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Using Tritium β Decay
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Beyond KATRIN
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Novel Technique: CRES

T2
B⃗

• Enclosed 
volume

• Fill with 
tritium gas

• Add a 
magnetic 
field

• Decay 
electrons 
spiral 
around 
field lines

• Add 
antennas to 
detect the 
cyclotron 
radiatione-

Cyclotron Radiation Emission Spectroscopy

B. Monreal and J. Formaggio, Phys. Rev. D80 051301 (2009)
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An electron traveling in a magnetic 
field emits cyclotron radiation

The frequency of the emitted radiation 
depends on the relativistic boost
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Correction term for the 
cyclotron frequency
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WR-42 waveguide to 
contain the gas and detect 
the cyclotron radiation 

Filled with 83mKr gas 

1 T background magnetic 
field & a small 5-mT 
magnetic trap 

Waveguide leads to 
cryogenic amplifiers

Phase I: Proof of Principle
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Phase I Apparatus

Signal

Cryocooler

Cryogenic 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Gas Supply

Superconducting 
Solenoid Magnet
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Cryogenic 
Amplifiers

Superconducting 
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83mKr Gas Cell

Gas Lines

Trapping Coil

Waveguide

9



First Observation

10
Phys. Rev. Lett. 114, 162501 (2015)



First Observation
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Phys. Rev. Lett. 114, 162501 (2015)

Energy loss 
via cyclotron 
radiation

Scattering off 
of a residual 
gas molecule



Energy Spectrum

FWHM: 15 eV

Trap current 800 mA
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Phys. Rev. Lett. 114, 162501 (2015)



Energy Spectrum

FWHM: 15 eV
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Trap current 400 mA Phys. Rev. Lett. 114, 162501 (2015)



Improved field 
homogeneity 

Larger trapping 
volume

“Bathtub” Trap

B⃗

B field

5 mT

1 T

On OnOff
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Natural line widths: 1.84 &1.4 eV; Observed FWHM 3.3 eV 
Separation is 52.8 eV 

Region of interest near the 30.4 keV lines 
(bins are 0.5 eV wide) 

Natural line widths: 1.99 &1.66 eV; Observed FWHM 3.6 eV 
Separation is 7.7 eV 

Region of interest near the 32 keV lines 
(bins are 0.5 eV wide) 

Energy Spectrum
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arXiv:1703.02037 (to be published in J. Phys. G)



Disentangling Energy and θ
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Sidebands Observed

17

Preliminary

Analyst: N.S.O.



Sidebands Observed
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Preliminary

Analyst: N.S.O.



Sideband Oscillations
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Preliminary

Central peak

Upper Sideband

Lower Sideband

Preliminary

Analyst: N.S.O.



Phenomenology
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Hypothesis & SimulationsData
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Moving Forward with a Phased Approach
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2015 2016 2017 2018 2019 2020 2021 2022

Phase I

Phase II

Phase III R&D Operations

Phase IV R&D

PRL 114:162501, 2015 J. Phys. G, 2017



1-cm circular waveguide to 
contain the gas and detect 
the cyclotron radiation 

Filled with 83mKr gas 

1 T background magnetic 
field & a wider 5-mT 
magnetic trap 

Waveguide leads to 
cryogenic amplifiers

Phase 2: Tritium Demonstrator

B⃗

B field
5 mT

1 T

“Bathtub” Trap

130 mm
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83mKr/T2 Gas Cell

Gas Lines

Trapping Coils

ESR Cable
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Electron Spin Resonance (ESR) 
measurement at each trap coil 
location 
ROACH digitizer — streaming & 
triggered operation 
Cryogenic isolator for improved 
SNR

Phase II: Other Improvements
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Commissioning activities in preparation for using T2 gas 
T2/83mKr source system 
ROACH data acquisition system

Current Status
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Scaling up the volume: 200 cm3 volume inside an MRI magnet 
Free-space radiation detected by a ring array of antennas 
Digital beam-forming used to spatially locate electrons within the fiducial 
volume

Phase III: Mainz/Troitsk-Scale Limit
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Simulation by A.M. Jones



Phase IV: Atomic Tritium Experiment
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Use atomic tritium to avoid wide 
final-state energy distribution 

Large volume: ~100 m3 
Ioffe coils to trap atomic T
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T2 distribution from Saenz et al., Phys. Rev. Left. 84, 242 (2000)
T distribution calculated by R.G.H. Robertson

Coil design by A. Radovinsky



Projected Sensitivities
Sensitivities for different gas densities (number per cm3)
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Calculations by R.G.H. Robertson



Projected Sensitivities
Sensitivities for different gas densities (number per cm3)
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Calculations by R.G.H. Robertson

Phase II volume

Current T2 limit

Normal vs inverted hierarchy



Goal: use a novel technique to be more sensitive to the neutrino mass 

New technique: Cyclotron Radiation Emission Spectroscopy (CRES) 

Phase I complete: first direct measurement of single-electron cyclotron 
radiation made in June, 2014 

Phase II underway: currently commissioning to run with T2 gas 

Phase III will use T2 to measure the neutrino mass down to ~2 eV 

Phase IV will use atomic tritium to reach ~40 meV

Summary
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