 130 0.4 95 0.2 128 94 0 0.002 0 0.004 0.006 0.008 0.01 ×10⁻¹² ×10⁶ 93 Power Spectral Density (W/Hz) Frequency (Hz) 58 Preliminary 0.4 92 57 56 91 0.2 55 90 0 54 0.01 0 0.002 0.004 0.006 0.008 Time (s) 53 0.4 Analyst: N.S.O. 52 0.3 51 0.2 0.1 50 Lower Sideband n 0 0.002 0.004 0.006 0.008 0.01 Time (s)

Sideband Oscillations

Phenomenology

Data

Hypothesis & Simulations

Moving Forward with a Phased Approach

Phase 2: Tritium Demonstrator

- 1-cm circular waveguide to contain the gas and detect the cyclotron radiation
- Filled with ^{83m}Kr gas
- 1 T background magnetic field & a wider 5-mT magnetic trap
- Waveguide leads to cryogenic amplifiers

^{83m}Kr/T₂ Gas Cell

Phase II: Other Improvements

- Electron Spin Resonance (ESR) measurement at each trap coil location
- ROACH digitizer streaming & triggered operation
- Cryogenic isolator for improved SNR

Analyst: W.C. Pettus

Analyst: C. Claessens

Current Status

Commissioning activities in preparation for using T₂ gas

- ► T₂/^{83m}Kr source system
- ROACH data acquisition system

Phase III: Mainz/Troitsk-Scale Limit

Proudly Operated by Battelle Since 1965

- Scaling up the volume: 200 cm³ volume inside an MRI magnet
- Free-space radiation detected by a ring array of antennas
- Digital beam-forming used to spatially locate electrons within the fiducial volume

Phase IV: Atomic Tritium Experiment

Proudly Operated by Battelle Since 1965

Use atomic tritium to avoid wide final-state energy distribution

Large volume: ~100 m³
 Ioffe coils to trap atomic T

Coil design by A. Radovinsky

T2 distribution from Saenz et al., Phys. Rev. Left. 84, 242 (2000) T distribution calculated by R.G.H. Robertson

Projected Sensitivities

Sensitivities for different gas densities (number per cm³)

Calculations by R.G.H. Robertson

Projected Sensitivities

Sensitivities for different gas densities (number per cm³)

Calculations by R.G.H. Robertson

- Goal: use a novel technique to be more sensitive to the neutrino mass
- New technique: Cyclotron Radiation Emission Spectroscopy (CRES)
- Phase I complete: first direct measurement of single-electron cyclotron radiation made in June, 2014
- Phase II underway: currently commissioning to run with T₂ gas
- Phase III will use T_2 to measure the neutrino mass down to $\sim 2 \text{ eV}$
- Phase IV will use atomic tritium to reach ~40 meV

Acknowledgement

Proudly Operated by Battelle Since 1965

This material is based upon work supported by the following sources: the U.S. Department of Energy Office of Science, Office of Nuclear Physics, under Award No.~DE-SC0011091 to MIT, under the Early Career Research Program to Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle for the U.S. Department of Energy under Contract No.~DE-AC05-76RL01830, under Award No.~DE-FG02-97ER41020 to the University of Washington, and under Award No.~DE-SC0012654 to Yale University; the National Science Foundation under Award Nos.~1205100 and 1505678 to MIT; the Massachusetts Institute of Technology (MIT) Wade Fellowship; the Laboratory Directed Research and Development Program at PNNL; the University of Washington Royalty Research Foundation. A portion of the research was performed using PNNL Institutional Computing at Pacific Northwest National Laboratory. The isotope(s) used in this research were supplied by the United States Department of Energy Office of Science by the Isotope Program in the Office of Nuclear Physics. We further acknowledge support from Yale University, the PRISMA Cluster of Excellence at the University of Mainz, and the KIT Center Elementary Particle and Astroparticle Physics (KCETA) at the Karlsruhe Institute of Technology.

Project 8 Collaboration

University of California at Santa Barbara B.H. LaRoque

CASE WESTERN RESERVE m ar UNIVERSITY thirk beyond the possible
--

Case Western Reserve University B. Monreal

Harvard-Smithsonian Center for Astrophysics S. Doeleman, J. Weintroub, A. Young

Johannes-gutenberg Universität Mainz S. Böser, C. Claessens, A. Lindman

Karlsruher Institut für Technologie T. Thümmler, W. Marcel

Lawrence Livermore National Laboratory K. Kazkaz Massachusetts Institute of Technology N. Buzinsky, J.A. Formaggio, E. Zayas

Pacific Northwest National Laboratory E.C. Finn, M. Guigue, A.M. Jones, N.S. Oblath, J.R. Tedeschi, B.A. Van Devender

Pennsylvania State University L. de Viveiros

University of Washington

A. Ashtari Esfahani, R. Cervantes, P.J. Doe, M. Fertl, E. Machado, W. C.Pettus, R.G.H. Robertson, L.J. Rosenberg, G. Rybka

Yale University

K. Heeger, J.A. Nikkel, L. Saldaña, P. Slocum

http://www.project8.org